Exercise $1 \quad H^{1}$ functions

Let $\Omega \subset \mathbb{R}^{2}$ be the unit cube, $\Omega=[0,1] \times[0,1]$.

1. For which α is the function in polar coordinates

$$
\begin{equation*}
f(r, \phi)=r^{\alpha} \sin (\alpha \phi) \tag{1}
\end{equation*}
$$

from space $H^{1}(\Omega)$.
2. The Laplace-Problem $\Delta u=0$ with pure dirichlet boundary conditions should be solved on a domain Ω (see figure).
The function (1) is a special form of the harmonic function

$$
g(r, \phi)=r^{\frac{\pi}{\Theta}} \sin \left(\frac{\pi}{\Theta} \phi\right) .
$$

Show, that g is harmonic, that means $\Delta g=0$ and write explicit dirichlet boundary condtions.

Exercise 2 Discontinuous of H^{1}-FUnctions in 2D and 3D

1. Consider the domain $\Omega=B(0, R) \subset \mathbb{R}^{2}$, where

$$
B(0, R)=\left\{x \in \mathbb{R}^{2} \mid\|x\|<R\right\}, \quad 0<R<\frac{1}{e} .
$$

Show in detail that the function

$$
f(x)=\ln \left(\ln \left(\frac{1}{r(x)}\right)\right), \quad r(x)=\left(\sum_{i=1}^{2} x_{i}^{2}\right)^{\frac{1}{2}}
$$

lies in the space $H^{1}(\Omega)$ (although it has a singularity in one point).
2. Let $\Omega=B(0, R) \subset \mathbb{R}^{3}$. In 3D, H^{1}-functions can have singularities both at isolated points and along one-dimensional curves. Find or construct a function $g=g\left(x_{1}, x_{2}, x_{3}\right) \in H^{1}(\Omega)$, which has a singularity along 1D curve.
Hint: You can find an inspiration in 1.

Exercise 3 Local Pk-Basis

The local $P k$-basis on a d-dimensional simplex (triangle in 2D or tetrahedron in 3D) can be described by polynomials of a maximal degree k. In this exercise, we will restrict ourselfes to a 2D reference element $\hat{\Omega}$

As usual the source code can be found in the directory uebungen/uebung05/ of the actual dune-npde modul. It will be shown (similar to the modul dune-localfunctions), how the implementation of local basis can be used both to evaluate the function values and its derivative.

1. Implement a functor, which is able to evaluate a function
(bestehend aus den Funktionen $\left(\psi_{i}\right)_{i \leqslant n_{k}} \operatorname{mit} \psi_{i} \in \mathbb{P}^{k}(\hat{\Omega})$ und gegebenen Vektor aus Koeffizienten $\left(\alpha_{i}\right)_{i \leqslant n_{k}}$ aus \mathbb{R} die Funktion

$$
f(x)=\sum_{i=1}^{n_{k}} \alpha_{i} \psi_{i}(x)
$$

where the functions $\left(\psi_{i}\right)_{i \leqslant n_{k}}, \psi_{i} \in \mathbb{P}^{k}(\hat{\Omega})$ form a $P k$-basis and $\left(\alpha_{i}\right)_{i \leqslant n_{k}} \in \mathbb{R}$ are the corresponding coefficients of the linear combination. A template to this functor can be found in a file functors.hh. You have to implement the function operator () in class LocalFunctor.
2. After the functor has been already implemented, create .vtu files and visualize the $P k$-basis functions. Describe qualitative the characteristic properties of the basis functions.
3. Show, that the $P k$-functions really describe a basis of the polynomials with maximal degree k on the reference element. Implement a functor (analog to the previous), which evaluates the monom basis functions and use the functor to proof the linear independence of $P k$-functions.

