Exercise 1 Stiffness Matrix

We want to solve homogenuous Laplace equation

$$
\begin{aligned}
-\Delta u & =f & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

with P_{1} elements on the following grid:

Basis functions of all inner nodes look the same and therefore all rows of the stiffness matrix are identical (except for boundary nodes). As a consequence it is sufficient to look at only one node Z. Let $N, O, S O, S, W, N W$ denote the neighbours of Z.
Determine the matrix values of one row of the stiffness matrix corresponding to a inner node. In oder to do that you have to choose a numeration of basis functions. Express your solution as finite difference stencil analogue to finite difference methods.

5 points

Exercise 2 Bramble-Hilbert in 1D

Let $\Omega=[a, b] \subset \mathbb{R}, w: \Omega \rightarrow \mathbb{R}$ be a function with $w \in H^{2}(\Omega)$. Let x_{k} be the vertices of a triangulation of Ω with $x_{k}=a+\sum_{i=1}^{k} h_{i}, k=0 \ldots N$ and $h_{k}>0$ such that $x_{0}=a$ and $x_{N}=b$ holds. Let v be a piecewise linear interpolation of w fullfilling $v\left(x_{i}\right)=w\left(x_{i}\right)$ for $(i=0 \ldots N)$. Let $\hat{\Omega}=[0,1]$ be the reference element and $\mu_{k}: \hat{\Omega} \rightarrow\left[x_{k-1}, x_{k}\right]$ be the corresponding transformation to grid cell $\left[x_{k-1}, x_{k}\right]$.

Show that for $e(x):=w-v$ and $\hat{e}_{k}(\hat{x}):=e\left(\mu_{k}(\hat{x})\right)$ it holds

$$
\left|\hat{e}_{k}\right|_{1, \hat{\Omega}} \leqslant\left\|\partial_{\hat{x} \hat{x}} \hat{e}_{k}\right\|_{0, \hat{\Omega}}
$$

and with $h=\max _{1 \leqslant k \leqslant N}\left\{h_{k}\right\}$ it holds

$$
\|e\|_{1, \Omega}^{2} \leqslant h^{2}(h+1)\left\|\partial_{x x} w\right\|_{0, \Omega}^{2} .
$$

Let $\Omega=[0, a] \times[0, b] \subset \mathbb{R}^{2}, 0<a, b \in \mathbb{R}$. The Poisson equation

$$
\begin{align*}
-\Delta u(x, y) & =\left(\frac{3 b}{2} y^{2}-\frac{b^{2}}{2} y-y^{3}\right)(6 x-3 a) \\
& +\left(\frac{3 a}{2} x^{2}-\frac{a^{2}}{2} x-x^{3}\right)(6 y-3 b), \quad(x, y) \in \Omega \tag{1}
\end{align*}
$$

with homogenuous Dirichlet boundary condition has the analytical solution

$$
u(x, y)=x y(a-x)(b-y)\left(\frac{a}{2}-x\right)\left(\frac{b}{2}-y\right) .
$$

In uebungen/uebung09 of your dune-npde module you can find a program that solves Poisson equation (1) with P^{k} finite element on a conform trianglular grid (UGGrid) and with Q^{k} finite element on a conform quadrilateral gride (YaspGrid). As domain we chose $\Omega=[0,2] \times[0,2] \subset \mathbb{R}^{2}$.

1. Implement a method evaluate in the class ExactGradient. This function should evaluate the gradient of u. Your program can than determine the norms $\left\|u-u_{h}\right\|_{0, \Omega}$ and $\left\|\nabla\left(u-u_{h}\right)\right\|_{0, \Omega}$. Extend the program such that it calculates and prints $\left\|u-u_{h}\right\|_{1, \Omega}$ and $\left\|u-u_{h}\right\|_{L_{\infty}(\Omega)}$ and the corresponding convergence rates.
2. Plot $\left\|u-u_{h}\right\|_{0, \Omega},\left\|u-u_{h}\right\|_{1, \Omega}$ and $\left\|u-u_{h}\right\|_{L_{\infty}(\Omega)}$ against the number of degrees of freedom for P^{k} and Q^{k} elements, $k=1,2$. Use logarithmic scale on both axes.
3. Implement a function that calculates

$$
f\left(u_{h}, \Omega\right)=\max _{i}\left|u\left(a_{i}\right)-u_{h}\left(a_{i}\right)\right| \text {, where } a_{0}, \ldots, a_{N-1} \in \bar{\Omega} \text { are the vertices of our grid. }
$$

What does this function return for P^{1} elements? Can you explain your observations?
Hint: Because this problem gets quite large you can compile your code with
make CXXFLAGS='-O3 -march=native -g0 -funroll-loops -ftree-vectorize'
for faster execution.

