EXercise 1 Interpolation on triangle

Let $v \in C^{2}(K)$ and K be a triangle with vertices $a_{1}, a_{2}, a_{3} \in \mathbb{R}^{2}$. Functions ϕ_{i} for $i=1,2,3$ denote $P^{1}(K)$ basis functions satisfying $\phi_{i}\left(a_{j}\right)=\delta_{i j}$. The longest side of triangle K is h_{K} and the smallest angle is τ_{K}. The P^{1}-interpolation function has a form

$$
\Pi v(x)=\sum_{i=0}^{3} v\left(a_{i}\right) \phi_{i}(x)
$$

Prove the following estimations:
1.

$$
\|v-\Pi v\|_{L_{\infty}(K)} \leqslant \frac{1}{2} h_{K}^{2}\left\|D^{2} v\right\|_{L_{\infty}(K)}
$$

2.

$$
\|\nabla(v-\Pi v)\|_{L_{\infty}(K)} \leqslant \frac{3}{\sin \tau_{K}} h_{K}\left\|D^{2} v\right\|_{L_{\infty}(K)}
$$

5 points

EXERCISE 2 LOSS OF COERCIVITY, CROSS-POINT PROBLEM

Notice: although this is a practical exercise, you do not need to programm anything by yourself!
In uebungen/uebung09 of your dune-npde module you can find a program that solves so-called cross point problem (for details see lecture notes Example 8.20) with P^{k} finite element on a conform trianglular grid (UGGrid) and with Q^{k} finite element on a conform quadrilateral gride (YaspGrid) and computes $\left\|u-u_{h}\right\|_{0, \Omega},\left\|\nabla\left(u-u_{h}\right)\right\|_{0, \Omega},\left\|u-u_{h}\right\|_{1, \Omega}$ and $\left\|u-u_{h}\right\|_{L_{\infty}(\Omega)}$ norms and its rates.

You can change input parameters in file uebung09.ini.

1. Compile the program and run it. Where in the domain is the singularity (look at $u-u_{h}$ in paraview)?
2. In homogeneous case ($k_{1}=1, k_{2}=1$), the convergence rates are kind of strange. Can you explain it?
3. Run the programm for different polynomial degrees 1 and 2 with different permeabilities ($k_{1}=$ $\left.1, k_{2}=\{1,100,10000\}\right)$. Which behaviour in convergence rates do you observe? Describe it qualitatively or create a table/plot as in lecture notes.
4. Change your grid to unstructured triangular grid and choose $k_{1}=1, k_{2}=10$. Why are convergence rates not as expected?
