
Chapter 1.

Modelling with Partial Differential Equations

Many practical applications involve the description of the state of a solid body, a fluid (in
continuum mechanics no distinction is made between fluids and gases) or just any region of
space. As examples consider the gravity field of an inhomogeneous body, the temperature of
a solid body, the flow of water in the subsurface, the flow of gases in a complicated duct, the
propagation of sound or water waves or the mechanical stress in a bridge. In this chapter, we
will derive the equations of mathematical physics that describe all these phenomena.

1.1. Gravitation

Newton’s famous law of gravitation

F(x,y) = G
mM

�y− x�2
y− x

�y− x� (x �= y) (1.1)

gives the force vector acting on a point mass m at position x ∈ R3 excerted by another point
mass M located at a point y ∈ R3 and G is the gravitational constant with the approximate
value 6.67 · 10−11 N m2 kg−2 (there is some debate about the value – it is difficult to measure).
Newton’s law is stated for point masses as it has first been applied to the sun and the planets
in the solar system. But how does it act in a cloud of gas of varying density? Since there are
so many atoms (or molecules) in the gas it would be overwhelmingly expensive to compute all
the forces ( O(N2) effort for N particles).

We now wish to derive a new form of Newton’s law in the form of a PDE that is usable in
this case. First we rewrite Newton’s law a little bit by introducing the function

ψ(x,y) = −
GM

�y− x� (1.2)

which is called the gravitational potential of a point mass in physics. In mathematics 1/�y−x�
is called singularity function. It has the following interesting properties:

∇xψ(x,y) = −
GM(y− x)

�y− x�3 , ∆xψ(x,y) =
3�

i=1

∂
2
x2
i
ψ(x,y) = 0 (x �= y).

Using it we can rewrite Newton’s law as

F(x,y) = ma(x,y), a(x,y) = −∇xψ(x,y).

Note that the acceleration a(x,y) is independent of the mass m (equivalence principle).
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Chapter 1. Modelling with Partial Differential Equations

Now consider an arbitrary domain ω ⊂ R3 (open and connected set of points) with sufficiently
smooth boundary ∂Ω, a point y �∈ ∂ω and compute the

�

∂ω
a(x,y) · n(x)dsx = −

�

∂ω
∇xψ(x,y) · n(x)dsx (1.3)

where n(x) denotes the exterior unit outer normal vector to ω. By dsx we indicate that the
surface integral is done with respect to the variable x and not y. For the evaluation of the
integral we need to consider two cases:

i) y �∈ ω. By applying Gauss’ integral theorem
�
ω∇ · udx =

�
∂ω u · nds we get

−

�

∂ω
∇xψ(x,y) · n(x)dsx = −

�

ω
∆xψ(x,y)dx = 0

since ∆xψ(x,y) = 0 for any x ∈ ω since y is outside ω.

ii) y ∈ ω. Now the trick from case I can not be done so easily because ψ has a singularity
for x = y but it can be modified. Let B�(y) = {x ∈ R3 : �x− y� < �} be the open ball of
radius � around y. Then again applying Gauss’ theorem we get

0 =

�

ω\B�(y)
∆xψ(x,y)dx =

�

∂ω
∇xψ(x,y) · n(x)dsx −

�

∂B�(y)
∇xψ(x,y) · n(x)dsx

The left hand side integral is zero and the minus sign is due to the fact the normal to
ω \ B�(y) points into the ball B�(y). The second integral on the right hand side can be
computed directly as �

∂B�(y)
∇xψ(x,y) · n(x)dsx = 4πGM

independent of �.

So we get the following result:
�

∂ω
a(x,y) · n(x)dsx =

�
−4πGM y ∈ ω

0 else . (1.4)

Now we extend this to a distributed mass by introducing the density function ρ : R3 → R
with units kg m−3. For any domain ω ⊂ R3 then Mω =

�
ω ρdx gives the mass contained in

ω. We further assume that the density distribution is such that the integral
�
R3 ρdx exists.

Then the acceleration experienced at a point x excerted by the mass distribution ρ can be
computed by subdividing the mass into an infinite number of infinitesimal pieces Vi at position
yi (superposition principle):

a(x) = lim
N→∞

N�

i=1

Gρ(yi)Vi∇x

�
1

�y− x�

�
= G

�

R3
ρ(y)∇x

�
1

�y− x�

�
dy. (1.5)

One can check that this integral is well defined despite the singularity, i.e. it holds also for a
point x inside a body with mass distribution ρ (transform to spherical coordinates around x).
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Now being very careful with evaluating integrals one finds that for this acceleration and any
suitable ω ⊂ R3 �

∂ω
a(x) · n(x)ds = −4πG

�

ω
ρ(x)dx

(only the mass inside ω plays a role). Applying again Gauss’ theorem on the left hand side we
find �

ω
∇ · a(x)dx = −4πG

�

ω
ρ(x)dx.

If a is sufficiently smooth the fact that ω can be chosen arbitrarily implies that the equality
also holds for the integrands themselves (see e.g. [Smirnow, 1981, § 74]) and we arrive at

∇ · a(x) = −4πGρ(x) (x ∈ R3). (1.6)

The final piece is the observation that all fundamental forces in nature are conservative (a
basic principle that is assumed to hold by physicists). In a conservative force field the path
integral w(a,b) =

�b
a F(s) · t(s)ds (t is the unit tangential vector) does only depend on the

points a,b but not on the particular path taken from a to b. Conservativity of the force is
a consequence of conservation of energy because otherwise it would be possible to generate
energy in a force field by taking different paths back and forth. With an arbitray reference
point r0 we then have w(a,b) = w(a, r0) + w(r0,b) = w(r0,b) − w(r0,a) = w

�(b) − w
�(a)

where w
�(x) = w(r0, x) is now only a function with a single argument, called the gravitational

potential. Invoking the main theorem of calculus in its multi-dimensional form
�b

a
∇Ψ(s) · t(s)ds = Ψ(b)− Ψ(a) (1.7)

we see that a force is conservative if and only if it can be represented as the gradient of a
potential. The potential is only unique up to a constant as can be seen from (1.7).

Since ma(x) with a(x) from (1.6) is the gravitational force experienced by a point mass m

at position x and the gravitational force is supposed to be conservative we conclude that there
must exist a scalar function Ψ(x) such that a(x) = −∇Ψ(x). Inserting this into (1.6) we obtain

∇ ·∇Ψ(x) = ∆Ψ(x) = 4πGρ(x) (x ∈ R3). (1.8)

This equation is called Poisson equation. As stated Ψ is assumed to be twice continuously
differentiable, which requires ρ to be at least continuous. This is practically very restrictive
since, for example, the density function of the moon (having no atmosphere) might be very
well approximated by a discontinuous function. It is an important part of PDE theory to give
equation (1.8) a precise mathematical meaning also in this sense. The potential is determined by
Equation (1.8) up to a constant. To fix the constant, an additional condition for the behaviour
of Ψ for x → ∞ can be imposed.

1.2. Fluid Mechanics

1.2.1. Continuum Hypothesis and Scales

Materials such as solids or fluids are made up of atoms or molecules with void space in between
(we do not consider quantum effects, although, also there, partial differential equations do play
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a role). Practical problems often involve excessively large numbers of atoms as we are interested
in the behaviour of the material on a length scale that is very large compared to the average
distance of the atoms. We call this scale of interest the macroscopic scale and the scale of the
discrete particles the microscopic scale.

In continuum mechanics, the properties of the material are assumed to be (piecewise) contin-
uous (or even differentiable) functions in the mathematical sense. The discrete particles are not
considered, instead macroscopic properties (e.g. velocity) are defined as appropriate averages
of the microscopic properties. By averaging, new quantities (such as density, temperature or
pressure) arise that have no equivalent on the microscopic scale. The validity of this continuum
hypothesis depends on the number of atoms (so that averages are representative) and whether
the micro- and macroscale are sufficiently separated (a property called scale separation).

The laws on the microscale give now rise to new (effective) laws on the macroscale that
connect the macroscopic variables. Current research is very much interested in so-called multi-
scale problems where the effective macroscopic laws (or coefficients in these laws) are not easily
determined from the micoscopic scale (such as porous medium problems) or where there is no
scale separation (e.g. turbulence).

In this chapter, fluids are considered while in the next chapter the deformation of elastic
solid bodies is considered.

1.2.2. Conservation Principle

Conservation of mass, linear and angular momentum as well as energy are basic empirical law
of physics (throughout this text we consider only classical mechanics where mass and energy
are distinct quantities). Conservation states that the total amount of such an extensive state
variable in a closed system remains constant over time. In an open system, the total amount
of the quantity can vary through exchange with the environment. We are now about to state
the principle of conservation in mathematical form.

ω

Ω

We consider a compressible fluid material that fills a domain Ω ⊆
Rn, n = 1, 2, 3, which is open and connected. The domain ω ⊂
Ω is chosen arbitrarily within Ω (see figure). For the subsequent
derivation, ω and Ω are fixed in space and do not depend on time (an
assumption to be relaxed when solids are considered). The function
ρ(x, t) gives the mass density in units1 kg m−3 for any point x ∈ Ω

at time t (other units, such as mol m−3 may be appropriate depending on the problem). The
total mass Mω(t) (in kg) contained in ω at time t is then given by

Mω(t) =

�

ω
ρ(x, t)dx .

The principle of conservation now states that over time the mass in ω can change only due
to flow of material over the boundary ∂ω or due to injection or extraction of material into or
from ω. To formulate this precisely, the velocity of the material v(x, t) in m s−1 and the source
function f(x, t) in kg m−3 is given. For an arbitrary time interval, ∆t the we can state:

Mω(t+ ∆t)−Mω(t) =

�t+∆t

t

��

ω
f(x, r)dx−

�

∂ω
ρ(x, r)v(x, r) · n(x)ds

�
dr . (1.9)

1We always state units in the MKS (meter kilogram second) system.
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1.2. Fluid Mechanics

The volume integral gives the contribution from sources and sinks with f > 0 denoting a source
and f < 0 denoting a sink. In the surface integral, n(x) denotes the exterior unit normal vector
at x ∈ ∂ω and therefore v · n > 0 results in a reduction of the mass in ω.

Using
�t+∆t
t g(r)dr = ∆t g(t)+O(∆t2) for sufficiently smooth g, passing to the limit ∆t → 0

and applying Gauß’ theorem
�
ω∇ · udx =

�
∂ω u · nds we obtain from (1.9) the integro-

differential form of the conservation law:

∂t

�

ω
ρ(x, t)dx+

�

ω
∇ · (ρ(x, t)v(x, t))dx =

�

ω
f(x, t)dx (for any ω). (1.10)

For sufficiently smooth functions, the fact that (1.10) holds for any ω implies the final differ-
ential form of the mass conservation law (see e.g. [Smirnow, 1981, § 74]):

∂tρ(x, t) +∇ · (ρ(x, r)v(x, r)) = f(x, t), x ∈ Ω. (1.11)

If the fluid is incompressible then ρ(x, t) = const implies

∇ · v(x, t) = f(x, t), x ∈ Ω (1.12)

which further reduces to ∇ · v = 0 when there are no sources and sinks present (i.e the velocity
field of an incompressible fluid without sources and sinks is divergence free).

The other conserved quantities energy and momentum can be imagined as being attached to
mass. In the case of energy we set e(x, t) = ρ(x, t)u(x, t), where e is the energy density with
units J m−3 and u is the specific energy with units J kg−1. We can compute the energy stored
in the material occupying the volume ω as

Eω(t) =

�

ω
e(x, t)dx =

�

ω
ρ(x, t)u(x, t)dx .

Repeating the reasoning given above with ρ replaced by ρu yields the energy conservation
equation

∂t(ρ(x, t)u(x, t)) +∇ · q(x, t) = f(x, t), x ∈ Ω, (1.13)
where q(x, t) is now the energy density flux vector. If energy is simply flowing with the fluid
(e.g. no conductive heat transport) we have q = ρuv.

Similarly the (linear) momentum density (having units momentum per volume) is defined as
ρv. Integration over an arbitrary volume ω gives the total momentum in ω:

Pω(t) =

�

ω
ρ(x, t)v(x, t)dx .

Note however, that P(x, t) is a vector-valued function! For each component ρvi of the momen-
tum density vector we obtain the conservation equation

∂t(ρ(x, t)vi(x, t)) +∇ · ji = fi(x, t), x ∈ Ω, i = 1, . . . ,d,

where ji is the momentum density flux vector for the given component. If momentum is only
transported with the fluid (as in inviscid flow, see § 1.2.4) we have ji = ρviv.

By defining the ji to be the rows of the matrix J and defining ∇ · J as applying the divergence
to each row (yielding a vector, see § A.2.3) one can write the momentum conservation law in
compact form as

∂t(ρ(x, t)v(x, t)) +∇ · J = f(x, t), x ∈ Ω. (1.14)
In the case of inviscid flow we then have J = ρvv

T . The term ∂t(ρv) on the left hand side is
rate of change of momentum density which is a force density (units N m−3). Equation (1.14)
is Newton’s second law generalized to spatially extended bodies.
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1.2.3. Heat Transfer

As an application of conservation laws we consider the flow of heat in a solid or fluid filling
the bounded domain Ω ⊂ R3. The conserved quantity is the thermal energy. Its density e is
assumed to be proportional to temperature

e = ρcT

where c is the specific heat capacity in J kg−1 K−1, ρ is the mass density of the material in kg
m−3 and the absolute temperature T is given in Kelvin K.

In fluids and solids the flow of thermal energy is modelled as

qd = −λ∇T

which is known as Fourier’s law or diffusive flux. It states that flow is in direction of the
steepest descent of temperature. The constant of proportionality is the heat conductivity λ > 0
with units J s−1 m−1 K−1. Heat conductivity may depend on position and time (e.g. in a fluid
with varying composition).

In a fluid thermal energy is also transported with the fluid velocity v which gives rise to a
convective flux

qc = ev = ρcTv.

The total flux is then the sum of convective and diffusive flux. Inserting all this into the
conservation law (1.13) (now with u = cT) we obtain the convection-diffusion equation

∂t(ρcT) +∇ · (ρcTv− λ∇T) = f in Ω (1.15)

which is a scalar linear second-order PDE. In order to fully determine the temperature T(x, t)
for x ∈ Ω and t > 0, boundary conditions

T(x, t) = g(x, t) (x ∈ Γ ⊆ ∂Ω, t > 0, Dirichlet), (1.16a)
(ρcTv− λ∇T)(x, t) · n(x) = j(x, t) (x ∈ ∂Ω \ Γ , t > 0, Neumann) (1.16b)

and the initial condition

T(x, 0) = T0(x) (x ∈ Ω) (1.17)

must be given.
The right hand side f with units J s−1 m−3 of equation (1.15) models sources and sinks. In

a solid this rate is usually known. In a fluid the source/sink term depends on the temperature
of the fluid going in or out of the domain. It can be modelled as f = rcT where r in kg s−1 m−3

is the amount of fluid entering or leaving the domain. When r > 0 fluid (and with it thermal
energy) is going in and the temperature of this fluid is known. When r < 0 fluid is going out
and the temperature of this fluid is unknown and must be computed. This leads to the final
form, the so-called convection-diffusion-reaction equation:

∂t(ρcT) +∇ · (ρcTv− λ∇T) + rcT = f in Ω. (1.18)

Note that in this equation all coefficient functions may depend on position and time. Several
important simplifications of this equation can be stated:
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1.2. Fluid Mechanics

a) No convective flux (reaction-diffusion equation):

∂t(ρcT)−∇ · (λ∇T) + rcT = f in Ω.

b) No diffusive flux (first-order PDE ):

∂t(ρcT) +∇ · (ρcTv) + rcT = f in Ω.

c) Stationary heat flow (all coefficients are independent of time):

∇ · (ρcTv− λ∇T) + rcT = f in Ω.

d) Stationary heat flow in a solid:

−∇ · (λ∇T) + rcT = f in Ω. (1.19)

e) Stationary heat flow with constant conductivity and no sinks (Poisson equation):

−∇ · (∇T) = −∆T = f in Ω.

Example 1.1. Figure 1.1 illustrates the solution for a three-dimensional heat transfer problem.
The domain is Ω = (0, 3)× (0, 3)× (0, 1) and the parameters were v = 0 (no convective flux),
ρ = 1, c = 1, λ = 1, r = 0 and f = 0. The lateral boundaries and the region (1, 2) ×
(1, 2)× {1} on the top boundary were isolated, i.e. ∇T ·n = 0, the bottom boundary was held at
constant temperature T = 8 and at the remaining part of the top boundary a Dirichlet condition
oscillating in space and time was given. Practically one can imagine a piece of subsurface that
is heated periodically from the top and that is held at constant temperature from below. The
Figure shows that the oscillations are quickly dampened by the diffusion, a fact that is also
observed in nature. �

Another important feature of the solution of the heat transfer problem without sources and
sinks and divergence free velocity field v is that the maximum (minimum) temperature in the
interior of the domain Ω does not exceed (go below) the maximum (minimum) temperature at
the boundary and initial condition. This is called a maximum principle. For details we refer to
[Hackbusch, 1986] or [Evans, 2010].

Multiscale Problems

Multiscale problems are problems with highly oscillating coefficient functions. Imagine a het-
erogeneous solid composed of two materials with different heat conductivity coefficient. The
two materials occupy different regions of space and are arranged in a periodic fashion with
periodicity � in all directions:

λ�(x) = λ̂

�
x

�

�
, λ̂(x+ ei) = λ̂(x) (i = 1, . . . ,n) (1.20)

(ei being the ith cartesian unit vector). The 1-periodic coefficient function λ̂ taken in Ω =
(0, 1)n defines the “unit cell”. Then we consider the family of stationary heat transfer problems

−∇ · (λ�(x)∇T�) = f in Ω (1.21)

depending on the parameter � > 0 together with appropriate boundary conditions.
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Figure 1.1.: Solution of a 3d heat transfer problem (details given in the text).
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1.2. Fluid Mechanics

Ω

∇T · n = 0

∇T · n = 0

T = 1

T = 1

∇T · n = 0 T = 0

(0, 0) (1, 0)

(0, 1)

Figure 1.2.: Setup and solution for homogenous coefficient in the multiscale example.

Figure 1.3.: Conductivity distribution in the unit cell.
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Figure 1.4.: Example of a multiscale problem in 2d (details given in the text).
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1.2. Fluid Mechanics

Example 1.2. We consider an example of a multiscale problem in two space dimensions.
Figure 1.2 on the left shows the setup of the macroscopic problem and the image to the right
shows the solution to this problem with a homogeneous conductivity coefficient. Now we solve a
problem with the same boundary conditions and a heterogeneous periodic coefficient as defined
above. The conductivity distribution in the unit cell is shown in Figure 1.3 and in Figure 1.4
the solution for � = 1/4, � = 1/8 and � = 1/16 is shown. The solutions suggest that for
� → 0 the solution T� converges to a smooth function. For finite � > 0 the solution has small
oscillations of the order �. �

In practical applications � � 1 and computing T� is prohibitively expensive. Moreover
one is only interested in the macroscopic behaviour and not in the behaviour on the scale
�. Homogenization theory, see e.g. [Kozlov et al., 1994], shows that the limit solution T =
lim�→0 T� can be computed as the solution of a homogeneous heat transfer problem

−∇ · (Λ∇T) = f in Ω

where the effective coefficient Λ ∈ Rn×n is a symmetric and positive definite matrix that only
depends on the conductivity distribution in the unit cell and is therefore cheap to compute.
From example 1.2 it becomes clear that the effective coefficient cannot just be a scalar as in this
case the solution would be symmetric around y = 1/2 as in Figure 1.2. Instead, the contour
lines are tilted to the right because the material conducts better in the direction (1, 1) than in
the direction (1,−1).

The discussion so far involved only two scales, the macroscopic scale of interest and the scale
� (actually there is a third scale, the atomistic scale that has has already been eliminated by
deriving the heat transfer equation). In practice, there might be more than two scales involved.
For an effective solution it is important that the macroscopic scale of interest and the small
scales (one is not really interested in) are clearly separated.

Another situation arises when the precise arrangenment of the materials is unknown, as is
often the case with natural materials (such as e.g. rock). Then a stochastic approach may be
appropriate leading to the field of stochastic partial differential equations.

1.2.4. Inviscid Fluid Flow

The flow of a gas is a very interesting and important problem. It has applications e.g.in weather
and climate prediction or in star formation and the development of galaxies in astronomy.
Figure 1.5 shows an image of the Cone Nebula in the galaxy NGC 2264 which is just a pillar
of gas and dust. It is supposed to be a region where new stars are formed. In this section,
we consider the flow of a gas ignoring the effect of internal friction. Besides the conserved
quantities density, linear momentum and energy an additional concept is needed to derive the
governing equations.

Pressure

In a gas that is macroscopically at rest the molecules still perform a random motion at the
microscopic level. The molecules hitting the walls of the container excert a macroscopic force
that must be counterbalanced by the rigid wall. This force per unit area is called pressure with
units N m−2. Through experiment one finds that the force per unit area excerted by the gas
(at constant pressure) is always the same regardless of the shape of the wall. Therefore, the
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Figure 1.5.: Cone Nebula (NASA/ESA image taken with the Hubble Space Telescope. For more
information see http://www.spacetelescope.org/images/heic0206c/).

(scalar) pressure is the magnitude of a force (per unit area) that acts always perpendicular to
the wall of the container (i.e. in the exterior normal direction).

If we would suddenly introduce a new (infinitely thin) wall inside the container (imagine a
test volume ω) a force (per unit area) would be exerted at every point from each side of the
wall that has equal magnitude and opposite direction so that it cancels out. We can therefore
imagine pressure to be a (scalar) quantity that is defined everywhere in the gas.

The effect of pressure (being a force per unit area) needs to be considered in the momentum
balance equation (1.14). If we consider a small test volume ω then the total force (including
the direction) acting on the surface is given by

−

�

∂ω
pnds = −

�

ω
∇ · (pI)dx = −

�

ω
∇pdx. (1.22)

This term is part of the right hand side of the integral version of equation (1.14) and I denotes
the identity matrix. Note how the force always acts in negative normal direction. The sign
can be understood as follows. Imagine the test volume to be a cuboid and consider e.g. the x-
direction with the two faces located at x1, x2 with x1 < x2 and corresponding normal directions
n1 = (−1, 0, 0)T and n2 = (1, 0, 0)T . Then x- momentum must increase when pressure acts at
the face at x1 and it must decrease when pressure acts at the face at x2. Note also, that equal
pressure at x1 and x2 does have a zero net effect for the x-momentum in the test volume (so it
is pressure difference that does have an effect).

The pressure contribution is sometimes called an interior force to distinguish it from exterior
forces (such as e.g. gravity) which are only present in open systems.
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1.2. Fluid Mechanics

Energy

In a macroscopic body of gas the total energy consists of two different forms of energy, the
internal energy (translation, rotation and vibration of the molecules on the microscopic level)
and the macroscopic kinetic energy due to the movement of the fluid that is macroscopically
observed. Using the concept of densities we write this as

e = ρu+ ρ�v�2
/2 (1.23)

with e the total energy density in J m−3 and u the specific internal energy in J kg−1. According
to the theory of gases an algebraic relation, called an “equation of state” (depending on the
type of gas), of the form

u = u(ρ,p) (1.24)

relating specific internal energy, density and pressure can be derived. A well-known example is
the ideal gas law p = R̄ρT (here the internal energy is proportional to temperature). See below
for another popular example.

Total energy e is a conserved quantity that is transported with the fluid with a flux q = ev.
On the right hand side of the energy balance equation (1.13) internal work done in the fluid
has to be considered. This internal work is known as “volume changing work” and can be
experienced when using a bicycle pump: when a gas is compressed (i.e. its volume is decreased),
it heats up.

ω(t)

ω(t+ ∆t)

We can derive the expression for volume changing work as follows:
Imagine a set of molecules occupying the volume ω(t) at time t (see
figure to the right). The same particles are contained in ω(t + ∆t) ⊂
ω(t) at small time interval ∆t later. Subdividing ∂ω(t) into small
surface elements ∆si the work done against pressure of the gas in the
time interval ∆t is to first order

∆Wω(t) = − lim
N→∞

N�

i=1

p(xi, t)dsi� �� �
normal force

v(xi) · ni∆t� �� �
distance

= −∆t

�

∂ω(t)

pv · nds = −∆t

�

ω(t)

∇ · (pv)dx.

The sign is chosen such that compression (v · n < 0) results in a positive value.

Euler Equations

Considering the internal forces due to pressure in the momentum balance law and the vol-
ume change work in the energy balance law we obtain the famous nonlinear system of partial
differential equations known as the Euler equations of gas dynamics in conservative form

∂tρ+∇ · (ρv) = m, (1.25a)
∂t(ρv) +∇ · (ρvvT + pI) = f, (1.25b)

∂te+∇ · ((e+ p)v) = w, (1.25c)

which together with the thermodynamical relation

p = p(ρ, e) = (γ− 1)(e− ρ�v�2
/2) (1.26)
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and appropriate boundary and initial conditions describe the flow of a polytropic ideal gas.
The functions m, f and w denote the mass source term, the external forces and the energy
source term. Equation (1.26) is a consequence of the equation of state u = p/((γ−1)ρ) and the
definition of total energy (1.23). The constant γ is the adiabatic exponent and depends on the
type of gas. For more details, see [Leveque, 2002, § 14.4]. Pressure is considered a dependent
variable in (1.25) which can be eliminated using (1.26) resulting in a system of five equations
for the five unknown functions ρ, v1, v2, v3 and e in three space dimensions. It is interesting
to note that we can combine all the equations (1.25) into a single equation for the unknown
vector function w = (ρ, ρv, e)T :

∂tw+∇ · F(w) = g (1.27)

with

F(w) =





ρv1 ρv2 ρv3
ρv1v1 + p(ρ, e) ρv1v2 ρv1v3

ρv2v1 ρv2v2 + p(ρ, e) ρv2v3
ρv3v1 ρv3v2 ρv3v3 + p(ρ, e)

(e+ p(ρ, e))v1 (e+ p(ρ, e))v2 (e+ p(ρ, e))v3




. (1.28)

An equation of the general form (1.27) is called a (nonlinear) conservation law. Yet another
often encountered form is obtained by writing out the divergence:

∂tw+
n�

j=1

∂xiFj(w) = g (1.29)

where Fj(w) is the j-th column of F(w). Various other forms of the Euler equations can be
found in the literature, most notably the nonconservative formulation. But (1.25) is the most
general form that is also valid e.g. in the case of strong density contrasts.

1.2.5. Propagation of Sound Waves

Sound waves are small variations in pressure (and correspondingly density) that move through
the gas. In order to derive an equation for the propagation of these variations we start with
the Euler equations (1.25). We write all quantities as a constant background value (indicated
by the bar) plus a small variation depending on space and time (indicated by the tilde):

ρ = ρ̄+ ρ̃, p = p̄+ p̃, v = v̄+ ṽ.

The background velocity is actually assumed to be zero, v̄ = 0, and the temperature of the
gas is assumed to be constant throughout the domain. Due to constant temperature we have
p = c

2
ρ from the ideal gas law with c =

√
R̄T the speed of sound and therefore p̄ = c

2
ρ̄ and

p̃ = c
2
ρ̃.

Now the mass and momentum equations are linearized around the background state (all
terms at least quadratic in variations are dropped, note especially that v = ṽ and vv

T can be
dropped!) which results (with no external sources) in

∂tρ̃+ ρ̄∇ · ṽ = 0,
ρ̄∂tṽ+∇p̃ = 0.
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1.2. Fluid Mechanics

Using ρ̃ = p̃/c
2 the density variation is eliminated and we obtain the equations of linear

acoustics:

∂tp̃+ c
2
ρ̄∇ · ṽ = 0, (1.30a)

ρ̄∂tṽ+∇p̃ = 0. (1.30b)

Taking the temporal derivative of the first equation and applying the divergence to the second
the velocity variation can be eliminated from this system and we obtain the so-called wave
equation:

∂
2
tp̃− c

2
∆p̃ = 0. (1.31)

In the analysis of the wave equation, (1.31) is often reduced to a first order system by setting
u = ∂tp̃ and w = −∇p̃. Together with the identities ∂xi∂tp̃ = ∂t∂xi p̃ we obtain the system

∂tu+ c
2∇ ·w = 0,

∂tw+∇u = 0,

which is equivalent to (1.30) (simply use the transformation w = ρ̄ṽ). It should be noted that
it is the first order system that is derived from the physics and not the scalar second order wave
equation, see also [Leveque, 2002, § 2.7].

Solid bodies are also able to support a propagation of waves an example being earthquakes.
In the one-dimensional situation we may imagine a string of beads connected by springs with
each other. One type of wave consists of small displacements of a bead in the direction of
the string resulting in displacements of the neighbouring beads. This type of wave is called a
compression wave or P-wave and it is similar to the sound waves in a gas. Another type of
wave results from displacements of a bead in a direction perpendicular to the string which also
results in the propagation of a wave in the direction of the string. This is called S-wave which
usually travels slower than a P-wave. In the one-dimensional situation both types of waves are
described by the one-dimensional wave equation ∂

2
tu− c

2
∂

2
xu = 0 (A derivation of the P-wave

is in [Eriksson et al., 1996, § 17.2] and the S-wave can be found in [Smirnow, 1981, § 176]). In a
multi-dimensional solid both types of waves interact and more complicated equations result (see
[Leveque, 2002, § 2.12] for some discussion). At the surface or at internal boundaries surface
waves can be observed.

1.2.6. Viscous Fluid Flow

In many real fluids the effect of internal friction cannot be neglected. In a Newtonian fluid the
stress tensor describing the additional flux of linear momentum is proportianal to gradients of
velocity. The result is the system of compressible Navier-Stokes equations:

∂tρ+∇ · (ρv) = m, (1.32a)
∂t(ρv) +∇ · (ρvvT + pI− τ(v)) = f, (1.32b)

∂te+∇ · ((e+ p)v− τ(v)v− λ∇T(e, ρ, v)) = w, (1.32c)

with the stress tensor

τ(v) = 2µ
�
D(v)−

1
3
(∇ · v)I

�
(1.33)
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Chapter 1. Modelling with Partial Differential Equations

Figure 1.6.: Incompressible viscous flow in a channel with obstacle (image provided by Felix
Heimann).

where shear viscosity µ is a parameter of the fluid and the rate of strain tensor

D(v) =
1
2
�
∇v+ (∇v)T

�
. (1.34)

There are three new terms in the Navier-Stokes equations (1.32) compared to the Euler equa-
tions (1.25). The last term on the right hand side of the momentum equation describes the
forces due to internal friction. The term τ(v)v in the energy equation describes the energy flux
due to internal friction and −λ∇T describes the heat conduction (Temperature T is a function
of the state variables). Depending on the application, e.g. in star formation, heat transfer might
also include the effect of radiation.

A full derivation of the new terms in the Navier-Stokes equations is beyond the scope of these
lecture notes, we refer e.g. to [Chung, 1996] for details. Note however, that all the new terms
involve second derivatives, i.e. the Navier-Stokes equations are a second-order system of PDEs.

Incompressible Viscous Flow

In many applications the fluid can be regarded as incompressible which means that density
is independent of pressure. If temperature variations are also insignificant it is a constant.
Neglecting also the energy equation (because temperature is assumed to have no effect on the
fluid) and assuming that the fluid enters and leaves the domain only via the boundary (m = 0)
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1.3. Calculus of Variations
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Figure 1.7.: Discrete mass-spring system.

results in the system of equations known as the incompressible Navier-Stokes equations:

∇ · v = 0, (1.35a)
∂tv+∇ · (vvT )− ν∆v+∇p = f, (1.35b)

with the kinematic viscosity ν = µ/ρ. Here p (which has been rescaled by 1/ρ) is now an
independent variable to be determined. In order to derive the momentum equation (1.35b) the
incompressibility constraint ∇ · v = 0 has been applied twice: once to simplify the stress tensor
τ and a second time to conclude ∇ ·D(u) = ∆u.

Figure 1.6 shows an example of incompressible, laminar flow around an obstacle in a two-
dimensional channel.

1.3. Calculus of Variations

In this section we present a general approach that is used to study many mechanical and geo-
metrical problems. For simplicity it will be illustrated by modelling the deflection of an elastic
string where it leads to a two-point boundary value problem in ordinary differential equations.
The general principle, however, applies to the multi-dimensional situation and is essential to
understand the finite element method for the numerical solution of partial differential equations.

1.3.1. Equilibrium Principle

We are interested in modelling the deflection of an elastic string under a load. As an example
consider a string where cloth is put on for drying. The property of elasticity means that after
the load is removed the string returns exactly to its unloaded position without any lasting
effect. In order to derive the model we will first consider systems of finitely many straight and
ideal springs connected together. Then we will to a continuum by an appropriate limit process.

Discrete Spring System

Figure 1.7 shows the system of n ∈ N point masses m1, . . . ,mn located at the positions
u
(n)
0 , . . . ,u(n)

n and connected by springs. Assuming all forces are applied in a plane we have
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Chapter 1. Modelling with Partial Differential Equations

u
(n)
i ∈ R2. Spring i, 0 � i � n, is elongated from position u

(n)
i to position u

(n)
i+1 with the two

endpoints

u
(n)
0 =

�
xa

za

�
, u

(n)
n+1 =

�
xb

zb

�
(1.36)

held fixed. All interior positions to be determined are collected in a big vector

u
(n) = (u(n)

1 , . . . ,u(n)
n )T ∈ R2n

which completely describes the state of the system. At each position u
(n)
i , 1 � i � n, a force

given by the vector f
(n)
i ∈ R2 is applied.

In order to place the system in the state u
(n) work has to be done against the forces excerted

by the springs and the forces fi. This work is stored as elastic energy J
(n)
el and potential energy

J
(n)
f (in physics elastic energy is also a form of potential energy but for ease of writing we stick

to these names). We now consider both energies separately.
The magnitude of the force excerted by a single spring extended to length l is given by

Hooke’s law

F(l) = κ(l− l0)

where κ is the spring constant with units N m−1 and l0 the length of the unloaded spring. The
work done when extending the spring from length l0 to l is then

Wel(l) =

� l

l0

F(s)ds =

� l

l0

κ(s− l0)ds =
�
κ

2
(s− l0)

2
�l
l0

=
κ

2
(l− l0)

2.

Then the total elastic energy in all springs in state u
(n) is

J
(n)
el (u(n)) =

1
2

n�

i=0

κi(�u
(n)
i+1 − u

(n)
i �− li)

2 (1.37)

where κi and li are the individual spring parameters.
The work done to bring a mass m to position u against the exterior force f is given by the

path integral

Wf(u) = −

�u

0
f · t ds = −�u− 0� u− 0

�u− 0� · f = −f · u.

Here we used 0 as the reference point but any other position is also in order. Note that when
u · f is negative (e.g. the mass is lifted up in the gravity field f = (0,−mg)T pointing down)
then the potential energy increases. The potential energy of all mass points is then

J
(n)
f (u(n)) = −

n�

i=1

f
(n)
i · u(n)

i (1.38)

and the total (potential) energy stored in the system at state u
(n) is

J
(n)(u(n)) = J

(n)
el (u(n)) + J

(n)
f (u(n)) =

1
2

n�

i=0

κi(�u
(n)
i+1 −u

(n)
i �− li)

2 −
n�

i=1

f
(n)
i ·u(n)

i . (1.39)
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1.3. Calculus of Variations

The equilibrium principle in mechanics says that the state u
(n)
∗ attained by the system at

equilibrium is the state of minimal (potential) energy:

J
(n)(u(n)

∗ ) � J
(n)(u) ∀u ∈ R2n.

A short notation of the same statement is

u
(n)
∗ =

argmin
u∈R2n J

(n)(u). (1.40)

Note that problem (1.40) does in general not have a unique solution. An example for
nonuniquess is the case f

(n)
i = 0 for all i and

�n
i=0 li > �u(n)

n+1 − u
(n)
0 � where infinitely

many solutions exist. When the endpoints of the string are sufficently far apart, however, one
can prove that the functional J(n)(u) can be bounded from below, i.e.

J
(n)(u) � C ∀u ∈ R2n (1.41)

and that it is convex, i.e.

J
(n)(θu+ (1 − θ)v) � θJ

(n)(u) + (1 − θ)J(n)(v) ∀u, v ∈ R2n, θ ∈ [0, 1]. (1.42)

By analogy with functions in one variable we may conclude that the problem has a unique
global minimum. We will prove such a result later in a related context.

Continuum Limit

We now aim at describing the position of the string by a continuous curve u : I = [0, 1] → R2.
The parameter interval I is in principle arbitrary and the equations to be derived should not
depend on the particular parametrization. A number ξ ∈ I is used to “label” a point on the
string and is called material coordinate. The space R2 of positions is called the configuration

space in this context.
To go from the discrete to the continuum model we introduce for every n ∈ N a discretization

of the parameter interval
ξ
(n)
i =

i

n+ 1

with the idea that u(ξ(n)
i ) corresponds to position u

(n)
i of the discrete spring model. Further-

more we assume that the total length of the unloaded and unclamped string is given by L and
set the lengths of the individual strings to

l
(n)
i =

L

n+ 1
.

With the abbreviation ξ
(n)
i±1/2 = 1

2(ξ
(n)
i +ξ

(n)
i±1) the other parameters of the discrete system are

κ
(n)
i = κ(ξ(n)

i+1/2), f
(n)
i =

�ξ(n)
i+1/2

ξ
(n)
i−1/2

f(ξ)dξ

where κ : I → R is a given continuous function describing the elastic properties of the string
and f : I → R2 is an integrable function giving the load density with units N m−1. Inserting
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Chapter 1. Modelling with Partial Differential Equations

these definitions into Equation (1.37) for the discrete elastic energy yields (with slight abuse of
notation):

J
(n)
el (u) =

1
2

n�

i=0

κi(�u(ξ
(n)
i+1)− u(ξ(n)

i �− li)
2

=
1
2

n�

i=0

κi

�
�u(ξ(n)

i+1)− u(ξ(n)
i �

ξ
(n)
i+1 − ξ

(n)
i

(ξ(n)
i+1 − ξ

(n)
i )−

L

n+ 1

�2

=
1
2

n�

i=0

κi (ξ
(n)
i+1 − ξ

(n)
i )2

������
u(ξ(n)

i+1)− u(ξ(n)
i

ξ
(n)
i+1 − ξ

(n)
i

�����− L

�2

(1.43)

where we used ξ
(n)
i+1−ξ

(n)
i = 1/(n+1). At this point we need to reconsider the spring “constant”

κ. It has units N m−1 and depends on the length of the spring. This becomes important as the
length of the individual springs now decreases as n increases. Mechanics tells us that a spring
with cross-sectional area Ai, modulus of elasticity Ei and length li has a spring “constant”

κi =
AiEi

li
=

AiEi

L/(n+ 1)
=

κ̃(ξ(n)
i+1/2)

L(ξ(n)
i+1 − ξ

(n)
i )

.

Note that the new material property function κ̃(ξ) has units N and is now independent of the
length of the string. Inserting this expression into Equation (1.43) yields

J
(n)
el (u) =

1
2

n�

i=0

κ̃i

L

������
u(ξ(n)

i+1)− u(ξ(n)
i

ξ
(n)
i+1 − ξ

(n)
i

�����− L

�2

(ξ(n)
i+1 − ξ

(n)
i )

where we can now pass to the limit

Jel(u) = lim
n→∞

J
(n)
el (u) =

�1

0

κ̃(ξ)

2L
�
�u �(ξ)�− L

�2
dξ. (1.44)

Hereby we assumed that the derivative u
�(ξ) is well defined, i.e. u ∈

�
C

1([0, 1])
�2.

Now the potential energy is

J
(n)
f (u) = −

n�

i=1

f
(n)
i · u(ξ(n)

i ) = −
n�

i=1

�ξ(n)
i+1/2

ξ
(n)
i−1/2

f(ξ) · u(ξ(n)
i )

and passing to the limit gives

Jf(u) = lim
n→∞

J
(n)
f (u) = −

�1

0
f(ξ) · u(ξ).

As in the discrete case we have

J(u) = Jel(u) + Jf(u) =

�1

0

κ̃(ξ)

2L
�
�u �(ξ)�− L

�2
− f(ξ) · u(ξ)dξ. (1.45)
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1.3. Calculus of Variations

Application of the equilibrium principle now results in a minimization problem in function

space

u∗ =
argmin
u∈V

J(u) (1.46)

where the space of all admissible functions V is

V =

�
v ∈

�
C

1([0, 1])
�2

: v(0) =
�

xa

za

�
, v(1) =

�
xb

zb

��
(1.47)

since u
�(ξ) turns up in the energy functional. This now raises the question how to solve a

minimization problem in function space?

1.3.2. Variational Approach

To find the minimum of a function g(x) in one real variable one searches for stationary points
g
�(x∗) = 0 and then checks whether x∗ really is a minimum. Transfering this idea to minimiza-

tion problems in function space such as (1.46) is the central idea of the calculus of variations.
As in the case of a function in one variable the search for stationary points of the functional
J(u) results only in a necessary condition for a minimum.

To start let us rewrite the minimization property as:

u∗ =
argmin
u∈V

J(u) ⇔ J(u∗) � J(u∗ + tv) ∀t ∈ R, ∀v ∈ V0

where

V0 =

�
v ∈

�
C

1([0, 1])
�2

: v(0) = v(1) =
�

0
0

��
. (1.48)

The function v is called a variation or test function and the definition of V0 ensures that the
function u∗+ tv always satisfies the given boundary conditions which are already incorporated
in u∗. The energy functional J(u) to be minimized is called Lagrangian in the calculus of
variations and the function spaces V and V0 are called trial space and test space respectively.

Now the function φ(t) = J(u∗+ tv) is an ordinary function in one variable for a fixed v ∈ V0.
If dφ

dt exists then we have

J(u∗) � J(u∗ + tv) ∀t ∈ R, ∀v ∈ V0 ⇒ dφ

dt
(0) = 0 ∀v ∈ V0. (1.49)

The reverse conclusion can also be shown if the minimizer exists. Now let us compute the
configurational derivative

dφ
dt . For any given u ∈ V , v ∈ V0 we get

d

dt
Jf(u+ tv) =

d

dt

�
−

�1

0
f(ξ) · (u(ξ) + tv(ξ))dξ

�
= −

�1

0
f(ξ) · v(ξ)dξ

and so
d

dt
Jf(u+ tv)

���
t=0

= −

�1

0
f(ξ) · v(ξ)dξ.
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For the more complicated elastic part we get

d

dt
Jel(u+ tv) =

d

dt

�1

0

κ̃(ξ)

2L
�
�u �(ξ) + tv

�(ξ)�− L
�2

=

�1

0

κ̃(ξ)

L

�
�u �(ξ) + tv

�(ξ)�− L
� [u �(ξ) + tv

�(ξ)] · v �(ξ)
�u �(ξ) + tv �(ξ)� dξ

where we have used d
dt�x+ ty� = (x+ ty) · y/�x+ ty� for any two vectors x,y ∈ Rn and the

Euclidean scalar product and norm. By setting t = 0 we get

d

dt
Jel(u+ tv)

���
t=0

=

�1

0

κ̃(ξ)

L

�u �(ξ)�− L

�u �(ξ)� u
�(ξ) · v �(ξ)dξ.

Putting both parts together results in the necessary condition for u (we refrain from writing
u∗ for the minimum from now on!) being a minimizer of the functional J(u):

�1

0

κ̃(ξ)

L

�u �(ξ)�− L

�u �(ξ)� u
�(ξ) · v �(ξ)− f(ξ) · v(ξ)dξ = 0 ∀v ∈ V0. (1.50)

This equation is called a (nonlinear) variational equation.

Abstract Variational Problem

For a general Lagrangian of the form

J(u) =

�1

0
F(u �(ξ),u(ξ))dξ

we get by applying the chain rule the variational equation

d

dt
J(u+ tv)

���
t=0

=
d

dt

��1

0
F(u �(ξ) + tv

�(ξ),u(ξ) + tv(ξ))dξ

������
t=0

=

�1

0
∂1F(u

�(ξ),u(ξ))v �(ξ) + ∂2F(u
�(ξ),u(ξ))v(ξ)dξ = 0 ∀v ∈ V0

(1.51)

where ∂1F, ∂2F denote the partial derivatives of F with respect to the first and second argu-
ment. Note that the variation v always enters linearly in this equation! Therefore, the general
variational equation has the abstract form:

Find u ∈ V : r(u, v) = 0 ∀v ∈ V0 (1.52)

where r : V × V0 → R is linear in v, i.e.

r(u, v1 + v2) = r(u, v1) + r(u, v2), r(u, kv) = kr(u, v)

but possibly nonlinear in u. In the applications the test space V0 is a real vector space of
functions and V is an affine space V = u0 + V0 = {u : u = u0 + v, v ∈ V0} incorporating the
boundary conditions.

A note on the requirement of the differentiability of u and v. The minimization problem as
well as the variational problem were derived under the assumption that u, v ∈

�
C

1([0, 1])
�2.

It will turn out that this function space is neither appropriate for proving the existence of a
solution nor practical for the applications (consider for example a pointwise load on the string).
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1.3. Calculus of Variations

Differential Equation

Integrating by parts the first term in Equation (1.51) gives
�1

0
∂1F(u

�(ξ),u(ξ))v �(ξ) + ∂2F(u
�(ξ),u(ξ))v(ξ)dξ

=

�1

0
−

d

dξ

�
∂1F(u

�(ξ),u(ξ))
�
v(ξ) + ∂2F(u

�(ξ),u(ξ))v(ξ)dξ

+
�
∂1F(u

�(ξ),u(ξ))v(ξ)
�1
0

where the boundary term vanishes due to the boundary condition on v! In order to do the
integration by parts it is necessary to assume that F is now twice differentiable with respect to
each variable and also that u ∈

�
C

2([0, 1])
�2. This leads then to the following variant of the

variational equation
�1

0

�
−

d

dξ
∂1F(u

�(ξ),u(ξ)) + ∂2F(u
�(ξ),u(ξ))

�
v(ξ)dξ = 0 ∀v ∈ V0.

Now the fundamental lemma of the calculus of variation states that if this equation is true for
all test functions v then the function in square brackets must vanish pointwise:

−
d

dξ
∂1F(u

�(ξ),u(ξ)) + ∂2F(u
�(ξ),u(ξ)) = 0 (ξ in (0, 1)). (1.53)

Equation (1.53) is a nonlinear two-point boundary value problem called the Euler-Lagrange

equation for the variational problem (1.51). Note the similarity to the reasoning in §1.2.2
when going from Equation (1.10) to (1.11). There we applied Gauss’ theorem to the arbitrary
domain ω ⊆ Ω which can be interpreted as a special case of integration by parts with a
piecewise constant function (the characteristic function of ω).

Setting up the Euler-Lagrange equation for our string example, i.e. applying integration by
parts to Equation (1.50), results in the nonlinear second-order ordinary differential equation

−
d

dξ

�
κ̃(ξ)

L

�u �(ξ)�− L

�u �(ξ)� u
�(ξ)

�
= f(ξ) (ξ in (0, 1))

with boundary values

u(0) =
�

xa

za

�
, u(1) =

�
xb

zb

�
.

Note that for this equation to make sense for us at the moment we require κ̃ ∈ C
1([0, 1]) and

u ∈
�
C

2([0, 1])
�2.

In summary, we now have the following situation

⇒ ⇒

(I)
Minimization problem

u =
argmin
v∈V

J(v)

(II)
Variational problem

Find u ∈ V such that

r(u, v) = 0 ∀v ∈ V0

(III)
Differential equation

Solve BVB

g(u,u �,u ��) = 0 in Ω

u given on ∂Ω
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Chapter 1. Modelling with Partial Differential Equations

For step (I)→(II) we introduced the concept of the configurational derivative. We will later
see that (I) follows also from (II) provided that the minimum exists. For the step (II)→(III)
we applied integration by parts and had to assume additional smoothness for the solution and
coefficient functions. In general, a solution of problem (II) need not be a solution of problem
(III) therefore. By taking the perspective of the differential equation the variational problem
(II) is called the weak formulation of the boundary value problem.

1.3.3. Taut String Approximation

In this paragraph we are interested in the situation where the length L of the string with zero
elastic energy is much shorter than the distance of the two points where it is clamped to, i.e.

L � �u(1)− u(0)�.

Under this assumption we get

L � �u(1)− u(0)� =

����
�1

0
u
�(ξ)dξ

���� �
�1

0
�u �(ξ)�dξ.

With this the energy functional (1.45) simplifies to

J(u) =

�1

0

κ̃(ξ)

2L
�
�u �(ξ)�− L

�2
− f(ξ) · u(ξ)dξ

≈
�1

0

κ̃(ξ)

2L
�u �(ξ)�2 − f(ξ) · u(ξ)dξ =: J̃(u).

Now J̃(u) is a quadratic functional in u. The associated variational problem is

u ∈ V :

�1

0

κ̃(ξ)

2L
u
�(ξ)v �(ξ)− f(ξ) · v(ξ)dξ = 0 ∀v ∈ V0 (1.54)

which is now a linear variational problem in u. The related differential equation is then also
linear and reads

−
d

dξ

�
κ̃(ξ)

L

du

dξ

�
= f in (0, 1) (1.55)

which decouples into two seperate equations for x(ξ) and z(ξ).
Let us assume now the special situation where there is only a vertical load f(ξ) = (0, fz(ξ))T .

Naming the components u(ξ) = (x(ξ), z(ξ))T and v(ξ) = (φ(ξ),ψ(ξ))T the variational problem
(1.54) reads

u ∈V :

�1

0

κ̃(ξ)

2L
(x �(ξ)φ �(ξ) + z

�(ξ)ψ �(ξ))− fz(ξ)ψ(ξ)dξ

=

�1

0

κ̃(ξ)

2L
x
�(ξ)φ �(ξ)dξ+

�1

0

κ̃(ξ)

2L
z
�(ξ)ψ �(ξ))− fz(ξ)ψ(ξ)dξ = 0 ∀φ,ψ ∈ C

1
0([0, 1]).

The equation for x(ξ) can be solved analytically by solving the corresponding differential equa-
tion and we find:

x(ξ) = xa + (xb − xa)

�ξ
0

L
κ̃(s) ds�1

0
L

κ̃(s) ds
.
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1.3. Calculus of Variations

Since L and κ̃ are strictly positive quantities the function ξ → x(ξ) is strictly increasing and
therefore has an inverse x → x

−1(x).
We now want to write the second component z(ξ) as a function of x(ξ) instead of ξ. Therefore

we define the new function ẑ(x) and use the chain rule:

z(ξ) = ẑ(x(ξ)) ⇒ dz

dξ
(ξ) =

dẑ

dx
(x(ξ))

dx

dξ
(ξ).

The same applies for the test function ψ(x) = ψ̂(x(ξ)). Recalling the transformation theorem
for integrals

�b
a g(s)ds =

�b �

a � g(µ(t))|
dµ
dt (t)|dt with µ : [a �,b �] → [a,b] a differentiable map,

we obtain for the variational problem for the second component z(ξ):
�1

0

κ̃(ξ)

2L
ẑ

dx
(x(ξ))

dx

dξ
(ξ)

ψ̂

dx
(x(ξ))

dx

dξ
(ξ)− fz(ξ)ψ̂(x(ξ))dξ

=

�xb

xa

�
κ̃(x−1(x))

2L
dẑ

dx
(x)

�
dx

dξ
(x−1(x))

�2
dψ̂

dx
(x)− fz(x

−1(x))ψ̂(x)

�
1���dxdξ(x
−1(x))

���
dx

=

�xb

xa

κ̃(x−1(x))

2L

����
dx

dξ
(x−1(x))

����
� �� �

σ̂(x)

dẑ

dx
(x)

dψ̂

dx
(x)−

fz(x−1(x))���dxdξ(x
−1(x))

���
� �� �

f̂(x)

ψ̂(x)dx = 0 ∀ψ ∈ C
1
0([xa, xb]).

The corresponding linear second-order scalar differential equation for the function ẑ now in
“physical coordinates” reads:

−
d

dx

�
σ̂(x)

dẑ

dx

�
= f̂(x) in (xa, xb)

with boundary conditions
ẑ(xa) = za, ẑ(xb) = zb.

In two space dimensions the equation

−∇ · (σ(x)∇u) = f in Ω ⊂ R2

with boundary conditions
u = g on ∂Ω (1.56)

is a model for the vertical position of a thin sheet of rubber under vertical load that is clamped
at the boundary. Figure 1.8 shows an example for the two-dimensional case. Note that �∇u�
can become very large near so-called “reentrant corners” of the domain.

1.3.4. Linear Elasticity and Plate Problem

The considerations of this Section can be generalized to a small deformations of a three-
dimensional elastic material experiencing both tension and compression. The resulting energy
functional for the linear elasticity problem is

J(u) =

�

Ω

1
2
�
λ(∇ · u)2 + 2µD(u) : D(u)

�
− f · udx (1.57)
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Chapter 1. Modelling with Partial Differential Equations

Figure 1.8.: A thin rubber sheet over the region Ω = (0, 3)2 \ (1, 2)2 clamped to height 1 at the
inner boundary and to 0 at the outer boundary. Left image shows rubber sheet
colored by height and right image shows rubber sheet colored by the norm of the
gradient in logarithmic (!) scale.

where u ∈
�
C

1(Ω)
�3 is the unknown displacement of the of the material from its unloaded

configuration ( i.e. x + u(x) is the position of the material point x ∈ Ω under load). Then
D(u) = 1

2(∇u + (∇u)T ) is the strain tensor from (1.34), λ,µ are the Lamé coefficients of the
material and f are volume forces. The boundary condition

u(x) = g(x) on ∂Ω

models clamping of the material at the boundary. The Euler-Lagrange equation corresponding
to the variational formulation of (1.57) is now a linear second-order system of partial differential
equations. For details we refer to [Braess, 2003, §3] and [Ciarlet, 2002, §1.2].

If we are interested in the deflection of a thin plate of elastic material with constant thickness,
a well established model is the plate problem with the energy functional

J(u) =

�

Ω

1
2
�
|∆u|2 + 2(1 − σ)((∂x1x2u)

2 − ∂
2
x1u∂

2
x2u)

�
− fudx (1.58)

with σ = λ/(2(λ + µ)) the Poisson coefficent computed from the Lamé coefficients. Here u is
again a scalar function giving the vertical displacement of the plate out of the planar reference
configuration. As boundary conditions we consider u = 0 on ∂Ω. Note that the functional
(1.58) involves second derivatives of u! The corresponding Euler-Lagrange equation of the
variational formulation is now a fourth-order partial differential equation

∂
4
x1u+ ∂

4
x2 = ∆

2
u = f in Ω (1.59)

with boundary conditions u = ∂nu = 0 on ∂Ω. We refer to [Ciarlet, 2002, §1.2] or [Hackbusch,
1986, §5.3].
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1.4. Type Classification and Model Problems

1.3.5. Hamilton’s Principle

So far we considered stationary problems where the state attained by the system is a minimizer
of potential energy (equilibrium principle). The energy functional (Lagrangian) is convex and
bounded from below which ensures that a solution of the corresponding variational problem
(which determines stationary points of the Lagrangian) is the globally unique minimizer.

In the dynamic case the energy functional involves kinetic and potential energy and is typi-
cally not convex any more. It turns out, that for certain systems the state can still be determined
by finding stationary points of the energy functional, i.e. solving the corresponding variational
problem. This principle is called Hamilton’s principle and the energy functional is called a
Hamiltonian in this case. For more information and some examples we refer to [Eriksson et al.,
1996, §11.2].

1.4. Type Classification and Model Problems

1.4.1. Basic Mathematical Questions

So far we have derived several different PDEs by physical reasoning without mentioning a word
about their solvability. From other types of mathematical equations, most notably ordinary
differential equations, it is clear that we have to ask the following questions:

a) Existence: Does a given PDE problem have a solution?

b) Uniqueness: Is this solution the only one?

c) Stability : How does the data influence the solution?

A PDE problem is informally called well-posed (in the sense of Hadamard) if

a) it has a solution,

b) this solution is unique and

c) it depends continuously on the data.

If any of these conditions is not fullfilled it is called ill-posed. The discovery of chaos theory in
the 20th century tells us that a problem need not be well-posed to be physically meaningful.
Even the existence of solutions to many practically relevant problems such as the Euler or
Navier-Stokes equations is open. In fact, a proof of the existence (and regularity, see below)
of a solution to the incompressible Navier-Stokes equations in three space dimensions (this is
important) is one of the millenium prize problems2.

The informal definition of a well-posed problem needs to be made mathematically precise.
The first question is what a solution should be. A natural assumption for an equations such as

∂
2
xu+ ∂

2
yu+ ∂

2
zu = f (x ∈ Ω)

would be that u is twice continuously differentiable with respect to each variable. We say that
a function is a classical solution of a PDE problem if it has continuous derivatives up to the
required order and it satisfies the PDE for every x ∈ Ω.

2The precise description of the task can be found here: http://www.claymath.org/millennium/Navier-
Stokes_Equations/
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Chapter 1. Modelling with Partial Differential Equations

The number of derivatives of a function is called its regularity. If a solution to a PDE problem
possesses higher derivatives than required by the PDE it is said to have “additional regularity”.
This is important to assess the (speed of) convergence of numerical schemes. It turns out that
also functions that do not have the derivatives required by the PDE may be called “solutions”
in an appropriate sense (so-called weak solutions). A particular example is the conservation
law

∂tu+ ∂xu = 0 (x ∈ R, t > 0)

where also discontinuous functions u(x, t) do make sense, as we will show below.
Unfortunately there is no theory that covers the solvability of PDEs in general and it is

unlikely that such a theory exists. Instead techniques have been developed that can be used to
analyze certain classes of PDEs. Similarly, there are no general numerical methods that can be
applied successfully to any PDE but the development of numerical schemes follows the different
classes introduced for the analysis. Below we will introduce the following important classes of
PDEs:

a) Second-order scalar elliptic equation.

b) Second-order scalar hyperbolic equation.

c) Second-order scalar parabolic equation.

d) First-order hyperbolic systems.

1.4.2. Second-order Scalar Equations

Type Classification

Our aim is now to sort second-order scalar equations into different classes. We restrict ourselves
to linear equations (nonlinear equations are classified after linearization). From the viewpoint
of physical applications the independent variables are characterized as “time” and “space”. In
the following definition this distinction is not made, i.e. x = (x1, . . . , xn)T denotes just a vector
of n independent variables where one of them may be time.

The general linear second-order scalar PDE has one of the two forms

Lu = −
n�

i,j=1

∂xj(aij(x)∂xiu) +
n�

i=1

∂xi(bi(x)u) + c(x)u = f in U (1.60)

or

Lu = −
n�

i,j=1

aij(x)∂xj∂xiu+
n�

i=1

bi(x)∂xiu+ c(x)u = f in U (1.61)

where L is called a linear differential operator and U is some domain. The specificiation of
boundary conditions to obtain a well-posed problem is intentionally omitted as it depends on
the given coefficent functions.

We say that the PDE is in divergence form if it is given by (1.60). This is the form that arises
when deriving the equation from a conservation principle. This also explains the minus sign in
the second-order terms which reminds us that some flow in direction of the negative gradient is
modelled. If the coefficients are continuously differentiable we can rewrite the form (1.60) into
the form (1.61) and vice versa using the product rule. Doing this results in new coefficients
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1.4. Type Classification and Model Problems

b̃i(x) and c̃(x) but the coefficients aij(x) remain the same. Moreover, since ∂xi∂xju = ∂xj∂xiu

we may assume without loss of generality that

aij(x) = aji(x) (i, j = 1, . . . ,n, x ∈ U).

Either form (1.60) or (1.61) may be more appropriate for different purposes. In the following
we will consider only form (1.61), tacitly assuming that both forms are equivalent.

Definition 1.3. For every point x ∈ U define the real symmetric n×n matrix (A(x))ij = aij(x)
and the column vector b(x) = (b1(x), . . . ,bn(x))T . Then the partial differential operator L (or
Equation (1.61)) is called

a) elliptic in x if all eigenvalues of A(x) are nonzero and have the same sign,

b) hyperbolic in x if all eigenvalues are nonzero, n − 1 eigenvalues have the same sign and the
remaining eigenvalue has the opposite sign,

c) parabolic in x if one eigenvalue is zero, the remaining eigenvalues have the same sign and
the n× (n+ 1) matrix (A(x),b(x)) has full rank.

The operator (or the equation) is called elliptic (hyperbolic, parabolic) if it is elliptic (hyper-
bolic, parabolic) in every point x ∈ U. �

The names elliptic, hyperbolic and parabolic are taken from the two-dimensional case where
a level set of the quadratic form q(x1, x2) = a11x

2
1 + 2a12x1x2 + a22x

2
2 is either an ellipse, a

hyperbola or a parabola. In the case n = 2 the classification is complete, i.e. every linear
second-order PDE is either elliptic, hyperbolic or parabolic or it is not a PDE (this case is
excluded by the rank condition in the parabolic case). For n > 2 there are PDEs that are
neither elliptic, parabolic or hyperbolic. Moreover, there are useful PDEs that have different
types in different parts of the domain. Note also that the type of the operator depends only
on the coefficients of the second-order terms, the so-called leading part.

Characteristics

In the initial value problem for a second-order ordinary differential equation the solution u

and its derivative du/dt are prescribed at some t0 in order to determine the solution at later
times t > t0. We can transfer this process to partial differential equation in the following
way: Given u on a surface Γ in Rn together with its derivative in direction normal to the
surface, can we determine the second derivative in normal direction, and with it the solution
in the neighborhood of the surface, from the given data and the PDE (1.61)? This problem is
generally called the Cauchy problem for (1.61). Points x ∈ Γ where the Cauchy problem can not

be solved are called characteristic points and if it is not solvable in any point of a given surface
the surface itself is called a characteristic surface. On a characteristic surface the solution of the
PDE or its normal derivative may not be continuous although the coefficients (and the surface)
are smooth. Therefore the existence of characteristic surfaces for a differential operator gives
important information.

In order to answer this question about characteristic points and surfaces we assume the
surface Γ to be smooth and denote by q1(x), . . . ,qn(x) a system of orthonormal vectors in
x ∈ Γ such that q1(x), . . . ,qn−1(x) are tangential to the surface and qn(x) points in direction
normal to the surface. Since Γ is smooth and u as well as its normal derivative ∂qn are given
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Chapter 1. Modelling with Partial Differential Equations

on all of Γ also ∂qiu and ∂qi∂qnu for 1 � i < n are given. So the task is to compute the single
derivative ∂

2
qn

u from the given data and the PDE.
In order to do that we introduce the coordinate transformation x(s) = Q(y)s + y for an

arbitrary y ∈ Γ and Q(y) = [q1(y), . . . ,qn(y)] the column matrix of tangential and normal
vectors. We now want to derive a PDE for the new function

v(s) = u(x(s)) = u(Q(y)s+ y)

locally around y ∈ Γ . Employing the chain rule we obtain for the gradient and the Hessian

∂sjv(s) = q
T
j ∇xu(x(s)) ⇒ ∇sv(s) = Q

T∇xu(x(s))

∂si∂sjv(s) = q
T
j ∇2

xu(x(s))qi ⇒ ∇2
sv(s) = Q

T∇2
xu(x(s))Q.

Note that ∂
2
snv(s) = q

T
n∇2

xu(x(s))qn = q
T
n∇x(qT

n∇xu(x(s))) = ∂
2
qn

u(x(s)) is the second
derivative in normal direction. Since Q is orthogonal we get

∇xu(x(s)) = Q∇sv(s) ∇2
xu(x(s)) = Q∇2

sv(s)Q
T

which we insert into the PDE:

−A(x(s)) : (Q∇2
sv(s)Q

T ) + b(x(s)) · (Q∇sv(s)) + c(x(s)) = f(x(s)).

Here we used the notation A : B =
�n

i,j=1(A)i,jBi,j. Using the identity A : (QBQ
T ) =

(QT
AQ) : B, see appendix A.3.1, we obtain the transformed PDE for v(s):

−(QT
A(x(s))Q) : ∇2

sv(s) + (QT
b(x(s)))T ·∇sv(s) + c(x(s)) = f(x(s)).

Writing out components in the leading order part we find

− q
T
nAqn∂

2
snv−

n�

i,j=1(i �=j)

q
T
i Aqj∂si∂sjv+ (QT

b)T ·∇sv+ c = f. (1.62)

From this we see that the missing derivative ∂
2
snv(s) = ∂

2
qn

u(x(s)) can be computed from the
given data if and only if

q
T
nAqn �= 0. (1.63)

The matrix A is always symmetric and therefore diagonalizable, i.e. it has n real eigenvalues
λ1, . . . , λn together with a set of orthonormal eigenvectors r1, . . . , rn. With the column matrix
R = [r1, . . . , rn] we have R

T
AR = Λ = diag(λ1, . . . , λn). We now discuss the condition (1.63)

depending on the type of equation:

i) The PDE (1.61) is of elliptic type. Then all eigenvalues of A are either positive or negative,
i.e. qT

nAqn �= 0 for any qn �= 0. Therefore the desired derivative ∂
2
qn

u(x(s)) can always be
computed for any surface Γ . We conclude that an elliptic PDE does not have characteristic
surfaces. This also means that the solution and its gradient are smooth as long as the
coefficients of the equation are smooth enough.
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1.4. Type Classification and Model Problems

ii) The PDE (1.61) is of parabolic type. Then A has one zero eigenvalue and all others are
nonzero and have the same sign. Without loss of generality let λn = 0 with corresponding
eigenvector rn. Now

qnAqn = 0 ⇔ qn = αnrn

for any αn, meaning that ∂2
qn

u(x(s)) can not be computed at a point on the surface when
the normal to points in direction of the eigenvector rn. Characteristic surfaces have normal
direction rn(y) in every y ∈ Γ . In fact this does not explain why all nonzero eigenvalues
need to have the same sign.

iii) The PDE (1.61) is of hyperbolic type. Then A has n − 1 eigenvalues of the same sign
and one with the opposite sign. Without loss of generality let λn be this eigenvalue.
Decomposing qn = αnrn +

�n−1
i=1 αiri we get

qnAqn = α
2
nλn +

n−1�

i=1

α
2
iλi = 0 ⇔ αn = ±

����
n−1�

i=1

−
λi

λn
α2
i .

Note that the radicand is always nonnegative due to the sign condition in the definition of
hyperbolicity. Now

qn = ±

����
n−1�

i=1

−
λi

λn
α2
irn +

n−1�

i=1

αiri

are all the surface normal directions for which the derivative ∂
2
qn

u(x(s)) can not be com-
puted. For any choice of α1, . . . ,αn−1 we get two possible directions. Since qn is a
direction it can be scaled arbitrarily. Therefore in the case n = 2 we can fix α1 = 1 and
there are exactly two directions:

qn = r1 ±
�
−
λ1

λ2
r2.

If n > 2, there is an n− 2 dimensional set of directions.

Characteristic surfaces are closely related to the Cauchy-Kovalevskaya theorem, see [Renardy
and Rogers, 1993, §2.2], which asserts the local existence of solutions of a system of PDEs in
the neighborhood of noncharacteristic surfaces. It is not of much practical use because the
data and the surface are required to be analytic and it is indifferent to well-posed and ill-posed
problems. Although it turns out that the choice of boundary and initial conditions that lead
to a well-posed problem strongly depends on the type of the equation this question can not be
answered with the techniques given so far. In the following we will give boundary and initial
conditions that lead to well-posed problems for the different types with proofs given later in the
text or in the literature. Ill-posedness of certain problems will be shown by the way of counter
examples.

Elliptic Equations

The condition for ellipticity results in A(x) being either positive or negative definite. Since the
sign can be changed arbitrarily by multiplying the equation by −1 the convention is to require
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Chapter 1. Modelling with Partial Differential Equations

that A(x) is positive definite (then A(x) models a permeability tensor). From §1.2.3 we learn
that elliptic equations model e.g. the stationary flow of heat in a solid or fluid material.

The “simplest” elliptic equation is obtained by setting A = I, b = 0, c = 0:

− ∆u = f in Ω (1.64)

and is called Poisson equation. If also f = 0 the equation is called Laplace equation or poten-

tial equation. In §1.1 we have seen that the Poisson equation describes e.g. the gravitational
potential.

Now we turn to the question of boundary conditions on ∂Ω. The analysis of the Cauchy
problem above suggests that the solution in the neighborhood of the boundary can be deter-
mined from u and ∂nu given on the boundar, where n denotes by convention the direction of
the unit outer normal to ∂Ω. The following counter example shows that such boundary data
may not lead to a well-posed problem.

Example 1.4. [Rannacher, 2006, §1.2]. Consider n = 2 and Ω = {(x,y) ∈ R2 : x > 0}.
On the curve Γ = {(0,y) ∈ R2} we prescribe the Cauchy data u(0,y) = u

0
0(y) = 0 and

∂xu(0,y) = u
1
0 = 0. Clearly the function u(x,y) = 0 solves the Laplace equation ∆u = 0 with

this boundary data. Now we chose � > 0 and set the boundary data to

u
0
�(y) = 0, u

1
�(y) = � sin(y/�).

One verifies that

u�(x,y) = �
2 sinh(x/�) sin(y/�), sinh(z) =

1
2
(ez − e

−z)

solves ∆u = 0 in Ω and satisfies the given boundary data. Now we have on the one hand
lim�→0 u

1
� = u

1
0 but on the other hand lim�→0 u� �= u. Another way formulate the result is

that the ratio (sup(x,y)∈Ω |u�(x,y)|)/(sup(0,y)∈Γ |u
1
�(y)|) grows without bound. This means

that the solution in the interior does not depend continuously on the data and therefore the
problem is not well-posed. �

x

y

u

u

u u

It turns out that on every point of the boundary only one of the
following conditions

u = g (Dirichlet), (1.65a)
∂nu = g (Neumann), (1.65b)

∂nu+ αu = g (Robin), (1.65c)

can be prescribed. That these prescriptions actually lead to well-
posed problems for the general elliptic equation will be shown later
as part of the convergence theory. Note also, that the Neumann
condition requires a compatibility condition with the right hand

side f in order to be solvable and the solution is only unique up to a constant. The boundary
conditions can be mixed, i.e. on different parts of the boundary, different conditions can be
given.
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Parabolic Equations

In the parabolic case one eigenvalue is zero. We assume that this eigenvalue is λn and rename
the variable xn to t. The “simplest” parabolic equation is obtained by setting A =

�
λI 0
0 0

�
with

some constant λ > 0, b = 0 and c = 0 which leads to the equation

∂tu− λ

n−1�

i=1

∂
2
xi
u = ∂tu− λ∆u = f in U. (1.66)

Second derivatives are taken only with respect to the “spatial” variables x1, . . . , xn−1. From
§1.2.3 we learn that this equation models instationary heat flow in a homogeneous solid body
with heat conductivity λ. The equation with λ = 1 and f = 0

∂tu = ∆u in U (1.67)

is generally referred to as heat equation in the mathematical literature.

x = x1

t

t0

T

u

u u

Γ0

ΓT

Γ Γ

Parabolic equations are typically solved in a space-time cylin-
der U = Ω×Σ with Ω the spatial domain and Σ = (t0, t0+T)
a time interval. For the boundary conditions we identify the
boundaries Γ = {(x, t) ∈ U : x ∈ ∂Ω, t ∈ Σ}, Γ0 = {(x, t) ∈
U : x ∈ Ω, t = t0} and ΓT = {(x, t) ∈ U : x ∈ Ω, t = T }.
This is illustrated for one spatial dimension in the figure to
the left. Since −∆ is an elliptic operator on the n− 1 spatial
variables the same boundary conditions as in the elliptic case
(with g now depending on time as well), i.e. those in (1.65),
can be applied on Γ . The surfaces Γ0 and ΓT are characteristic

since the normal direction (0, . . . , 0, 1)T points in direction of the eigenvector corresponding to
the zero eigenvalue. But the equation is only first order in that direction the prescription of
the solution on either Γ0 or ΓT is sufficient. We now show by way of a counter example that a
prescription of u on ΓT (“at the end of the time interval”) may lead to an ill-posed problem.

Example 1.5. [Braess, 2003]. Consider n = 2, U = Ω×Σ = (0, 1)× [−1, 0). We prescribe the
condition u(0, t) = u(1, t) = 0 on Γ and the condition

u(x, 0) =
1
k

sin(kπx) (k ∈ N)

for t = 0 which corresponds to ΓT above. One verifies that

u(x, t) =
1
k
e
−k2π2t sin(kπx)

solves the heat equation ∂tu = ∂
2
xu in U and satisfies the boundary data. We observe that

for k → ∞ supx∈Ω |u(x, 0)| → 0 but sup(x,t)∈U |u(x, t)| → ∞. On the other hand u(x,y) = 0
solves the heat equation for u(x, 0) = 0. So again the solution does not depend continuously
on the data. Observe, however, that changing U to U = (0, 1) × (0, 1] and the same data at
t = 0 which now corresponds to Γ0 (!) in the notation introduced above. we get |u(x, t)| → 0
for k → ∞. �

From the example we motivate that a conditions on Γ and Γ0 do lead to a well-posed problem.
On ΓT no condition is necessary. The conditions on Γ are referred to as boundary conditions
while the condition on Γ0 is referred to
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Hyperbolic Equations

In the hyperbolic case n−1 eigenvalues have the same sign and one eigenvalue has the opposite
sign. We assume without loss of generality that λn < 0, λi > 0, 1 � i � n− 1 and rename the
variable xn to t. The “simplest” hyperbolic equation is obtained by setting A =

�
κI 0
0 −1

�
with

some constant κ > 0, b = 0 and c = 0 which leads to the equation

∂
2
tu− κ

n−1�

i=1

∂
2
xi
u = ∂

2
tu− κ∆u = f in U. (1.68)

As in the parabolic case second derivatives are taken only with respect to the “spatial” variables
x1, . . . , xn−1. From §1.2.5 we learn that this equation models the propagation of sound waves
in a gas with

√
κ the speed of sound. The equation with κ = 1 and f = 0

∂
2
tu = ∆u in U (1.69)

is generally referred to as wave equation in the mathematical literature.

x = x1

t

t0

T

u,∂tu

u u

Γ0

ΓT

Γ Γ

Hyperbolic equations are typically solved in a space-time cy-
linder U = Ω×Σ with Ω the spatial domain and Σ = (t0, t0+
T) a time interval. For the boundary conditions we identify
the boundaries Γ = {(x, t) ∈ U : x ∈ ∂Ω, t ∈ Σ}, Γ0 =
{(x, t) ∈ U : x ∈ Ω, t = t0} and ΓT = {(x, t) ∈ U : x ∈
Ω, t = T }. This is illustrated for one spatial dimension in the
figure to the left. In the hyperbolic case no boundary surface
is characteristic. Since the operator −∆u is elliptic an elliptic
operator with respect to the n− 1 spatial variables the same
boundary conditions (1.65) as in the elliptic case, with g now

depending as well on time, can be applied on Γ . On Γ0, it turns out, the prescription of the
initial conditions u and ∂tu does lead to a well-posed problem. If such a condition is prescribed
on Γ0 no condition on ΓT can be given.

However, in contrast to the parabolic case, the role of Γ0 and ΓT can be reversed without
leading to an ill-posed problem. This can be seen as follows: Suppose u

+(x, t) is a solution of
the wave equation in U

+ = Ω× (0, T ] with initial data prescribed at t = 0. Then the function
u
−(x, t) = u

+(x,−t) is a solution of the wave in U
− = Ω× [−T , 0) with “final data” prescribed

at t = 0 and boundary data u
−(x, t) = u

+(x,−t), x ∈ ∂Ω, t ∈ [−T , 0). So when the problem
in U

+ is well posed also the “reflected problem” in U
− is well-posed.

We now turn to the question whether supplying u on Γ0 and ΓT instead of u,∂tu on either
Γ0 or ΓT leads to a well-posed problem. The following counter example shows that this is in
general not the case.
Example 1.6. [Hackbusch, 1986, §1.4]. Consider U = Ω× Σ = (0, 1)× (0, 1/π]. We prescribe
the data u(x, 0) = u(0, t) = u(1, t) = 0 and u(x, 1/π) = sin(kπx) for k ∈ N. One verifies that

u(x, t) = sin(kπx)
sin(kπt)

sin k

solves the wave equation in U and satisfies the given data. Now for k → ∞ we have |u(x, 1/π)| �
1 but sup{1/ sinν : ν ∈ N} = ∞. Again, the solution does not depend continuously on the
data. �

In the following, we consider therefore the wave equation with boundary conditions (1.65)
on Γ and initial conditions u,∂tu on Γ0.
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Extensions

Sometimes the partial differential operator L(�) depends on a parameter � � 0. Then the PDE
is called singularly perturbed if the type of L(0) is different from the type L(�) for � > 0. As
an example consider the equation

∂tu− �∆u+ b ·∇u = 0.

For any � > 0 the equation is second-order parabolic but for � = 0 the equation is first-order
(hyperbolic).

We now turn to the type classification of nonlinear partial differential equations. The most
general form of a scalar second-order nonlinear PDE in n variables is

F(∂2
x1u,∂x1∂x2u, . . .∂2

xn
u,∂x1u, . . . ,∂xnu,u, x) = 0 (x ∈ U)

with F a function in n(n− 1)/2 + 2n+ 1 variables which we may name

z = (z11, z12, . . . , znn, z1, . . . , zn, z0)
T .

A linearization of the PDE around the state ū(x) is obtained by decomposing u(x) = ū(x)+ũ(x)
and applying Taylor expansion:

F(∂2
x1u, . . . ,u, x) .

=
n�

j=1

�

i�j

∂zijF∂xj∂xiũ+
n�

i=1

∂ziF∂xiũ+ ∂z0F ũ+ F̄ = 0.

This is a linear PDE in ũ with coefficients aij(x) = ∂zijF(∂
2
x1ū, . . . , ū, x). The type classification

is then applied to this linear a PDE for a given state ū.
As an example consider the porous medium equation

∂tu− ∆u
p = ∂tu−∇ · (up−1∇u) = 0 (1.70)

with p > 1 and where we assume that boundary and initial conditions are such that u � 0 is
ensured. This equation is called degenerate parabolic as it is parabolic at points where u(x) > 0
and it degenerates into an ordinary differential equation at points where u(x) = 0.

1.4.3. First-order Hyperbolic Systems

Method of Characteristics

We will consider the linear scalar conservation law

∂tu+∇ · (vu) = 0 in Rn × R+ (1.71)

with initial conditions
u(x, 0) = u

0(x) on Rn. (1.72)

Here v : Rn × R+ → Rn is a given time-dependent velocity field assumed sufficiently smooth.
The extension to a bounded domain Ω is straightforward. The nonlinear case is treated in
[Evans, 2010, § 3.2]. The following Theorem gives an explicit solution formula for this equation.
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Theorem 1.7. Let u ∈ C
1(Rn × R+

0 ) solve (1.71) for a smooth velocity field v ∈ [C1(Rn ×
R+)]n. For any point x

0 ∈ Rn define the characteristic curve (x̂(t), t) by

dx̂

dt
(t) = v(x̂(t), t), t > 0, x̂(0) = x

0 . (1.73)

Then the solution of (1.71) at any point along the curve (1.73) is given by

u(x̂(t), t) = u
0(x0) exp



−

t�

0

(∇ · v)(x̂(s), s)ds



 . (1.74)

Proof. Differentiating u along the curve gives

d

ds
u(x̂(s), s) = ∂tu(x̂(s), s) +

n�

i=1

∂xiu(x̂(s), s)
dx̂i

ds
(s)

= ∂tu(x̂(s), s) +∇u(x̂(s), s) · v(x̂(s), s)
= ∂tu(x̂(s), s) +∇ · (v(x̂(s), s)u(x̂(s), s))− (∇ · v(x̂(s), s))u(x̂(s), s)

where we have used the definition of the characteristic curve and the product rule ∇ · (vu) =
v · ∇u + (∇ · v)u. The first two terms vanish since u solves (1.71) and we are left with the
linear homogeneous ordinary differential equation

d

ds
u(x̂(s), s) = −(∇ · v(x̂(s), s))u(x̂(s), s) (1.75)

which has the solution stated in the Theorem. �
The characteristic curves defined in the Theorem are the paths followed by particles in the

flow. A special case is given when v is divergence free, ∇ · v = 0. Then Theorem 1.7 states that
the solution is constant along any characteristic curve. In particular v = const is a divergence
free velocity field and the corresponding characteristic curves (x̂(t), t) = (x0+vt, t) are straight
lines in space-time. The solution at any point is then given by u(x, t) = u

0(x− vt).
As a further specialization consider now the special initial data u

0(x) = φ(y · x) where
y is an arbitrary vector of modulus 1 and φ is a strictly monotone scalar function. Since
∇φ(y · x) = φ(y · x)y the level sets of u0(x) are hyperplanes in Rn which are perpendicular to
the given direction y. For this special initial data the solution of (1.71) with v = const is given
by u(x, t) = φ(y · (x−vt)) = φ(y ·x− ty ·v). Thus the level contours move with velocity y ·v in
the direction y. This explains the fact that solutions of (1.71) support the propagation of waves

(without a formal definition of a wave). More specifically, solutions of the form φ(y · x− ty · v)
are called plane waves and they play a role in the generalization to systems of equations.

Using the explicit solution formula from Theorem 1.7 we can analyze the regularity of the
solution. Clearly, when the velocity field is smooth enough (e.g. Lipschitz continuous in x) and
the initial data u

0 is continuously differentiable then also u(x, t) will be continuously differen-
tiable. However, the solution formula makes also sense when the initial data is discontinuous
(which might be a perfectly good approximation for a density or a concentration)!

Example 1.8. Consider the one-dimensional case with v = 1 and the step initial condition

u
0(x) =

�
2 x � 0
1 x > 0 .
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x

u(x, 0)

−2 −1 0 1 2 x

u(x, 1)

−2 −1 0 1 2 x

u(x, 2)

−2 −1 0 1 2

Figure 1.9.: Solution of the equation ∂tu+ ∂xu = 0 with a step initial condition.

The solution according to the method of characteristic u(x, t) = u
0(x− t) is then also discon-

tinuous and is illustrated in Figure 1.9 for the times t = 0, 1, 2. �.

This example illustrates that requiring a solution of a kth order PDE to be k times contin-
uously differentiable might be too restrictive. The question is then to give such “generalized”
solutions lacking the required regularity a precise mathematical sense.

One-dimensional Systems

We now turn, as an intermediate step, to the case of a vector-valued function u(x, t) =
(u1(x, t), . . . ,um(x, t))T in one spatial dimension and consider the system of equations

∂tu+ B∂xu = 0 in Rn × R+ (1.76)

where B is a constant m×m matrix. One idea to solve this equation is to require B to be real
diagonalizable, i.e. B has m real eigenvalues λ1, . . . , λm and a corresponding set of eigenvectors
r1, . . . , rm that form a basis of Rm. In that case there exists an orthogonal matrix Q with
QBQ

T = D, D = diag(λ1, . . . , λm). Using the transformation w = Qu we can transform the
system (1.76) into the equivalent system

∂tw+D∂xw = 0 in Rn × R+ .

In the transformed system all components decouple and each component can be solved inde-
pendently using the method of characteristics. Note that the velocities are the eigenvalues λk

which might be different for each component. Each component of the solution of the original
system u = Q

T
w is then a linear combination of these “simple” waves wj.

We can also ask whether a system of the form (1.76) can have plane wave solutions. To find
them we make the ansatz

u(x, t) = φ(yx− σt)

where the “direction” y is now reduced to a scalar, φ : R → Rm is now a vector-valued function
in one argument and the scalar factor σ is to be determined. Inserting this ansatz into the
PDE (1.76) results in

dφ

ds
(yx− σt)(−σ) +A

dφ

ds
(yx− σt)y = (−σI+ yA)

dφ

ds
(yx− σt) = 0 .

This equation can not be satisfied by any profile function φ in contrast to the scalar case.
However, if we assume A to be diagonalizable we can require that dφ

ds is equal to an eigenvector:

dφ

ds
= rk ⇒ φ(s) = srk + φk (k = 1, . . . ,m).
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Then our equation reduces to

(−σ+ yλk)rk = 0 ⇔ σ = λk (k = 1, . . . ,m).

Thus we can conclude that equation (1.76) supports m plane wave solutions that have the form

uk(x, t) = (yx− yλkt)rk + φk (k = 1, . . . ,m)

with arbitrary φk provided A is diagonalizable. Since y has the meaning of a direction we may
assume y = 1 and so the possible velocities σ = λk are just the eigenvalues of A.

It turns out that the diagonalizability of A is not just a nice mathematical structure that
allows one to solve the system (1.76) but that such systems are also practically relevant!

Multi-dimensional Systems

We now turn to the linear system of m equations in n space dimensions of the form

∂tu+
n�

j=1

Bj∂xju = f in Rn × R+ (1.77)

with the initial condition
u(x, 0) = u

0(x) on Rn (1.78)

where u : Rn×R+
0 → Rm is the unknown function and Bj : Rn×R+

0 → Rm×m, f : Rn×R+
0 →

Rm are given functions that may depend on position and time.
This system can not be transformed into a decoupled system for the individual components

by a transformation w = Qu because the matrices Bj are, in general, not simultaneously
diagonalizable. However, we can still ask for the existence of plane wave solutions. As in the
one-dimensional case we make the ansatz u(x, t) = φ(y · x− σt) where y ∈ Rn is now a given
direction, φ is a vector-valued function in one variable and the Bj are assumed to be constant
matrices. Inserting this ansatz into the PDE (1.77) yields



−σI+
n�

j=1

yjBj



 dφ

ds
(y · x− σt) = 0 .

If we now assume that the matrix B(y) =
�n

j=1 yjBj is diagonalizable for any y ∈ Rn with m

eigenvalues λk(y) and corresponding eigenvectors rk(y)we can set again dφ
ds = rk(y) and the

system reduces to
(−σ+ λk(y)) rk(y) = 0 .

Consequently we will have plane the m wave solutions of the form

uk(x, t) = (y · x− λk(y)t)rk(y) + φk (k = 1, . . . ,m)

with arbitrary φk. This motivates now the following definition.
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Definition 1.9 (Hyperbolic linear first-order systems). The system of equations (1.77) is called
hyperbolic if for each x,y ∈ Rn and t � 0 the m×m matrix

B(x, t;y) =
n�

j=1

yjBj(x, t) (1.79)

is real diagonalizable, i.e. it has m real eigenvalues λ1(x, t;y), . . . , λm(x, t;y) and its corre-
sponding eigenvectors r1(x, t;y), . . . , rm(x, t;y) form a basis of Rm. In addition there are two
special cases:

i) The system is called symmetric hyperbolic if Bj(x, t) is symmetric for every x ∈ Rn, t � 0
and j = 1, . . . ,m.

ii) The system is called strictly hyperbolic if for x,y ∈ Rn, y �= 0 and t � 0 the matrix
B(x, t;y) has m distinct real eigenvalues. �

Example 1.10 (Linear Acoustics). We consider the system of linear acoustics in three space
dimensions given in Equation (1.30). Setting u = (p̃, ṽ1, ṽ2, ṽ3) this system can be written as

∂tu+
n�

j=1

Bj∂xju = 0

with

B1 =





0 c
2
ρ̄ 0 0

1/ρ̄ 0 0 0
0 0 0 0
0 0 0 0



 , B2 =





0 0 c
2
ρ̄ 0

0 0 0 0
1/ρ̄ 0 0 0
0 0 0 0



 , B3 =





0 0 0 c
2
ρ̄

0 0 0 0
0 0 0 0

1/ρ̄ 0 0 0



 .

For any y ∈ R3 we therefore have

B(y) =
3�

j=1

yjBj =





0 y1c
2
ρ̄ y2c

2
ρ̄ y3c

2
ρ̄

y1/ρ̄ 0 0 0
y2/ρ̄ 0 0 0
y3/ρ̄ 0 0 0



 .

With the transformation matrix T = diag(ρ̄c, 1, 1, 1) we see that B(y) is similar to the symmetric
matrix

T
−1

B(y)T =





0 y1c y2c y3c
y1c 0 0 0
y2c 0 0 0
y3c 0 0 0





and therefore is diagonalizable with eigenvalues

λ1,2 = ±c�y� and λ3,4 = 0.

Since y is a direction vector we may assume �y� = 1 and therefore the system supports two
wave solutions with velocities ±c (explaining that c is the speed of sound). �
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Definition 1.9 can be extended to the slightly more general system

B0∂tu+
n�

j=1

Bj∂xju = 0 in Rn × R+ (1.80)

where B0 is a constant symmetric positive definite matrix. This system is also called hyperbolic
provided the matrix B(x, t;y) defined in (1.79) is diagonalizable. This can be shown as follows.
By assumption there exists an orthogonal matrix Q such that QBQ

T = D = diag(µ1, . . . ,µm),
µk > 0. With the transformation w = D

1/2
Qu the system (1.80) is equivalent to

∂tw+
n�

j=1

D
1/2

QBjQ
T
D

−1/2
∂xjw = 0 in Rn × R+.

For this transformed system and any y ∈ Rn

n�

j=1

yjD
1/2

QBjQ
T
D

−1/2 = D
1/2

Q




n�

j=1

yjBj



Q
T
D

−1/2 = D
1/2

QB(x, t;y)QT
D

−1/2

so the diagonalizability of B(x, t;y) also implies the hyperbolicity of the transformed system.
We now establish a connection of first-order hyperbolic systems to second-order scalar hy-

perbolic equations. We only consider the case b ≡ 0, c ≡ 0 in (1.61). With the vector-valued
function v = (v1, . . . , vn, vn+1)T = (∂x1u, . . . ,∂xnu,∂tu)T we obtain the system of n + 1
equations

n�

j=1

aij∂tvj −
n�

j=1

aij∂tvn+1 = 0 (i = 1, . . . ,n),

∂tvn+1 −
n�

j=1

n�

i=1

aij∂xjvi = f.

Here the first n equations are a consequence of the n identities ∂t∂xiu = ∂xi∂tu and the
fact that the rows of A(x, t) are linearly independent. The last equation is our second-order
hyperbolic PDE. Now this system can be written as first-order system of the form (1.80) with
the matrices

B0 =





a11 . . . a1n 0
...

...
...

an1 . . . ann 0
0 . . . 0 1



 , Bj =





0 . . . 0 −a1j
...

...
...

0 . . . 0 −anj

−a1j . . . −anj 0



 .

The positive definiteness of A(x, t) ensures the positive definiteness of B0 and since the Bj are
symmetric any combination

�n
j=1 yjBj is diagonalizable. Thus we have shown that a scalar

second-order hyperbolic PDE can be written as a (symmetric) hyperbolic first-order system.
This also implies that (appropriately generalized) solutions of a scalar second-order hyperbolic
PDE may be discontinuous.
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Definition 1.9 is extended to the case of a nonlinear conservation law (1.27) (such as the
Euler equations) as follows. We rewrite the conservation law using the chain rule (assuming F

to be sufficiently smooth):

∂tu+
n�

j=1

∂xjFj(u) = ∂tu+
n�

j=1

∇Fj(u)∂xju

(∇Fj denotes the Jacobian matrix). Then the nonlinear system is called hyperbolic if the matrix

B(x, t;y) =
n�

j=1

yj∇Fj(u(x, t))

is diagonalizable for any y ∈ Rn and possible state u(x, t).

1.5. Model Problems

In order to summarize this chapter we give a list of problems (including boundary and initial
conditions) which will serve as model problems in the rest of the text and which we will be
able to solve numerically in the course of the lecture. In the following Ω ⊂ Rn is a (spatial)
domain, Σ = (0, T ] is a time interval and u : Ω → R or u : Ω × Σ → R denotes the unknown
scalar function.
a) Transport problem (first-order hyperbolic).

∂tu+ ·(vu) = f in Ω

u = g on Γ = {x ∈ ∂Ω : v(x) · n(x) < 0}.

b) Laplace equation (Dirichlet problem, second-order elliptic).

−∆u = 0 in Ω

u = g on ∂Ω.

c) Poisson equation (Neumann problem, second-order elliptic).

−∆u = f in Ω

−∇u · n = g on ∂Ω.

In order for a solution to exist the compatibility condition
�
Ω f dx =

�
∂Ω gds is required.

The solution is unique up to a constant.

d) Heat equation (second-order parabolic).

∂tu− ∆u = f in Ω× Σ

u = g on ∂Ω× Σ

u = u0 on Ω× {0}.

e) Wave equation (second-order hyperbolic).

∂
2
tu− ∆u = f in Ω× Σ

u = g on ∂Ω× Σ

u = u0,∂tu = u1 on Ω× {0}.
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