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Recapitulation: Groundwater Flow

• can be described by Darcy’s Law Jw = −Ks∇pw and the continuity equation
∂θ(~x)
∂t +∇ · ~Jw (~x) + rw (~x) = 0.

• gravity is included by ∂θ(~x)
∂t −∇ ·

[
K̄s(~x) · (∇pw − ρw g~ez)

]
+ rw (~x) = 0

• heterogeneity is considered by different values of Ks at different positions of ~x

• anisotropy is considered by using a tensor K̄s instead of a scalar

• in steady state the flux equation is given by:
−∇ ·

[
K̄s(~x) · (∇pw − ρw g~ez)

]
+ rw (~x) = 0
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Partial Differential Equations

Partial Differential Equations

A partial differential equation

• determines a function u(~x) in n ≥ 2 variables ~x = (x1, . . . , xn)T.

• is a functional relation between partial derivatives (to more than one variable)
of u at one point.

In general:
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= 0 ∀~x ∈ Ω

(1)

Important:

• The highest derivative m determines the order of a PDE
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Partial Differential Equations

Domains

PDE’s are not posed on the whole Rn but on a subset of Rn.

Definition (Domain)

Ω ⊆ Rn is called domain if Ω is open and connected.

open: For each ~x ∈ Ω there exists a Bε(~x) = {~y ∈ Ω|‖~x − ~y‖ < ε} such
that Bε(~x) ⊆ Ω if ε is small enough.

connected: if ~x , ~y ∈ Ω, then there exists a steady curve ~t(s) : [0, 1]→ Ω with
~t(0) = ~x , ~t(1) = ~y , ~t(s) ∈ Ω.

Ω designates the closure of Ω, i.e. Ω plus the limit values of all sequences, which
can be generated from elements of Ω.
∂Ω = Ω \ Ω is the boundary of Ω. Often additional conditions on the smoothness
of the boundary are necessary.
Finally ~ν(~x) is the outer unit normal at a point ~x ∈ ∂Ω. �
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Partial Differential Equations

Solutions of PDE’s

• u : Ω→ R is called a solution of a PDE if it satisfies the PDE identically for
every point ~x ∈ Ω

• Solutions of PDE’s are usually not unique unless additional conditions are
posed. Typically these are conditions for the function values (and/or
derivatives) at the boundary

• A PDE is well posed if the solution
• exists
• is unique (with appropriate boundary conditions)
• depends continuously on the data.
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Partial Differential Equations

PDE Classification

Linear partial PDE’s of second order are a case of specific interest. For 2
dimensions and order m = 2 the general equation is:

a(x , y)
∂2u

∂x2
(x , y) + 2b(x , y)

∂2u

∂x∂y
(x , y) + c(x , y)

∂2u

∂y 2
(x , y)

+d(x , y)
∂u

∂x
(x , y) + e(x , y)

∂u

∂y
(x , y) + f (x , y)u(x , y)

+g(x , y) = 0

At a point (x , y) a PDE can be classified according to the first three terms (main
part) into

elliptic if det
(

a b
b c

)
= a(x , y)c(x , y)− b2(x , y) > 0

hyperbolic if det
(

a b
b c

)
= a(x , y)c(x , y)− b2(x , y) < 0

parabolic if det
(

a b
b c

)
= a(x , y)c(x , y)− b2(x , y) = 0 and

Rank

[
a b d
b c e

]
= 2 in (x , y)
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Partial Differential Equations

PDE Classification in n > 2 space dimensions

The general linear PDE of 2nd order in n space dimensions is:

n∑
i,j=1

aij(~x)∂xi∂xj u︸ ︷︷ ︸
main part

+
n∑

i=1

ai (~x)∂xi u + a0(~x)u = f (~x) in Ω.

without loss of generality one can set aij = aji . With (A(~x))ij = aij(~x) the PDE is
at a point ~x

elliptic if all eigenvalues of A(~x) have identical sign and no eigenvalue is
zero.

hyperbolic if (n − 1) eigenvalues have identical sign, one eigenvalue the
opposite sign and no eigenvalue is zero.

parabolic if one eigenvalue is zero, all other eigenvalues have identical sign
and the Rank[A(~x), a(~x)] = n.

�
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Partial Differential Equations

Remarks on PDE Classification

• Why this classification? Different solution techniques are necessary for the
different types of PDE’s.

• The described classification is complete for linear PDE’s with n = m = 2. In
higher space dimensions the classification is no longer complete.

• The type is invariant under coordinate transformation ξ = ξ(x , y),
η = η(x , y) and u(x , y) = ũ(ξ(x , y), η(x , y)), which yields a new PDE for
ũ(ξ, η) with the coefficients ã, b̃, etc.. If the equation for u in (x , y) has the
type t than ũ in (ξ(x , y), η(x , y)) has the same type.

• The type can vary at different points (but not in our applications).

• The type is only determined by the main part of the PDE (except for
parabolic equations).

• Pathological cases like ∂2u
∂x2 + ∂u

∂x = 0; u(x , y) = 0 are avoided.
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Partial Differential Equations

Remarks on PDE Classification (cont.)

Definition

A linear PDE of 2nd order is called elliptic (hyperbolic, parabolic) in Ω if it is
elliptic (hyperbolic, parabolic) for all points (x , y) ∈ Ω . �
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Partial Differential Equations

Classification for first-order PDE’s

Definition
An equation of the form

d(x , y)
∂u

∂x
(x , y) + e(x , y)

∂u

∂y
(x , y) + f (x , y)u(x , y) + g(x , y) = 0

is called hyperbolic if |d(x , y)|+ |e(x , y)| > 0 ∀(x , y) ∈ Ω (else it is an ordinary
differential equation). For n ≥ 2 the equation v(~x) · ∇u(~x) + f (~x)u(~x) + g(~x) = 0
is called hyperbolic. �

In this lecture we only cover scalar PDE’s. Systems of PDE’s contain several
unknown functions u1, . . . , un : Ω→ R and n PDE’s. There is also a classification
system for systems of PDE’s.
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Partial Differential Equations Examples for PDE types

Examples for PDE types: Poisson-Equation

∂2u

∂x2
(x , y) +

∂2u

∂y 2
(x , y) = f (x , y) ∀(x , y) ∈ Ω (2)

is called Poisson-Equation.
This is the prototype of an elliptic PDE. The solution of equation (2) is not
unique. If u(x , y) is a solution, then e.g. u(x , y) + c1 + c2x + c3y is also a solution
for arbitrary values of c1, c2, c3. To get a unique solution u values at the boundary
have to be specified (we therefore call this a “boundary value problem”).
Two types of boundary values are common:

1 u(x , y) = g(x , y) for (x , y) ∈ ΓD ⊆ ∂Ω (Dirichlet1),

2
∂u
∂ν (x , y) = h(x , y) for (x , y) ∈ ΓN ⊂ ∂Ω (Neumann2, flux),

and ΓD ∪ ΓN = ∂Ω. It is also important that ΓN 6= ∂Ω, as else the solution is only
defined up to a constant.

1Peter Gustav Lejeune Dirichlet, 1805-1859, German Mathematician.
2John von Neumann, 1903-1957, Austro-Hungarian Mathematician
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Partial Differential Equations Examples for PDE types

Examples for PDE types: Complete Poisson-Equation

y

x

Ω

(0, 0)

(0, 1)

(1, 0)

ΓN

ΓN ΓD

ΓD

∂2u

∂x2
+
∂2u

∂y 2
= f in Ω

u = g on ΓD ⊆ ∂Ω

∂u

∂ν
= h on ΓN = ∂Ω \ ΓD 6= ∂Ω

Generalisation to n space dimensions:

n∑
i=1

∂2u

∂x2
i

=: ∆u = f in Ω

u = g on ΓD ⊆ ∂Ω

∇u · ν = h on ΓN = ∂Ω \ ΓD

This equation is also called elliptic. If f ≡ 0 it is called Laplace-Equation. �
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Partial Differential Equations Examples for PDE types

Examples for PDE types: General Diffusion Equation

K : Rn → Rn×n is a map, which relates to each point ~x ∈ Ω a n × n matrix K (~x).
We demand also (for all ~x ∈ Ω) that K (~x)

1 K (~x) = K T(~x) and ξTK (~x)ξ > 0 ∀ξ ∈ Rn, ξ 6= 0 (symmetric positive
definite),

2 C (~x) := min
{
ξTK (~x)ξ

∣∣∣ ‖ξ‖ = 1
}
≥ C0 > 0 (uniform ellipticity).

−∇ ·
{

K (~x)∇u(~x)
}

= f in Ω

u = g on ΓD ⊆ ∂Ω

−
(

K (~x)∇u(~x)
)
· ν(~x) = h on ΓN = ∂Ω \ ΓD 6= ∂Ω

(3)

is then called General Diffusion Equation (e.g. groundwater flow equation).

For strongly varying K equation (3) can be very difficult to solve. �
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Partial Differential Equations Examples for PDE types

Examples for PDE types: Wave-Equation

The prototype of a hyperbolic equation of second order is the Wave-Equation:

∂2u

∂x2
(x , y)− ∂2u

∂y 2
(x , y) = 0 in Ω . (4)
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Partial Differential Equations Examples for PDE types

Examples for PDE types: Wave-Equation

Possible boundary values for a domain Ω = (0, 1)2 are e.g.:

x ∈ [0, 1]:

a) u(x , 0) = u0(x)

b)
∂u

∂y
(x , 0) = u1(x)

y ∈ [0, 1]:

c) u(0, y) = g0(y)

d) u(1, y) = g1(y)

y

x

Ω

(0, 0)

(0, 1)

(1, 0)

nothing!

u
c)

u
d)

u and ∂u
∂y

a) + b)

Compatibility
of the
boundary
values for u,
∂u
∂y

!
Two initial values as

∂2u
∂y2 !

One direction (here y , usually the time) is special. a) + b) are called initial values
and c) + d) boundary values (the boundary values can also be Neumann
boundary conditions). It is not possible to prescribe values at the whole boundary
(the future)! �
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Partial Differential Equations Examples for PDE types

Examples for PDE types: Heat-Equation

The prototype of a parabolic equation is the heat equa-
tion:

∂2u

∂x2
(x , y)− ∂u

∂y
(x , y) = 0 in Ω.

y

x

Ω

nothing

u
or
∂u
∂x

u
or
∂u
∂x

u
only one boundary value
as PDE is first order in y

For a domain Ω = (0, 1)2 typical boundary values are (with x ∈ [0, 1], y ∈ [0, 1]):

u(x , 0) = u0(x)

u(0, y) = g0(y) or
∂u

∂x
(0, y) = h0(y)

u(1, y) = g1(y) or
∂u

∂x
(1, y) = h1(y)

�
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Partial Differential Equations Examples for PDE types

Examples for PDE types: Transport-Equation

If Ω ⊂ Rn, v : Ω→ Rn is a given vector field, the equation

∇·{v(~x)u(~x)} = f (~x) in Ω

is called stationary transport
equation and is a hyperbolic
PDE of first order.
Possible boundary values are

u(~x) = g(~x)

”
Outflow boundary“

→ no boundary value
”
Inflow boundary“

v(~x)

v(~x)

Ω

for ~x ∈ ∂Ω with v(~x) · ν(~x) < 0 (Boundary value depends on the flux field)
∂u
∂t +∇ · {v(~x , t)u(~x , t)} = f (~x , t) is also a hyperbolic PDE of first order. �
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Partial Differential Equations Sphere of Influence

Sphere of Influence
Elliptic PDE

The type of a partial differential equation can also be illustrated with the following
question:

Given ~x ∈ Ω. Which initial/boundary values influence the solution u at
the point ~x?

uxx + uyy = 0
y

x

~x

all boundary values influence u(~x), i.e. Change in
u(y), y ∈ ∂Ω⇒ Change in u(~x).
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Partial Differential Equations Sphere of Influence

Sphere of Influence
Parabolic PDE

uxx − uy = 0 Note: The − is crucial, + is parabolic according to the definition
but it is not well posed (stable)

y

x

(x , y)
for (x , y) all (x ′, y ′) with y ′ ≤ y influence the value
at ~x .

”
infinite velocity of propagation“
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Partial Differential Equations Sphere of Influence

Sphere of Influence
Hyperbolic PDE (2nd order)

uxx − uyy = 0
y

x

(x , y)
slope ±c

Solution at (x , y) is influenced by all boundary values
below the cone

{(x ′, y ′) | y ′ ≤ (x ′ − x) · c + y

∧ y ′ ≤ (x − x ′) · c + y} ∩ ∂Ω

”
finite velocity of propagation“
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Partial Differential Equations Sphere of Influence

Sphere of Influence
Hyperbolic PDE (1st order)

ux + uy = 0
y

x

~x

v(~x)
Only one boundary point influences the value.
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Partial Differential Equations Sphere of Influence

The Steady-State Groundwater Flow Equation

• The steady-state groundwater flow equation
−∇ ·

[
K̄s(~x) · (∇pw − ρw g~ez)

]
+ rw (~x) = 0 is an elliptic partial differential

equation of second order.

• To get a well posed problem either Dirichlet boundary conditions (the
pressure value is given) or Neumann boundary conditions (the flux is given)
must be specified at each boundary point.

• At one point of the boundary a Dirichlet boundary condition should be
specified (else the equation is only defined up to a constant).

• Each point in the domain is influenced by all boundary conditions.
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