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Spatial-Discretisation Methods

(Spatial) Discretisation Methods

• Partial differential equations can only be solved analytically for very special
cases with a very restricted choice of domain shapes, boundary conditions
and parameter fields.

• Approximations can be calculated with numerical methods

• Numerical methods usually yield approximations of
• the solution at certain points in space (e.g. Finite Differences)
• the solution with a parameterised function (e.g. Finite Elements,

Discontinuous Galerkin . . . )
• certain mathematical properties (mass conservation, continuity of fluxes) of

the equation (e.g. Finite Volumes, Mimetic Finite Differences)
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Spatial-Discretisation Methods Grids

Grids

• For most discretisation schemes it is necessary to partition the domain Ω into
sub-domains (elements) e with a simple geometrical structure (triangulation).

• Typical element geometries are:

1D line segments
2D triangle, quadrilateral
3D tetrahedron, cuboid, pyramid, prism, hexahedron

• All the elements together are called a grid.

• It is not always possible to fill the whole domain with elements of a simple

geometry, but there should be no holes in the grid and
n⋃

i=1

ei ≈ Ω̄
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Spatial-Discretisation Methods Grids

Characterisation of Grids

There are different varieties of grids depending on the purpose and the numerical
scheme. Grids can be

structured is constructed with regular elements from a
simple construction principle. Typical examples
are grids with rectangular elements with a
width which is

equidistant element width is hi in
dimension i ∈ {x , y , z}

tensor product element width is hi = f (xi ) in
dimension i ∈ {x , y , z}

unstructured can be composed of elements with different
geometries and shapes
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Spatial-Discretisation Methods Grids

Characterisation of Grids

There are different varieties of grids depending on the purpose and the numerical
scheme. Grids can be

conforming there are no hanging nodes, i.e. if the
intersection ei ∩ ej between two elements ei

and ej is a

• point they have a common node
• a line they have a common edge
• a surface they have a common face

non-conforming there are hanging nodes, i.e. nodes of one
element, which are not nodes of an element
with which an intersection exists
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Spatial-Discretisation Methods The Finite Difference Method

The Finite Difference Method

Basic Idea: Partial derivatives are replaced with difference quotients (Taylor series
expansion)
Let us use the one-dimensional Poisson equation as example:

−∂
2u

∂x2
= f (x) x ∈ (0, 1)

u(0) = ϕ0, u(1) = ϕ1.

We do a Taylor expansion of u(x + h):

u(x + h) = u(x) + hu′(x) +
h2

2
u′′(x + ϑ+h) ϑ+ ∈ (0, 1)

⇐⇒ u′(x) =
u(x + h)− u(x)

h
−
(

h

2
u′′(x + ϑ+h)

)
︸ ︷︷ ︸

O(h)

ϑ+ ∈ (0, 1)

This is a first order accurate approximation of the gradient of u.
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Spatial-Discretisation Methods The Finite Difference Method

Second Order Approximation

If we do an expansion up to the fourth order terms of u(x + h) and u(x − h)

u(x + h) = u(x) + hu′(x) +
h2

2
u′′(x) +

h3

6
u′′′(x) +

h4

24
u′′′′(x + ϑ+h)

u(x − h) = u(x)− hu′(x) +
h2

2
u′′(x)− h3

6
u′′′(x) +

h4

24
u′′′′(x − ϑ−h)

we get the second order accurate formula for gradient u

u(x + h)− u(x − h) = 2hu′(x) +
h3

6

{
u′′′(x + ϑ+h) + u′′′(x − ϑ−h)

}
⇐⇒ u′(x) =

u(x + h)− u(x − h)

2h
−
(

h2

12

{
u′′′(x + ϑ+h) + u′′′(x − ϑ−h)

})
︸ ︷︷ ︸

O(h2)
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Spatial-Discretisation Methods The Finite Difference Method

Second Derivative

and the second order accurate approximation of the second derivative of u:

u(x + h) + u(x − h) = 2u(x) + h2u′′(x) +
h4

24

{
u′′′′(x + ϑ+h) + u′′′′(x − ϑ−h)

}
⇐⇒ u′′(x) =

u(x − h)− 2u(x) + u(x + h)

h2
−
(

h2

24
{. . . }

)
︸ ︷︷ ︸

O(h2)
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Spatial-Discretisation Methods The Finite Difference Method

Application to one-dimensional Poisson Equation

If we insert this in our partial differential equation we get for xi = i · h

−∂
2u(xi )

∂x2
≈ −u(xi−1)− 2u(xi ) + u(xi+1)

h2
= f (xi )

one equation per grid point. Dirichlet boundary conditions can be easily
incorporated by setting u0 = ϕ0 and un = ϕ1 and bringing the corresponding
terms to the right hand side.
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Spatial-Discretisation Methods The Finite Difference Method

Application to two-dimensional Poisson Equation

In 2D the Poisson equation is

−∆u(x) = f (x)

and we get for xi = i · h and yj = j · h with

∆u(xi , yj ) ≈
u(xi−1, yj )− 2u(xi , yj ) + u(xi+1, yj )

h2
+

u(xi , yj−1)− 2u(xi , yj ) + u(xi , yj+1)

h2

for each grid point the linear equation

4u(xi , yj)− u(xi−1, yj)− u(xi+1, yj)− u(xi , yj−1)− u(xi , yj+1)

h2
= f (xi , yj)
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Spatial-Discretisation Methods The Finite Difference Method

Boundary Conditions

• Dirichlet boundary conditions can easily be integrated by rearranging the
equation systems and bringing them to the right side of the equation.

• Neumann boundary conditions are integrated by either replacing them with a
forward difference formula or by introduction of ghost nodes
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Spatial-Discretisation Methods The Finite Difference Method

Rate of Convergence

The approximation error e = ||u − uh|| of the approximated solution uh on a grid
with element width h is proportional to the size of the grid cells.

• We get a linear grid convergence if

lim
h→0

ei+1

ei
= lim

h→0

||u − uhi+1 ||
||u − uhi ||

≤ C · hi+1

hi

• We get a grid convergence of order q if

lim
h→0

ei+1

ei
= lim

h→0

||u − uhi+1 ||
||u − uhi ||

≤ C ·
(

hi+1

hi

)q

• It can be proved that the Finite Difference Method is second-order accurate
on an equidistant grid if the solution is regular enough
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Spatial-Discretisation Methods The Finite Difference Method

Properties of the Finite Difference Method

• Advantages:
• easy to formulate and implement
• well suited for structured grids

• Problems:
• Only linear convergence rate on non-equidistant grids
• What’s the value between two points?
• Representation of complex domains difficult
• In general not (locally) mass-conservative.
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Spatial-Discretisation Methods The Finite Element Method

The Finite Element Method

• A parameterised trial function y(x) is inserted in the partial differential
equation, resulting in a residual.

• The trial function is build as a sum over products of base functions times

parameters y(x) =
nP

i=1
ci · ψi (x)

• We would like to choose the parameters ci of the trial function to minimise
the error between the approximation and the correct solution. As the latter is
unknown this is not possible

• For the correct solution the partial differential equation is zero:

F

 
∂mu

∂xm
1

(~x),
∂m−1u

∂xm−1
1

(~x), . . . ,
∂mu

∂xm−1
1 ∂x2

(~x), . . . ,
∂mu

∂xm
n

(~x),
∂m−1u

∂xm−1
n

(~x), . . . , u(~x),~x

!
= 0 ∀~x ∈ Ω

(1)
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Spatial-Discretisation Methods The Finite Element Method

Weak Solution

• We demand that the partial differential equation F should only be fulfilled in
the integral over Ω. For generality we multiply F with a weighting function
w :

ZZZ
Ω

F

 
∂mu

∂xm
1

(~x),
∂m−1u

∂xm−1
1

(~x), . . . ,
∂mu

∂xm−1
1 ∂x2

(~x), . . . ,
∂mu

∂xm
n

(~x),
∂m−1u

∂xm−1
n

(~x), . . . , u(~x),~x

!
·w(~x) dV = 0

(2)

As the partial differential equation is only fulfilled ”on an average“ we call
this a weak formulation.

Olaf Ippisch (IWR) Numerical Simulation of Transport Processes in Porous Media November 3, 2009 14 / 25



Spatial-Discretisation Methods The Finite Element Method

Trial and Weighting Functions

• To reduce the computational costs and increase the flexibility, the base
functions are defined element wise, i.e. for each element there is a set of base
functions, which is different from zero on this element, but zero on all other
elements. We get:

y(x) =
∑
ei

nei∑
j=1

cei ,j · ψei ,j(x)

w(x) =
∑
ei

nei∑
j=1

φei ,j(x)

• This allows the integral over the whole domain to be replaced with a sum
over integrals over each of the elements

• Different Finite Element methods differ in the choice of the trial and weight
functions.
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Spatial-Discretisation Methods The Finite Element Method

Element-wise Formulation

• Usually the trial function on an element is parameterised with the value of
the trial function at certain positions (the nodes, additionally on edges or
faces) and the base chosen to be one at one of these positions and zero at all
others (similar to Lagrange interpolation). For a conforming grid this
guarantees a solution which is steady over element boundaries.

• The base functions are defined on a reference element and scaled to the real
geometry
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Spatial-Discretisation Methods The Finite Element Method

P1 Base Functions
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Spatial-Discretisation Methods The Finite Element Method

P2 Base Functions
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Spatial-Discretisation Methods The Finite Element Method

Example: One-dimensional Poisson Equation

−∂
2u(x)

∂x2
= f (x) in (0, 1)

with the boundary conditions u(0) = 0 and u(1) = 0

We use an equidistant grid

xi = i · h i = 0, . . . , n, h = 1
n
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Spatial-Discretisation Methods The Finite Element Method

Example: One-dimensional Poisson Equation

As base functions we use the hat functions ψi , i = 1, ..., n − 1

xi−1 xi xi+1 xi+2

ψi (x) =


x−xi−1

xi−xi−1
x ∈ (xi−1, xi )

x−xi+1

xi−xi+1
x ∈ (xi , xi+1)

0 else

with the special property:

ψi (xj) =

{
1 i = j

0 else
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Spatial-Discretisation Methods The Finite Element Method

−
∫ 1

0

∂2y

∂x2
· w dx =

∫ 1

0

f · w dx

with partial integration:

−
[
−
∫ 1

0

∂y

∂x
· ∂w

∂x
dx +

∂y

∂x
(1)w(1)− ∂y

∂x
(0)w(0)

]
=

∫ 1

0

f · w dx

as w(x) is zero at the boundary we get∫ 1

0

∂y

∂x
· ∂w

∂x
dx =

∫ 1

0

f · w dx

With y(x) =
∑

i yiψi (x) and w(x) =
∑

i ψi (x) we get on the interval for each
base function of the weighting function one line of a linear equation system:

yi−1

Z xi

xi−1

∂ψi−1

∂x
·
∂ψi

∂x
dx + yi

Z xi+1

xi−1

∂ψi

∂x
·
∂ψi

∂x
dx + yi+1

Z xi+1

xi

∂ψi+1

∂x
·
∂ψi

∂x
dx =

Z xi+1

xi−1

f · ψidx
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Spatial-Discretisation Methods The Finite Element Method

The integrals can be evaluated to:

∫
ψiψk =



xi∫
xi−h

1
h ·

1
hdx +

xi +h∫
xi

(− 1
h ) · (− 1

h )dx = 1
h + 1

h = 2
h k = i

xi +h∫
xi

(− 1
h ) · 1

hdx = − 1
h k = i ± 1

xi xi+1

0 else

If we integrate the right hand side with the trapezoidal rule we get∫ xi+1

xi−1

f · ψidx ≈ h · ( 1

6
fi−1 +

2

3
fi +

1

6
fi+1)

and finally the linear equation

1

h
(−yi−1 + 2yi − yi+1) = h · ( 1

6
fi−1 +

2

3
fi +

1

6
fi+1)
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Spatial-Discretisation Methods The Finite Element Method

Boundary Conditions and Convergence Rate

• Dirichlet boundary conditions can be directly incorporated into the trial
functions.

• Neumann boundary conditions are handled in the integrals.

• Convergence order depends on the choice of weight and trial functions.
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Spatial-Discretisation Methods The Finite Element Method

Properties of the Finite Element Method

• Advantages:
• can be used for domains with complicated shape
• yields function values everywhere
• well suited for unstructured grids
• local adaptivity possible

• Problems:
• grid generation can be complicated (must often fullfill certain conditions)
• more computationally expensive for simple problems
• not always (locally) mass-conservative
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Spatial-Discretisation Methods The Finite Element Method

Comparison of one-dimensional Finite Differences and
Finite Element Equation

−u(xi−1)− 2u(xi ) + u(xi+1)

h2
= f (xi )

1

h
(−yi−1 + 2yi − yi+1) = h · ( 1

6
fi−1 +

2

3
fi +

1

6
fi+1)
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