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Spatial-Discretisation Methods Cell-Centred Finite-Volume Method

Cell-Centred Finite-Volume Method

We want to discretise the steady-state ground-water equation
V-dw(X)+r(X)=0

with

Jy = _Ks()?)va
with the Cell-Centred Finite-Volume method.
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Spatial-Discretisation Methods Cell-Centred Finite-Volume Method

Divide Domain into Grid Cells

First we divide grid into rectangular grid cells gj;
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Spatial-Discretisation Methods Cell-Centred Finite-Volume Method

Transformation of Volume Integral into Boundary Integra:#

We demand that the integral of the partial differential equation over each grid cell
is fulfilled:

/V~jw dxdy:/r(f() dx dy

8ij 8ij

and use the Satz of Gauss to transform the volume integral over the divergence of
the flux into a boundary integral over the flux normal to the boundary:

—

= Jw-iids= [ r(X) dxd
. [ 1) axay
Satz of Gaussjg; gi
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Inner Grid Cell
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Spatial-Discretisation Methods Cell-Centred Finite-Volume Method

Finite Volume Discretisation: Split into Sum over Faces :ﬂ#

For our rectangular cell, we can split the integral over the boundary of the cell
into integrals over each face

/j Z/ ds+Z/

dgj =i=40. 5F |=j+0. 5¢
ij

and approximate the integral over each face with the Midpoint rule
\%,/ Z JW()_(’kJ) A v + Z X’ I \h,/
Midpointrule k=i+0.5 Face Area  /=j£0.5 Face Area

If the permeability is a diagonal matrix the flux over a face depends only on the
gradient in the normal direction
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Spatial-Discretisation Methods Cell-Centred Finite-Volume Method

Finite Volume Discretisation: Insert Flux law

The multiplication with the (normalised) normal vector only influences the sign of
the flux integral

S JuFg) doh+ D Ju(%) o=

K=i+0.5 I=j10.5
- op,
Ko (X 05:) - =2 (X 05)- (=1) -h
(Xi—0.5.7) ax( 05) - (=1)
from ny,
- op,
_Kxx(Xi+0.5,j)'g( it05)- (1) -h
f
o op,.
~Ky(Rij-0s) - 5 (Kij-0s) - (-1) -h
——
from ny
op

Ky (Rigros) - oo (Fagros) - (1) h

from n,

Olaf Ippisch (IWR) Numerical Simulation of Transport Processes in Porous November 3, 2009 7/

28



Spatial-Discretisation Methods Cell-Centred Finite-Volume Method

Finite Volume Discretisation: Approximate Derivatives :ﬂ#

The gradient at the face midpoint is approximated by a central difference quotient

S p(Xij) — p(Xi-1;)
~ + K (Xi—0.5,) - L p 22 h

approx.Derivative

piiny) — ()

—K(Xito5,;) - p
S Xij) — p(Xij—
+Kyy (Xij—05) - p%1) hp( )
S Xij+1) — p(Xi
—Kyy (Xij+o5) - ol 7J+1)h p(%s) ~h

/ 28
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Spatial-Discretisation Methods Cell-Centred Finite-Volume Method

Finite Volume Discretisation: Approximate Derivatives :ﬂ#

The integration of the source/sink term is also done with the midpoint rule:

/r(?)dx dy ~ h*r(%:))

&ij

Olaf Ippisch (IWR) Numerical Simulation of Transport Processes in Porous November 3, 2009 9/28



Spatial-Discretisation Methods Cell-Centred Finite-Volume Method

Matrix Contribution of each Grid Cell

We get one line of a linear equation system for each grid cell:

— K (Xi—0.5,j) * pi—1,j — Kx(Xit0.5,5) * Pit1,j
—Kyy(Xij—05) - pij—1 — Ky (X j+0.5) - pij1
+ [Ka(Fim057) + Ko (Ki057) + Ky (% j-05) + Ky (Kijsos)] - prj = h*r(%))
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Spatial-Discretisation Methods Cell-Centred Finite-Volume Method

Dirichlet Boundary Conditions

Let us assume that at x = 0 there is a Dirichlet boundary:

X,
m h/2

h

The derivative between the face midpoint and the element midpoint can be
approximated by a difference quotient (only first order):

op,_
P(%0sg) ~

Ox

p(%0.)) — pa(0, ;)
h/2
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Spatial-Discretisation Methods Cell-Centred Finite-Volume Method

Matrix Contribution at Dirichlet Boundary x =0

The constant term — K. (Xi—0.5,;) - pa(0,y;j) is brought to the right-hand side of
the equation:

—Kx(Xiv0.5,7) - Pi+1,j
—Kyy (Xij—05) - pij—1 — Ky (Xijro5) - pij
+ 2K« (Xi—0.5,;) + K (Xit0.5,5)

+Ky (%ij-05) + Ky (Fijeos)] - piy = hr(%ig) + 2K (%i-0.5) - pa(0, %))
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Spatial-Discretisation Methods Cell-Centred Finite-Volume Method

Neumann Boundary Conditions

To integrate Neumann boundary conditions we go back to the point before the
integration of the face fluxes with the midpoint rule. For each face we had to
determine

At a Neumann boundary J,, - 7i is given directly by the boundary condition on(X),
we can therefore use

Fu Midpointrule

at each Neumann boundary.
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Spatial-Discretisation Methods Cell-Centred Finite-Volume Method

Matrix Contribution at Neumann Boundary x = 0

We transfer the constant term h - ¢n(X_o.5) to the right hand side:
— K (Xi40.5,5) * Pit1j

=Ky (Xij-05) - pij—1 — Ky (Xij+05) - pijrt
+ [Ka(Fir05)) + Ky (Rij-05) + Ky (% jros) - pij = hr(%) —h-¢n(Z0s,)
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Different Grid Spacing in x and y direction

If the grid spacing in x and y direction is different, the h factors do not clear:

h - o
—Fy (K (Xic05,5) * pi—1,j — Kx(Xit0.5,f) - pit1,j)
hx - -
— 5 (Ky(Xij-0s) - pij—1 = Kyy(Xij+05) - pij+1)
y

h o .
+ hy (K (Xi—0.5,5) + Kx(Xit0.5,7))

hy . . N
+ o (Kyy(%ij—0.5) + Ky (Rij405))| - piy =  hxhyr(%))
y
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Example: 3 x 3 Grid

Let us perform a Finite-Volume discretisation of the stead-state groundwater
equation on a 3 x 3 grid with a homogeneous permeability field and Dirichlet
boundary condition on the north and south side and no-flux boundary conditions
at the left and right:

dirichlet north

6 |7 | 8

noflux| 3 | 4 | 5 [noflux K(;):(’g 2)

o 1 2

dirichlet south
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Spatial-Discretisation Methods Cell-Centred Finite-Volume Method

Example: 3 x 3 Grid

dirichlet north
6 |7 |8

noflux| 3 | 4 | 5 [noflux

0 |1 2

dirichlet south
The resulting linear equation system is:
2Kpq,

4K  —K -K 0 0

0 0 0 0 Po south
-K 5K —-K 0 -K 0 0 0 0 P Pdotn
0 —-K 4K 0 0 —-K 0 0 0 P2 Pd_uen
—K 0 3K -K 0 -K 0 0 ps
0 —-K 0 —K 4K —-K 0 -K 0 ps | = 0
0 0 -K 0 -K 3k 0 0 -K ps 0
0 0 0 —-K 0 0 4K -K 0 Ps 2Kpg, o1
0 0 0 0 -K 0 -K 5K -K pr 2Kpg, o h
0 0 0 0 0 -K 0 -K 4K ps oo
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Spatial-Discretisation Methods Cell-Centred Finite-Volume Method

Effective Permeability

We assume that the permeability is a diagonal Tensor, which is depending on the
position, but constant on each grid cell gj;.

We need to evaluate K at the cell boundaries xj+¢.5,+0.5.

What is the correct value of K if it is not homogeneous but element-wise constant?
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Spatial-Discretisation Methods Cell-Centred Finite-Volume Method

1D-Example

The steady-state groundwater flow equation is:

K(x)

dJ, o
K—Omﬂ—(o,é) ‘
length b
dp ’
Jv = =K
v (x )dx
with the Dirichlet boundary conditions
p(0) = po
p(l) = pe

because of % =0 in Q < J,(x) = Jo € R this means

B dp dp Jo
o = —K(x ) T dx K(x)
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Spatial-Discretisation Methods Cell-Centred Finite-Volume Method

1D-Example

By integration of both sides over the domain

o _
dx  K(x)
Z d Z 1
9P s — O oo —
@/dxdx— [P(x)lo = Pe — Po Jo/ K0 dx
0 0

we get the flux depending on the boundary conditions and the permeability
distribution:

4 pe — Po
i L dx —
0 K(x) approx.gradient

eff .permeability
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1D-Example, cell-wise constant Permeability

If we divide the domain into two halves with constant permeability

ifK(x)_{ K. s

ISIESNIEN

0
we can perform the integration and get the effective permeability

4 L 2
Keff = = 1 = 1 1

¢
bf K(lx) dx

We therefore choose for cell-wise constant permeabilities the harmonic mean

. 2
K(Xit0s5,)) = #
K(; ) K(Xi+1 J)
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Finite-Volume Method for tensor-product Grids

_2hyijx()?i—0.5,j) . o 2hyijx()?i+0.5,j) . )
by thg  PTHT Thoh, P
2th Kyy()_(},j—O»5) 2th Kyy()_(’i,j+045)
- . pij 1 — — " Pijt1
hy,_; + hy, hy; + by,
2hy K (Xiz0.57)  2hy, Kax(Xito.5,5)
hg_y + hy h + by s
2h Ky (Xij—05) | 2hx Ky (Xijr05) P = hohyr(%))
hy,_, + hy, hy, + hy,,,
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Complexer Grids with Cell-Centred Finite Volumes

With the Cell-Centred Finite Volume Method it is also possible to use some kind
of unstructured grids:

Nested Grids Voronoi Grids
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Spatial-Discretisation Methods Cell-Centred Finite-Volume Method

Summary Cell-Centred Finite-Volume Method

e Only the integral of the partial differential equation over each grid cell must
fullfill the equation.

e Implementation of Dirichlet Boundary and Neumann Boundary conditions
straight forward

e Structured and unstructured grids possible

e Dirichlet boundary conditions can easily be integrated by rearranging the
equation systems and bringing them to the right side of the equation.

e Neumann boundary conditions can easily be integrated in the flux integrals
e Convergence order can differ dependent on the concrete method.
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Spatial-Discretisation Methods Cell-Centred Finite-Volume Method

Properties of the Cell-Centred Finite-Volume Method :ﬂ#

e Advantages:

well suited for structured grids

locally mass conservative

good approximation of average permeability
limited variety of unstructured grids possible
limited local adaptivity possible

cheap for simple problems

e Problems:

e Only linear convergence rate on non-equidistant grids
e grid generation can be complicated (must fulfil rather strong conditions)
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Spatial-Discretisation Methods = Vertex-Centred Finite-Volume Method

The Vertex-Centred Finite-Volume Method

e The unknowns are located at the edges of the elements (vertices)

e Base functions are used on each element, which are parameterised with the
values at the vertices

e A secondary mesh is constructed connecting the face centres and the
barycenter of the element

e The flux balance is not calculated over the original grid, but over the
secondary mesh, the elements of the secondary mesh are called
control-volumes, the parts of a control volume belonging to a specific
element of the primary mesh are called subcontrol-volumes.
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Spatial-Discretisation Methods = Vertex-Centred Finite-Volume Method

The Vertex-Centred Finite-Volume Method (2)

nt¢

i
) V;;T’f‘u

element element g
e Material properties are assumed to be constant for each element
e The volume integrals are calculated as a sum over the subcontrol-volumes
using the midpoint rule and the material properties valid for the specific
control-volume. > b¥ - rk
i

e The face integrals are calculated as a sum over all subcontrol-volume faces
with the midpoint rule Z’yl’J‘Jk ik
ij
e The gradient at the face centres is given by the base functions.
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Properties of the Vertex-Centred Finite-Volume Method :ﬂ#

e Advantages:

e can be used for domains with complicated shape
o well suited for unstructured grids

o local adaptivity possible

e locally mass conservative

e Problems:

e grid generation can be complicated (must often fullfill certain conditions)
e more computationally expensive for simple problems
e bad approximation of average permeability
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