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Recapitulation: Groundwater Flow

can be described by Darcy's Law J,, = —K;Vp,, and the continuity equation
WE) 4V - Ju(R) + ru(R) = 0.

gravity is included by 80()() —V [Ki(%) - (VPw — pwg&:)] + rw(¥) =0
heterogeneity is con5|dered by different values of K, at different positions of X

anisotropy is considered by using a tensor K instead of a scalar

in steady state the flux equation is given by:
-V [ ( ) (va - pwggz)] + rw(;) =0
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Partial Differential Equations

Partial Differential Equations

A partial differential equation
e determines a function u(X) in n > 2 variables X = (xq,...,x,)"

e is a functional relation between partial derivatives (to more than one variable)
of u at one point.

In general:
oMu ™ty oMu OMu o™ty
FlZz—(x %),y ———(X), ... R), ———=(X),...,u(R), %] =0 VReQ
<8le (X)7 8le,l (X)7 76X1’71716X2 (X)7 ’8><,T (X)a aX,’,nil(X)’ 7U(X)1X> X €
1)
Important:

e The highest derivative m determines the order of a PDE
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Partial Differential Equations

Domains

PDE's are not posed on the whole R"” but on a subset of R".

Definition (Domain)
Q C R" is called domain if Q is open and connected.

open: For each X € Q there exists a B.(X) = {y € Q|||X — ¥|| < €} such
that B.(X) C Q if € is small enough.

connected: if X,y € €, then there exists a steady curve t(s) : [0,1] — Q with
£(0) = X, t(1) = y, t(s) € Q.

Q designates the closure of Q, i.e. Q plus the limit values of all sequences, which

can be generated from elements of .

0Q = Q\ Q is the boundary of Q. Often additional conditions on the smoothness
of the boundary are necessary.

Finally #(X) is the outer unit normal at a point X € 9. O
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Partial Differential Equations

Solutions of PDE's

e u:Q — Ris called a solution of a PDE if it satisfies the PDE identically for
every point X € Q

e Solutions of PDE's are usually not unique unless additional conditions are
posed. Typically these are conditions for the function values (and/or
derivatives) at the boundary

e A PDE is well posed if the solution

e exists
e is unique (with appropriate boundary conditions)
e depends continuously on the data.
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Partial Differential Equations

PDE Classification

Linear partial PDE's of second order are a case of specific interest. For 2
dimensions and order m = 2 the general equation is:

(0, 53 (59) + 2606, 3) 5 (x09) + el 3) 35 ()
(o) (o) + elx, ) G x0y) + Fxy)ulx.y)
+e(x,y) =0

At a point (x,y) a PDE can be classified according to the first three terms (main
part) into

elliptic if det
hyperbolic if det

parabolic if det

Rank

|—|/\/—\/—\
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Partial Differential Equations

PDE Classification in n > 2 space dimensions

The general linear PDE of 2nd order in n space dimensions is:

n

Zau(x)&(,axju—i-Za, )0yt + ao(X)u = (%) in Q.

ij=1 i=1

main part

without loss of generality one can set aj; = aji. With (A(X)); = a;j(X) the PDE is
at a point X
elliptic if all eigenvalues of A(X) have identical sign and no eigenvalue is
zero.
hyperbolic if (n — 1) eigenvalues have identical sign, one eigenvalue the
opposite sign and no eigenvalue is zero.

parabolic if one eigenvalue is zero, all other eigenvalues have identical sign
and the Rank[A(X), a(X)] = n.
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Partial Differential Equations

Remarks on PDE Classification

e Why this classification? Different solution techniques are necessary for the
different types of PDE's.

e The described classification is complete for linear PDE's with n=m =2. In
higher space dimensions the classification is no longer complete.

e The type is invariant under coordinate transformation & = £(x, y),
n=mn(x,y) and u(x,y) = b(&(x, y),n(x,y)), which yields a new PDE for
(&, n) with the coefficients 3, b, etc.. If the equation for u in (x,y) has the
type t than & in (&(x,y),n(x,y)) has the same type.

e The type can vary at different points (but not in our applications).

e The type is only determined by the main part of the PDE (except for
parabolic equations).

e Pathological cases like % + % = 0; u(x,y) = 0 are avoided.
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Partial Differential Equations

Remarks on PDE Classification (cont.)

Definition
A linear PDE of 2nd order is called elliptic (hyperbolic, parabolic) in Q if it is
elliptic (hyperbolic, parabolic) for all points (x,y) € Q . O
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Partial Differential Equations

Classification for first-order PDE's

Definition
An equation of the form

d(x,y)

T xy) ) 5o y) + e )uleey) + g, y) =0

is called hyperbolic if |d(x,y)| + |e(x,y)] >0 V(x,y) € Q (else it is an ordinary
differential equation). For n > 2 the equation v(X) - Vu(X) + f(X)u(X) + g(X) =0
is called hyperbolic. O

In this lecture we only cover scalar PDE's. Systems of PDE’s contain several
unknown functions uq,...,u, : 2 — R and n PDE’s. There is also a classification
system for systems of PDE's.
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Partial Differential Equations Examples for PDE types

Examples for PDE types: Poisson-Equation

0?u 0?u
W(Xay)+67}/2(x7y):f(xvy) V(X,y)EQ (2)

is called Poisson-Equation.

This is the prototype of an elliptic PDE. The solution of equation (2) is not
unique. If u(x, y) is a solution, then e.g. u(x,y)+ c1 + cox + c3y is also a solution
for arbitrary values of ¢;, ¢, c3. To get a unique solution u values at the boundary
have to be specified (we therefore call this a “boundary value problem™).

Two types of boundary values are common:

® u(x,y) = g(x,y) for (x,y) € Tp C 9Q (Dirichlet!),

® 24(x,y) = h(x,y) for (x,y) € Ty C 0 (Neumann?, flux),
and 'p UTy = 0%Q. It is also important that 'y # 01, as else the solution is only
defined up to a constant.

IPeter Gustav Lejeune Dirichlet, 1805-1859, German Mathematician.
2 John von Neumann, 1903-1957, Austro-Hungarian Mathematician
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Partial Differential Equations Examples for PDE types

Examples for PDE types: Complete Poisson-Equation :ﬂ#

y
Tr
(0.1) =it

P o,
ox2  Oy? n

1 Q Y u=gonlpCoQ

@:honI—N:aQ\FD;ﬁaQ
! > X 81/

(0.0) Ty = Tp(Lo)
Generalisation to n space dimensions:

n a2
%::Au:finﬂ
' Ox:
i=1 1
u=gonlpCoN
Vu-v=honly=00\Tp

This equation is also called elliptic. If f =0 it is called Laplace-Equation. (I
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Partial Differential Equations Examples for PDE types

Examples for PDE types: General Diffusion Equation :ﬂ#

K :R" — R"" is a map, which relates to each point X € Q a n x n matrix K(X).
We demand also (for all X € Q) that K(X)

® K(X) = KT(X) and £TK(X)E >0 V&€ € R, € # 0 (symmetric positive
definite),

® C(%) := min {gTK(i’)g‘ ¢l =1} > Go > 0 (uniform ellipticity).

V- {K()?)Vu()?)} —finQ
u=gonlpCoQ (3)
—(K()?')Vu()?’)) w(%) = hon Ty =00\ Tp # 09

is then called General Diffusion Equation (e.g. groundwater flow equation).

For strongly varying K equation (3) can be very difficult to solve. O
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Partial Differential Equations Examples for PDE types

Examples for PDE types: Wave-Equation

The prototype of a hyperbolic equation of second order is the Wave-Equation:

0?u 0%u .
@(x,y)—a—ﬁ(x,y)zo inQ . (4)

Olaf Ippisch (IWR) Numerical Simulation of Transport Processes in Porous October 21, 2009 14 / 22



Partial Differential Equations Examples for PDE types

Examples for PDE types: Wave-Equation

Possible boundary values for a domain Q = (0,1)? are e.g.:

x € [0,1]: y
nothing!
a) u(x,0) = up(x) 01w s
ou u u
b) ——(x,0) = u1(x)
dy Compatibility ©) 2 d)
of the
y €10,1]: boundary %
\éalues for u, (0,0)y and au(l O)
c) u(0,y) = &ly) o' a) + ) Two mltéal values as
d) u(ly)=gly) oy?!

One direction (here y, usually the time) is special. a) 4+ b) are called initial values
and c) + d) boundary values (the boundary values can also be Neumann

boundary conditions). It is not possible to prescribe values at the whole boundary
(the future)! O
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Partial Differential Equations Examples for PDE types

Examples for PDE types: Heat-Equation

y
nothing

The prototype of a parabolic equation is the heat equa- u
tion: or Q or
0u % %
x,y)=0 in Q. X X

a2 oY) — ( |

dy u X

only one boundary value
as PDE is first order in y

For a domain Q = (0, 1)? typical boundary values are (with x € [0,1],y € [0, 1]):
u(x,0) = up(x)
u(0,y) = go(y) or

u(l,y) = gi(y) or

%(0#) = ho(y)

%(Ly) = hi(y)
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Partial Differential Equations Examples for PDE types

Examples for PDE types: Transport-Equation

If Q CR",v:Q — R"is a given vector field, the equation

V-v(R)u(R)) = F(X)  inQ

is called stationary transport
equation and is a hyperbolic
PDE of first order.

Possible boundary values are

u(X) = g(x)

»Inflow boundary” ., Outflow boundary*

— no boundary value

for X € 99 with v(X) - ¥(X) < 0 (Boundary value depends on the flux field)
9u + V- {v(% t)u(%,t)} = f(%,t) is also a hyperbolic PDE of first order.
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Partial Differential Equations ~ Sphere of Influence

Sphere of Influence

Elliptic PDE

The type of a partial differential equation can also be illustrated with the following
question:

Given X € Q. Which initial/boundary values influence the solution u at
the point X7

U + Uy, =0
y

all boundary values influence u(X), i.e. Change in
u(y),y € 0Q = Change in u(X).

X1
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Partial Differential Equations ~ Sphere of Influence

Sphere of Influence

Parabolic PDE

Uxx — Uy = 0 Note: The — is crucial, + is parabolic according to the definition

but it is not well posed (stable)

y
for (x,y) all (x',y") with y’ < y influence the value
L o(y) L ’
- — — — % — — — — @ at x.
g g »infinite velocity of propagation”
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Partial Differential Equations ~ Sphere of Influence

Sphere of Influence
Hyperbolic PDE (2nd order)

Uy — Uy, =0

Y Solution at (x,y) is influenced by all boundary values
below the cone
( slope Hc
X7
gy () | Y<K =x)cty
7 X% Ay <(x=x)-c+y} n 0Q
A X »finite velocity of propagation*
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Partial Differential Equations ~ Sphere of Influence

Sphere of Influence
Hyperbolic PDE (1st order)

ux+u, =0
y
L A
L v(X)
= b Only one boundary point influences the value.
X L1
s L1
> X
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Partial Differential Equations ~ Sphere of Influence

The Steady-State Groundwater Flow Equation

e The steady-state groundwater flow equation
—V - [K(X) - (VPw — pwg&:)] + rw(X) = 0'is an elliptic partial differential
equation of second order.

e To get a well posed problem either Dirichlet boundary conditions (the
pressure value is given) or Neumann boundary conditions (the flux is given)
must be specified at each boundary point.

e At one point of the boundary a Dirichlet boundary condition should be
specified (else the equation is only defined up to a constant).

e Each point in the domain is influenced by all boundary conditions.
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