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1 Introduction

1.1 Subject of the Lecture

Groundwater Production

Evapotranspiration

from: V. M. Ponce: Sustainable Yield of Ground Water (http://ponce.sdsu.edu/groundwater_sustainable_yield.html)

Agriculture

Contaminated Sites and Remediation



http://ponce.sdsu.edu/groundwater_sustainable_yield.html

Geothermal Energy

from: Energy Information Administration, Geothermal Energy in the Western United States and Hawaii: Resources and Projected
Electricity Generation Supplies, DOE/EIA-0544 (Washington, DC, September 1991
(http://www.eia.doe.gov/cneaf/solar.renewables/renewable.energy.annual/backgrnd/figl9.htm)

Global Climate Prediction, Reconstruction of Paleo-Climate

Global Warming Predictions

2070-2100 Prediction
vs. 1960-1990
Average

Based on HadCM3

Temperature Increase (°C)
from: Wikipedia Commons, Author: Robert A. Rohde for Global Warming Art (http://www.globalwarmingart.com/)

Carbon Dioxide Sequestration

Carbon dioxide uptake by forests,
: biomass plantatons and degraded

mine lands that are restored
Dispersed CO: p

Capture and
eparation

Carbon-based
production
(e.qg. fuels, power, [
wood, plastics)

Coal bed
methane

formations Depleted oil

Geological gas reservoirs
formations

Deep aquifer

from: Wikipedia Commons, Authors: LeJean Hardin and Jamie Payne
(http://http://www.ornl.gov/info/ornlreview/v33_2_00/research.htm)


http://www.eia.doe.gov/cneaf/solar.renewables/renewable.energy.annual/backgrnd/fig19.htm
http://www.globalwarmingart.com/
http://http://www.ornl.gov/info/ornlreview/v33_2_00/research.htm

Catalyst Research, Fuel Cells

Anode | Cathode Nﬁ%% SF

Electrolyte
H - 2Ht + 2 Q + 4H' + 4¢ > 2HO

from: Wikipedia Commons, Author: HandigeHarry

Transport in Brain Tissue

from: Wikipedia Commons, Author: Woutergroen
e Introduction to the physics of transport in porous media

e Learning the necessary basics on

— Discretisation of partial differential equations, in particular the Finite-Volume method
— Iterative solution of linear equation systems

— Time discretisation

— Solution of non-linear partial differential equations

— Bottom-up implementation of numeric solvers

e Aims:

— Get an insight in the operation of simulation programs
— Get a better understanding for the behaviour of existing solvers for partial differen-
tial equations

— Get a better understanding for the possible phenomena occuring in porous media
flow



Prerequisites
For the lecture

e Basic knowledge of numerical mathematics

e Basic knowledge about partial differential equations

For the exercises
e Basic knowledge of object-oriented programming with C++ (Infol lecture)

e Readiness to do some programming in the exercises

Topics
e (lassification of partial differential equations
e Spatial discretization methods
e Finite-Volumen methods
e Iterative solvers
e Groundwater flow / elliptic PDE
e Heat conduction / parabolic PDE

e Solute transport / hyperbolic PDE

— Particle Tracking
— Higher-order methods
— Solute sorption

e Solution of non-linear equations

e Water transport in unsaturated porous media

1.2 Example Problem: Groundwater Contamination Problem

The detection of a groundwater contamination is a typical example for the relevance of trans-
port in porous media.
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The water in several wells is contaminated with a soluble substance.
We know that there was an accident in a factory where the same substance was released to
the groundwater.
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e Does this explain all the contamination?
e Can we reproduce the measurements?

e [s there another source involved?



What do we have to do to solve this problem?

e Compute the flow field for groundwater
e Determine the amount of contamination from the factory
e Solve solute transport problem

e Compare measurements at wells with the result



2 Groundwater Flow

Groundwater is subsurface water in a region where all pores are completely waterfilled. The
flow of groundwater is influenced by the vertical inflow of water (groundwater recharge), the
topography, and the geology of the aquifer.

Groundwater recharge depends on precipitation, evaporation of water directly from the soil,
transpiration by plants and surface runoff.
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Figure 1: Schematic representation of a river catchment (from: Environmental Systems - An
introductory text, I. D. White, D. N. Mottershead, S. J. Harrison, 2nd edition, Chapman &
Hall).

Heterogeneity
The properties of a porous medium can depend on the position. This is called Heterogeneity
and can be found on all scales from pore scale to regional scale.

Anisotropy

Natural porous media are also often anisotrope, i.e. their properties depend on the direction
of flow. This can be due to geology but also caused by fractures or the compaction of regions
close to the surface (e.g. plough pans)

Continuum approach

At pore scale the flux laws are well known (Navier-Stokes equations) but the pore geometry
can neither be measured well enough, nor would it be possible to process the enormous amount
of data which is necessary to simulate flow in a larger region.

For a locally sufficiently homogeneous porous medium it is possible to formulate a macro-
scopic equation at the continuum scale. The pore geometry is taken into account as a equivalent
effective conductivity (similar to the transition form molecular description of a gas to the ideal
gas law). This involves an averaging which should preserve the effective macroscopic behaviour
(Figure {4)).

10



Figure 2: Heterogeneity of a natural porous medium at different scales (from: K. Roth (2005),
Soil Physics - Lecture Notes v1.0, Institut fiir Umweltphysik, Universitdt Heidelberg)
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Figure 3: Natural porous media are often anisotrope (different permeability in different direc-
tions of flow) (from: K. Roth (2005), Soil Physics - Lecture Notes v1.0, Institut fiir Umwelt-
physik, Universitat Heidelberg)

mikroskopisch makroskopisch

WV
dA

Figure 4: Transition from pore scale to continuum scale with averaged properties (from: K.
Roth (2005), Soil Physics - Lecture Notes v1.0, Institut fiir Umweltphysik, Universitat Heidel-
berg)
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Darcy Equation

Such a flux law was proposed for the first time by Henry Dary in 1856 (H. Darcy: Les
Fontaines de la Ville de Dijon, Dalmont, Paris). According to Darcy’s law the volumetric flux
through a porous medium is proportional to the applied pressure gradient. The constant of
proportionality is characteristic for the material and is called saturated hydraulic conductivity.

Apy,
Jp=—-K;  ——
w S A;C
for Ax — 0 5
Ju =K 5
in three dimensions:
Opw
N ]
Jy = —Ks - @L; =—Ks - Vpy
Opw
0z

Mass Conservation

The total mass has to be locally preserved during a transport process. The mass balance
over a control volume of soil therefore has to add up. Components of the mass balance are the
fluxes over the sides of the control volume, the change of water storage in the control volume
and the water extraction or induction due to e.g. roots or wells (Figure [5).

Transport Equation
The combination of Darcy’s equation and mass balance yields the transport equation:

90(7)
ot

+V - J(@) + (@) = 0

P04V [Eo@) Tpa] +ruld) = 0
PAL) 9 [Bo(@) Tpa] +rul@) = 0

The inclusion of gravity results in an additional driving force in vertical direction:

90()
ot

-V [Ks(f) : (va - ngé’z)} + Tw(f) =0

In steady-state or if the water storage does not depend on the pressure, the time depend
terms vanish and the equations simplifies to:

-V [f(s(f) (Vpw — pwgé'z)} +7rw(@) =0
Summary: Groundwater Flow

e Groundwater flow can be described by Darcy’s Law J, = —K;Vp, and the continuity
. 90(Z) > o
equation =5~ + V - Jy, (T) + ry(Z) = 0.

13



Water Extraction Rate
rw(z,y, 2, t) ArAyAz

Water Outflow Rate
Jw(x,y, 2z + Az, t)AzAy
Plant

Flow Area A = Az Ay
root

Soil Water Storage
L~ 0(z,y,z,t) AxAyAz

Water Inflow Rate
Jw(ﬂf7 Y, %2, t)A.fAy

Figure 5: Mass balance for a cubic control volume (according to W. A. Jury, R. Horton (2004):
Soil Physics, 6th ed, Wiley & Sons, New Jersey)
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Gravity results in an addition driving force —p,,g€,:

90()
ot

-V [Ks(f) ) (va - pwggz)] + Tw(f) =0

Heterogeneity is considered by different values of K at different positions of Z
Anisotropy is considered by using a tensor K, instead of a scalar

In steady state the flux equation is given by:

-V [Rs(f) : (va - ngéz)] + Tw(f) =0

15



3 Partial Differential Equations

A partial differential equation

e determines a function u(Z) in n > 2 variables ¥ = (z1,...,2,)".

e is a functional relation between partial derivatives (to more than one variable) of u at

one point.
In general:
oMy omly oMy o™y omly
), &),...,—0 " (7 C %@, @), w@),F) =0 YE€Q 1
<6x§”( ) (%;n,l( ax’f“*lam( ) BI#( ) 3 2”71( ) () > (1
Important:

e The highest derivative m determines the order of a PDE
PDE’s are not posed on the whole R™ but on a subset of R”.

Definition 3.1 (Domain). Q2 C R" is called domain if € is open and connected.

open: For each 7 € Q there exists a B.(Z) = {7 € Q||| — ¥|| < €} such that B.(Z) C Qif € is
small enough.

connected: if Z,§ € (2, then there exists a steady curve t(s) : [0,1] — Q with ¢(0) = Z,

(1) = 7, t(s) € Q.
Q designates the closure of €, i.e. Q plus the limit values of all sequences, which can be
generated from elements of 2.
00 = O\ Q is the boundary of 2. Often additional conditions on the smoothness of the
boundary are necessary.
Finally 7(Z) is the outer unit normal at a point & € 0. O

e u: ) — Ris called a solution of a PDE if it satisfies the PDE identically for every point
Ze)

e Solutions of PDE’s are usually not unique unless additional conditions are posed. Typi-
cally these are conditions for the function values (and/or derivatives) at the boundary

e A PDE is well posed if the solution

— exists
— is unique (with appropriate boundary conditions)
— depends continuously on the data.

Linear partial PDE’s of second order are a case of specific interest. For 2 dimensions and
order m = 2 the general equation is:
2 2 2
u 0u 0°u
a(z,y) 55 (2,y) + 2b(z, y)iaxay (z,y) + c(z, y)fayg (z,9)

ou %

+d(x7y)7(xay) + €($,y) By (xvy) + f(xv y)u(m,y)

ox
+g(z,y) =0

At a point (z,y) a PDE can be classified according to the first three terms (main part) into

16



elliptic if det (¢°) = a(z,y)c(z,y) — b*(z,y) >0
hyperbolic if det (¢ %) = a(z,y)c(z,y) — b*(z,y) <0

parabolic if det (¢ °) = a(z,y)c(z,y) — b*(z,y) = 0 and Rank [ Z l; Cel ] =2in (z,y)
The general linear PDE of 2nd order in n space dimensions is:

n

Zaw xlaxjquZal )0z, 0+ ap(Z)u = f(Z) in Q.

3,j=1

main part

without loss of generality one can set a;; = aj. With (A(Z));; = a;;(Z) the PDE is at a
point ¥

elliptic if all eigenvalues of A(Z) have identical sign and no eigenvalue is zero.

hyperbolic if (n — 1) eigenvalues have identical sign, one eigenvalue the opposite sign and no
eigenvalue is zero.

—

parabolic if one eigenvalue is zero, all other eigenvalues have identical sign and the Rank[A(Z), a(Z)] =
n.

O

e Why this classification? Different solution techniques are necessary for the different types
of PDE’s.

e The described classification is complete for linear PDE’s with n = m = 2. In higher
space dimensions the classification is no longer complete.

e The type is invariant under coordinate transformation £ = £(z,y), n = n(x,y) and
u(z,y) = a(&(x,y),n(x,y)), which yields a new PDE for (€, n) with the coefficients @, b,
etc.. If the equation for u in (x,y) has the type ¢ than @ in (£(x,y),n(x,y)) has the same

type.
e The type can vary at different points (but not in our applications).

e The type is only determined by the main part of the PDE (except for parabolic equations).

e Pathological cases like 2 6902 + &C = 0;u(x,y) = 0 are avoided.

Definition 3.2. A linear PDE of 2nd order is called elliptic (hyperbolic, parabolic) in € if it
is elliptic (hyperbolic, parabolic) for all points (z,y) € . O

17



Classification for first-order PDE’s
Definition 3.3. An equation of the form

du

d(z, y)%(w, y) +e(z,y) By (z,y) + f(@,y)u(z,y) + g(z,y) =0

Ox
is called hyperbolic if |d(z,y)| + |e(z,y)] > 0 V(z,y) € Q (else it is an ordinary differential
equation). For n > 2 the equation v(Z) - Vu(¥) + f(Z)u(Z) + g(Z) = 0 is called hyperbolic. [

In this lecture we only cover scalar PDE’s. Systems of PDE’s contain several unknown
functions uq, ..., u, : 2 — R and n PDE’s. There is also a classification system for systems of
PDE’s.

3.1 Examples for PDE types
Poisson-Equation

0%u 0%u
is called Poisson-Equation.

This is the prototype of an elliptic PDE. The solution of equation is not unique. If
u(x,y) is a solution, then e.g. u(x,y) + ¢1 + cox + c3y is also a solution for arbitrary values of
1, ¢2,c3. To get a unique solution u values at the boundary have to be specified (we therefore
call this a “boundary value problem”).

Two types of boundary values are common:

1. u(z,y) = g(z,y) for (z,y) € T'p C 09 (Dirichlet)),

2. %(%y) = h(z,y) for (z,y) € I'n C 00 (Neuman flux),

and I'p UT'y = 99. It is also important that 'y # 952, as else the solution is only defined up
to a constant.

Complete Poissan-Equation

(0,1) FD }
Y ' Pu  0%u i
@ + 8y2 = f in Q)
L Q Ly u=gonI'p CIN
. : gu:honPN:(‘)Q\FD;«EQQ
0,00 Ty Tp1,00 Y
Generalisation to n space dimensions:
n_ 92
8—2 = Au= fin Q
P Ox;

u=gonIpCoN
Vu-v=honI'y=900\Tp
This equation is also called elliptic. If f = 0 it is called Laplace-Equation. O

!Peter Gustav Lejeune Dirichlet, 1805-1859, German Mathematician.
2John von Neumann, 1903-1957, Austro-Hungarian Mathematician

18



General Diffusion Equation

K : R" — R™™" is a map, which relates to each point & € Q a n x n matrix K ().
We demand also (for all # € Q) that K(&)

1. K(¥) = KY(%) and ¢TK(%)€ >0 V€ € R, € # 0 (symmetric positive definite),

2. C(Z) := min {STK(f)f) €]l = 1} > Cp > 0 (uniform ellipticity).

V. {K(f)Vu(f)} — finQ
u=gonlIpCoN (3)
—(K(a‘:’)Vu(f)) v(@) =hon Ty = 00\ T'p # 99

is then called General Diffusion Equation (e.g. groundwater flow equation).

For strongly varying K equation can be very difficult to solve.

O
Wave-Equation
The prototype of a hyperbolic equation of second order is the Wave-Equation:
0%u 0%u .
w(m,y)fa—yQ(az,y):O inQ . (4)
Possible boundary values for a domain Q = (0,1)? are e.g.:
z € [0,1]:
a) u(z,0) = uo(x) v :
ou 0.1) " nothing! ,
b) ——(z,0) = u1(z) T ‘
dy
u u
y € [0 1]. Compatibility c) Q d)
T of the
boundary ,
c) u(0,y) = go(y) values for u, (0.0)u and %(]5 0) ‘
d) u(1,y) = q1(y) %! a) +b)  Two initial values as

32u|
oy?

One direction (here y, usually the time) is special. a) + b) are called initial values and c)
+ d) boundary values (the boundary values can also be Neumann boundary conditions). It is
not possible to prescribe values at the whole boundary (the future)! ]

Heat-Equation

19



)

nothing
The prototype of a parabolic equation is the heat equation: u u
9 or Q or
0“u ou gu u
—(z,y) — —(x,y) =0 in Q. o= oe
52 (Lo Y) ay( y) .

u
only one boundary value
as PDE is first order in y

For a domain §2 = (0, 1)? typical boundary values are (with x € [0,1],y € [0, 1]):
u(z,0) = up(x)
ou
u(0,y) = go(y) or %(an) = ho(y)

u(l,9) = g1(y) or 5 (1,4) = ()

Transport-Equation
IfQCR"v:Q— R"is a given vector field, the equation

V- {u@u(@} = f(7) 0

is called stationary transport equation and
is a hyperbolic PDE of first order.

Possible boundary values are »Inflow boundary

,Outflow boundary“
— no boundary
9(%) value

for & € 0Q with v(Z) - v(¥) < 0 (Boundary value depends on the flux field)
%—;‘ + V -A{v(@, t)u(Z, t)} = f(Z,t) is also a hyperbolic PDE of first order.

3.2 Sphere of Influence
The type of a partial differential equation can also be illustrated with the following question:

Given & € Q. Which initial/boundary values influence the solution u at the point
z?

Elliptic uz; +uyy =0
v\v

0§) = Change in u(%).

8

20
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Parabolic u;,; — Uy = 0 Note: The — is crucial, + is parabolic according to the definition
but it is not well posed (stable)

L (=zy) | for (x,y) all (2/,y") with ¢y’ <y influence the value at Z.
% 7 ,infinite velocity of propagation*

/////////////////////

Hyperbolic (2nd order) u,; — uyy =0

3 Solution at (z,y) is influenced by all boundary values below
‘ the cone
slope Htc
:L‘,
( ﬁ? {@y) | v<@-2)-cty

;,‘/\’: A y/ < (x—x’)c+y} G0

;
Z
2

»finite velocity of propagation*

Hyperbolic (1st order) u, +u, =0
y

L7 ’U(f)

/‘f/ Only one boundary point influences the value.
A

e The steady-state groundwater flow equation —V - [f(s(a_c’) (Vpy — pwgé'z)] + ry(Z) =0
is an elliptic partial differential equation of second order.

e To get a well posed problem either Dirichlet boundary conditions (the pressure value is
given) or Neumann boundary conditions (the flux is given) must be specified at each
boundary point.

e At one point of the boundary a Dirichlet boundary condition should be specified (else
the equation is only defined up to a constant).

e Each point in the domain is influenced by all boundary conditions.

21



4 Spatial-Discretisation Methods

e Partial differential equations can only be solved analytically for very special cases with
a very restricted choice of domain shapes, boundary conditions and parameter fields.

e Approximations can be calculated with numerical methods

e Numerical methods usually yield approximations of

— the solution at certain points in space (e.g. Finite Differences)

— the solution with a parameterised function (e.g. Finite Elements, Discontinuous
Galerkin ... )

— certain mathematical properties (mass conservation, continuity of fluxes) of the
equation (e.g. Finite Volumes, Mimetic Finite Differences)

4.1 Grids

e For most discretisation schemes it is necessary to partition the domain € into sub-domains
(elements) e with a simple geometrical structure (triangulation).
e Typical element geometries are:

1D line segments
2D triangle, quadrilateral
3D tetrahedron, cuboid, pyramid, prism, hexahedron

e All the elements together are called a grid.

e It is not always possible to fill the whole domain with elements of a simple geometry, but

there should be no holes in the grid and |J e; ~ Q
=1

1=

There are different varieties of grids depending on the purpose and the numerical scheme.
Grids can be

structured is constructed with regular elements from a simple construction principle. Typical
examples are grids with rectangular elements with a width which is

equidistant element width is h; in dimension i € {z,y, 2}
tensor product element width is h; = f(z;) in dimension i € {z,y, z}

unstructured can be composed of elements with different geometries and shapes

conforming there are no hanging nodes, i.e. if the intersection e; N e; between two elements
e; and e; is a
e point they have a common node
e a line they have a common edge
e a surface they have a common face

non-conforming there are hanging nodes, i.e. nodes of one element, which are not nodes of
an element with which an intersection exists
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Figure 6: Structured (tensor-product) grid (left) and unstructured grid (right).

Figure 7: Conforming grid (left) and non-conforming grid (right).

4.2 The Finite Difference Method

Basic Idea: Partial derivatives are replaced with difference quotients (Taylor series expansion)
Let us use the one-dimensional Poisson equation as example:

g:j = f(z) ze(0,1)

u(0) = o, u(l)= 1.

We do a Taylor expansion of u(x + h):

u(x + h) = u(z) + h'(z) + h;u"(x +9%h) 9t € (0,1)
— (z) = u(x + hli —u(x) <;Lu//(l_ +19+h)> gt € (0,1)
o(h)
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This is a first order accurate approximation of the gradient of w.
If we do an expansion up to the fourth order terms of u(z + h) and u(x — h)

/ h2 " h3 n h4 " +
u(x 4+ h) =u(x) + hu (x)—l—?u (x)—l—gu (x)—i—ﬂu (x+9Y"h)
h? h3 ht
u(x — h) = u(z) — hu'(x) + ?u"(m) - Eu’”(m) + ﬁu””(:ﬂ — 9~ h)

we get the second order accurate formula for gradient «

w(x +h) —u(z — h) = 20 (z) + ig) {u"(x+9"h) + " (x — 9" h)}

u(z —u(xr — 2
( +h)2h ( h) - (?2 {u/”(x—l—ﬁ”'h)+u///(sc—79_h)}>

O(h?)

— u(x) =

and the second order accurate approximation of the second derivative of u:

w(z + h) +u(z — h) = 2u(z) + K" (z) + ;ﬁ {u" (@ + 9% h) + " (x — 9" h)}
u(x —h) — 2u(x) + u(z + h) h?
()

— u'(z) = 3

O(h2)

If we insert this in our partial differential equation we get for x; =1 - h

2u €Ty U\T;—1) — a2U(Xy u\xr;
Pl | wloin) “ 2wt butein) _ g

one equation per grid point. Dirichlet boundary conditions can be easily incorporated by
setting ug = o and u, = @1 and bringing the corresponding terms to the right hand side.

Application to two-dimensional Poisson Equation
In 2D the Poisson equation is

—Au(z) = f(z)
and we get for x; =i-h and y; = j - h with
w(xi—1,Y5) — 2u(zs, y;) + w(@ip1,y5) n (@i, Yj—1) — 2u(xi, yj) + w(@i, Yj1)
h? h?2

for each grid point the linear equation

Au(zs, y;) =

4U(l’,y) - u(x'*by.) - U(.Z"+1,y‘) - U(.ﬁU',y',l) - u(l‘.vy”rl)
v JJ % J zh2 J v JJ v ] :f(xiayj)

e Dirichlet boundary conditions can easily be integrated by rearranging the equation sys-
tems and bringing them to the right side of the equation.

e Neumann boundary conditions are integrated by either replacing them with a forward
difference formula or by introduction of ghost nodes
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Rate of Convergence
The approximation error e = ||u — uy|| of the approximated solution w, on a grid with
element width h is proportional to the size of the grid cells.

o We get a linear grid convergence if

i CFL — lim llu —up, || <C. hit1
h—0 €; h—0 ||u — up,|| hi

o We get a grid convergence of order q if

; u — up, hiv1\?
lim €i+1 — lim H hz+1H <C. i+1
h—0 €; h—0 ||u — up,|| hi

e It can be proved that the Finite Difference Method is second-order accurate on an equidis-
tant grid if the solution is regular enough

Properties of the Finite Difference Method

e Advantages:

— easy to formulate and implement
— well suited for structured grids

e Problems:

— Only linear convergence rate on non-equidistant grids
— What’s the value between two points?

— Representation of complex domains difficult

— In general not (locally) mass-conservative.

4.3 The Finite Element Method

e A parameterised trial function y(x) is inserted in the partial differential equation, result-
ing in a residual.

e The trial function is build as a sum over products of base functions times parameters

y(x) = Z::l ¢ - i)

e We would like to choose the parameters c; of the trial function to minimise the error
between the approximation and the correct solution. As the latter is unknown this is not
possible

e For the correct solution the partial differential equation is zero:

Omu . O™l o0Mu . Omu . o™y L .
F(axan(x),aacgn_l(x),...,aﬂn_law2 x),...,89621(96),axﬁ_l(x),...,u(x),:c> =0 Vie

25



e We demand that the partial differential equation F' should only be fulfilled in the integral
over ). For generality we multiply F' with a weighting function w:

///F@:;(q) O @ (3) amu(f),am;lff(f),...,u(f),f>.w(f)dv:0
Q

x), . ey
oz Oz "1y oxm " Jaiy
(6)

As the partial differential equation is only fulfilled ”"on an average“ we call this a weak
formulation.

e To reduce the computational costs and increase the flexibility, the base functions are
defined element wise, i.e. for each element there is a set of base functions, which is
different from zero on this element, but zero on all other elements. We get:

’I’Lei

y(z) = Z Z Ceirj wei,j@:)
e; j=1
w@) =33 60 s(@)
e; j=1

e This allows the integral over the whole domain to be replaced with a sum over integrals
over each of the elements

e Different Finite Element methods differ in the choice of the trial and weight functions.

e Usually the trial function on an element is parameterised with the value of the trial
function at certain positions (the nodes, additionally on edges or faces) and the base
chosen to be one at one of these positions and zero at all others (similar to Lagrange
interpolation). For a conforming grid this guarantees a solution which is steady over
element boundaries.

e The base functions are defined on a reference element and scaled to the real geometry

Example: One-dimensional Poisson Equation

82
—;;2"’”) = f(z)  in(0,1)
with the boundary conditions «(0) = 0 and u(1) =0
Weuseanequidistantgrid} % % % % % % % { z,=1-h 1=0,...,n, h:%
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Figure 8: First Order base functions on the reference element.

Figure 9: Second order base functions on the reference element.
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Example: One-dimensional Poisson Equation
As base functions we use the hat functions v;, i=1,....n—1

|
|
|
|
:
|
Ti—1 Xj Ti+l Ti42

% T € (.Cl:i_l,fl,’i)
Yi(z) = 4 o2 @ € (@4, Tiga)
0 else

with the special property:

0 else

ilzy) = {1 1=

1 92
— Oy wd:n—/ frwdr

0 (9%'2

with partial integration:

R Yoy ow dy Oy _/1
[ o c%zd +8x(1)w(1) 8x(0)w(0)] =, f-wdz
as w(x) is zero at the boundary we get
1
@ dm—/ frwdx
0 ox

With y(z) = >, vithi(x) and w(z) = ZZ Yi(z) we get on the interval for each base function
of the weighting function one line of a linear equation system:

[T i O /+ Ovi Ui /+ 01 O, /+ |
yz—l/z 97 I dr +vy - 97 D2 dr + yit1 . o7 B dz = - f-adx

i—

The integrals can be evaluated to:
( z; z;+h

J hohdet (R (Chdr=g k=G k=i
x;—h T
z;+h 1 1 1
/¢i¢k: [ (=3)pde=—3 h=ixl
0 else
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If we integrate the right hand side with the trapezoidal rule we get
Ti1 1 2 1
[ pedem b (R St )
zi—1

and finally the linear equation

1 1 2 1
E(_yi—l + 2y — yip1) = h- (gfz‘—l + §fz’ + 6fz‘+1)

e Dirichlet boundary conditions can be directly incorporated into the trial functions.
e Neumann boundary conditions are handled in the integrals.

e Convergence order depends on the choice of weight and trial functions.

Properties of the Finite Element Method

e Advantages:
— can be used for domains with complicated shape
— yields function values everywhere
— well suited for unstructured grids
— local adaptivity possible

e Problems:

— grid generation can be complicated (must often fullfill certain conditions)
— more computationally expensive for simple problems
— not always (locally) mass-conservative

Cu(mio1) — 2u(@s) + u(Tiv)

2 = f(zs)

1 1 2 1
E(_yi—l + 2y —Yiv1) = h- (gfi—l + gfi + 6fi+1)

4.4 Cell-Centred Finite-Volume Method

We want to discretise the steady-state ground-water equation

V- Jo(T) + 10 (F) = 0
with

Jw = —Ks<f)pr

with the Cell-Centred Finite-Volume method.
First we divide grid into rectangular grid cells g;;
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i1}

X415

11} [ ] ° [ ] L] ] [ ] .x; o m
35.1 4.5,1

. " . Ig4,().5

We demand that the integral of the partial differential equation over each grid cell is fulfilled:
/V-fw drdy = /r(f) dx dy
gij Gij

and use the Satz of Gauss to transform the volume integral over the divergence of the flux
into a boundary integral over the flux normal to the boundary:

~~
Satzof Gaussagij gij

= /jwﬁ d.S:/r(f) dx dy

Let us look at an inner grid cell:

[ )

@j+1)
()
I\

A

0.5

44+0.5) Fiiosj

() ()
0 0
° - ° i N °
(i-1,j) (i-0.5,)) (i) (i+0§5.5) (+1)

105
')
[ ]

@ij-1)
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For our rectangular cell, we can split the integral over the boundary of the cell into integrals
over each face

0gij
and approximate the integral over each face with the Midpoint rule

NP Y Jw(@rg) it o+ Y Ju(@) it b
Midpointrule k=i£0.5 Face Area  1=j+0.5 Face Area

If the permeability is a diagonal matrix the flux over a face depends only on the gradient in

the normal direction
Ju(T) = — — . T
@=-(2"7 %o ( %7

The multiplication with the (normalised) normal vector only influences the sign of the flux
integral

ZJ nh—i—ZJ h=

=1£0.5 l=j+0.5

. dp ,
— Koo (Zi05,5) - %(%‘—0.573’) - (=1) -h

from ngy

. op ,
—Kyx(Tito05,5) - %(%‘Jro.aj) - (1) -k

from ngy
S op,
—Kyy(%ij-05) - %(ﬂcz’,j—o.ks) - (=1) -h
from ny
S op,
—Kyy(Fij+05) - %(%,jw.s) - (1) b
from mny,

The gradient at the face midpoint is approximated by a central difference quotient

p(&iy) — p(Ti-14) L
h

K + Ko (Ti—05) -
approx.Derivative
p(Fitry) —p(@ig)
h
p(Zi;) — p(Tij-1) h
h
. pf’ 1 _pf’
—Kyy(Zij+05) - Eige )h (i) ),

— K2 (Zigo05,5) -

+Kyy(Tij-05) -

The integration of the source/sink term is also done with the midpoint rule:

/r(:f)daz dy ~ h2r(fi7j)

9ij
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We get one line of a linear equation system for each grid cell:

— K2 (Zi—05,5) - Pi-1,j — Kox(Tito5,5) * Pit1,
—Kyy(Zij-05) * Pij—1 — Kyy(Tij+05) - Pij1
+ (K (Tim05,7) + Koo (Tivos,;) + Kyy(Tij—o05) + Kyy(Fijros)] iy = hPr(Tiy)

Dirichlet Boundary Conditions
Let us assume that at = 0 there is a Dirichlet boundary:

X 0,
m h/2 °

h

The derivative between the face midpoint and the element midpoint can be approximated
by a difference quotient (only first order):

op,_, Zo.5) — pa(0,y;
7p($_0.57j)%p( OJ) pd( y])

ox h/2
The constant term — K, (Zi—0.5,;) - pa(0, y;) is brought to the right-hand side of the equation:

— K2 (Zit05,5) - Pit1,j

_Kyy(fz‘,j—o.&')) "Pigj—1 — Kyy(fz',j+0.5) *Pij+1

+ 2K (Tim0.5,5) + Koz (ZTitos,5)
+Kyy(Tij—05) + Kyy(Tijr05)] - piy = hr(Tiy) + 2Kee(Fizo.5,5) - pa(0,y;)

Neumann Boundary Conditions
To integrate Neumann boundary conditions we go back to the point before the integration
of the face fluxes with the midpoint rule. For each face we had to determine

/jw-ﬁ ds
F

At a Neumann boundary Jy - 7 is given directly by the boundary condition ¢, (Z), we can
therefore use
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/Jw-ﬁds N b7
Fy Midpointrule

at each Neumann boundary.
We transfer the constant term h - ¢ (Z_o.5;) to the right hand side:

— Koo (Tiv05,) - Pit1,
—Kyy(Zij—05) - Pij—1 — Kyy(Tij+05) - Pij+1
+ (Ko (Tivos,5) + Kyy(Fij-o05) + Kyy(Tijros) - pij = Br(Eij) —h- on(F-05;)

Different Grid Spacing in x and y direction
If the grid spacing in x and y direction is different, the h factors do not clear:
hy » L
5 (K2 (Zi—05,) - Pi-1,j — Kea(Tivo5,5) - Pig1,5)
xX
h . .
== (Byy(@ij-05)  Pij-1 = Kyy(Fijr05) - Pig1)
Y
hy

ke

(K2 (Zi—05,5) + Koz (Zivo5,5))

h . . -
+f(Kyy(mi,j—0.5)+Kyy(wi,j+0.5)) Pij = haohyr(Zi;)
Y

Example: 3 x 3 Grid

Let us perform a Finite-Volume discretisation of the stead-state groundwater equation on
a 3 x 3 grid with a homogeneous permeability field and Dirichlet boundary condition on the
north and south side and no-flux boundary conditions at the left and right:

dirichlet north

6 |7 8

noflux | 3 4 5 noflux

o 1 2

dirichlet south
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The resulting linear equation system is:

4K

-K
0

-K

[ el e N

-K
5K
-K
0
-K

(el e R e an)

0
-K
4K

-K
0
—-K
4K
—-K
0
—-K
0
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-K
5K

[ el )

-K
4K

Po
p1
p2
p3
b4
Pps
Pe
p7
ps

2Kpg

south

QKpd
2Kpg
2Kpg

north
north

north



Effective Permeability

We assume that the permeability is a diagonal Tensor, which is depending on the position,
but constant on each grid cell g;;.

We need to evaluate K at the cell boundaries ;+0.5 j+0.5-

What is the correct value of K if it is not homogeneous but element-wise constant?

To derive the correct effective permeability from an analysis of the one-dimensional problem.
The steady-state groundwater flow equation is:

dJ, o
i 0 in Q=(0,_¢))
length
dp
J = —K
(@)~
K(x)
P P
with the Dirichlet boundary conditions
p(0) = po
plf) = pe

because of % =0in Q < Jy(z) = Jo € R this means

dp _d J
Jo=-K@)L el 2

de  dr  K(x)

By integration of both sides over the domain

dp _ D
dr  K(z)
Ed Z 1
ap . _ O
<:>/d$da:—[p(x)]0—pg Do JO/K(az)dx
0 0

we get the flux depending on the boundary conditions and the permeability distribution:

¢ Pe—Po
sh=— 77— - —
[ o da ——

0 K(z) approx.gradient

—_———
eff .permeability

<
If we divide the domain into two halves with constant permeability if K (z) = { Ky w

K, 1:_>
e«

0 [

poleboles
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we can perform the integration and get the effective permeability

l l 2
Ret = 5 2 ST S s U
f 1 dx QKL +2 r Kl K,
0

We therefore choose for cell-wise constant permeabilities the harmonic mean
. 2
K(Tix055) = —3 T
K(Zi,5) T K(Tit1,5)

Finite-Volume Method for tensor-product Grids

_2hyijx(£i—0.5,j) . o thjK:va:(fi-&-Oﬁ,j) . )
h:m‘f1 + hxi Pt hivz‘ + h90¢+1 pl+17]
2hy, Ky (% j—0.5) D 2ha, Kyy(Zij+0.5) D
- “Pij-1— TP+
hyj_l + hy]- hy]- + hyj+1
2hy, Koo (Ti05,5)  2hy Kew(Titos,5)
+
hazq;_l + hL hﬂ?q + hivz’+1
2hy; Kyy(Zij—05 2N, Kyy (T j+0.5 =
N rh yy( Z}Z ) n xh yy(hw—i— ) pij = hxihyjr(xi,j)
yi—1 T Iy, i T Ny

Complexer Grids with Cell-Centred Finite Volumes

With the Cell-Centred Finite Volume Method it is also possible to use some kind of unstruc-

tured grids:
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Nested Grids

Voronoi Grids

K

A

Summary Cell-Centred Finite-Volume Method

Only the integral of the partial differential equation over each grid cell must fullfill the
equation.

Implementation of Dirichlet Boundary and Neumann Boundary conditions straight for-
ward

Structured and unstructured grids possible

Dirichlet boundary conditions can easily be integrated by rearranging the equation sys-
tems and bringing them to the right side of the equation.

Neumann boundary conditions can easily be integrated in the flux integrals

Convergence order can differ dependent on the concrete method.

Properties of the Cell-Centred Finite-Volume Method

Advantages:

— well suited for structured grids

— locally mass conservative

— good approximation of average permeability
— limited variety of unstructured grids possible
— limited local adaptivity possible

— cheap for simple problems
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e Problems:

— Only linear convergence rate on non-equidistant grids
— grid generation can be complicated (must fulfil rather strong conditions)

4.5 Vertex-Centred Finite-Volume Method

e The unknowns are located at the edges of the elements (vertices)

e Base functions are used on each element, which are parameterised with the values at the
vertices

e A secondary mesh is constructed connecting the face centres and the barycenter of the
element

e The flux balance is not calculated over the original grid, but over the secondary mesh, the
elements of the secondary mesh are called control-volumes, the parts of a control volume
belonging to a specific element of the primary mesh are called subcontrol-volumes.

i AW
b ——k
& V.',‘ D
element g, element g

e Material properties are assumed to be constant for each element

e The volume integrals are calculated as a sum over the subcontrol-volumes using the
midpoint rule and the material properties valid for the specific control-volume. bf . Tf
i

e The face integrals are calculated as a sum over all subcontrol-volume faces with the

midpoint rule ) ”yl’?aﬁ;ﬁf]
tj

e The gradient at the face centres is given by the base functions.
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Properties of the Vertex-Centred Finite-Volume Method

e Advantages:
— can be used for domains with complicated shape
— well suited for unstructured grids
— local adaptivity possible

— locally mass conservative

e Problems:

— grid generation can be complicated (must often fullfill certain conditions)
— more computationally expensive for simple problems
— bad approximation of average permeability
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4.6 Influence of discretisations on estimated effective conductivity

Natural porous can be strongly heterogeneous at very different scales (Figure .

Epeaabezcl

Figure 10: Strong heterogeneity in soils occurs on all scales: at the pore scale (upper left), the
lab scale (lower left) and in the field (right).

e Numerical models are often used to determine the effective properties of heterogeneous
porous media

e Numerical models perform an internal averaging of properties of conductivities between
elements/grid cells

e This averaging influences the estimated parameters

e While all reasonable discretisation schemes converge to the correct solution if the grid
size goes to zero, the convergence speed and the starting position can be quite different

The effective permeability is determined by applying a constant pressure at the top and
bottom boundary and no-flux boundary conditions at the side boundaries. The cummulated
flux over a horizontal line is divided by the macroscopic pressure gradient to get the effective
conductivity.

The cell-centred Finite Volume scheme calculates the fluxes over faces and uses an harmonic
mean of the conductivities. In the case of a checkerboard conductivity with one element per
conductivity unit it therefore produces an harmonic average of the conductivities.
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The standard Finite Element and the vertex-centred Finite Volume scheme integrate over
the fluxes inside one element or at the sub-control volume faces. This directly influences the
value at the vertex and this again the fluxes in the elements attached to the vertex. The
heterogeneity is only taken implicitly into account and leads to an arithmetic averaging of the
conductivities. In the case of a checkerboard conductivity with one element per conductivity
unit these schemes therefore produce an arithmetic average of the conductivities.

The cell-centred Finite Volume scheme tends to underestimate the effective permeability, the
standard Finite Element and the vertex-centred Finite Volume scheme tend to overestimate
the effective permeability.

To investigate the effects of more complex permeability distributions Durlofsky (1994) pro-
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posed a model problem:

Vi =0 in Q= (0,1) x (0,1)
w=—KVp
p=1 on left boundary
p=20 on right boundary
Jy 7=0 on upper and
lower boundary
l_n_rl_
AL - )
S
N E,
L 1N
~als permeability K =1 . permeability K = 1076

L. J. Durlofsky, Accuracy of mized and control volume finite element approzimations to Darcy velocity and related quantities, Water Resources
Research 30 (1994), no. 4, 965-973.

The result (Figure shows that all discretisations tend to the same value, but that the
cell-centred Finite Volume scheme and the Mimetic Finite Difference scheme converge much
faster. The convergence of the vertex-centered Finite Volume scheme slows down considerably
so that one might accept a wrong value as the improvement between two grid refinements is
“small enough”.

0.7 . . : . .
vertex-centered FV ———

0.65 k cell-centered FV .
' MFD - -* -
reference value --------

0.6 F ]

0.55 F ]

"""" et T T e e e S -

05 F *° ]

0.45 F ]
04 L | L 2 M 2 '

20 40 80 160 320 640 1280
h—l

Figure 11: Effective conductivity for the Durlovsky problem calculated with different discreti-
sation schemes and successive grid refinement.
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5 Solution of Linear Equation Systems

5.1 Direct Solution of Sparse Linear Equation Systems

We do a Gaussian eliminitation for A - & = b with A € RVXN regular, f,g eRN and Ais a
matrix assembled by the Finite-Volume method.

m

e As A is symmetric and positive definite the elimination can be done without pivoting
e New non-zero elements are created during the eliminitation (“fill in”)

e The “fill in” is created within the outer diagonals

Complexity of the Elimination

Due to the “fill in” *O(N) = O(n-m) matrix entries become O(n-m-m) = O(n-m?) matrix
entries after the elimination.

The complexity of the elimination is:

N
Complexity < m . m =N-m?>=n-m?
: —~— ~~
=l Lelements  lower limit
to eliminate for
tilldiagonal  elimination
inlined of one
element

If n = m the complexity of the elimination is O(N?), with optimal numbering of the nodes
O(N3/?), compared to O(N3) with a fully occupied matrix.

In three dimensions: The elimination has a complexity of O(N7/3)

In one dimension: The elimination has an optimal complexity of O(N)
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5.2 lterative Solution of Sparse Linear Equation Systems

As typical matrices from the discretisation of partial differential equations are sparse (i.e. they
contain only k - n elements, where k is a small integer usually up to 7) we want to find more
efficient solution methods than Gaussian elimination, which exploit the sparsity of the matrix.
This is done by iterative solution methods.

Starting from an initial value 70 e RV iterative solution methods create a sequence

7O 71 ,7k)

P P

with the characteristic

lim #*) = z.
k—oo

5.2.1 Relaxation Methods

The ith equation in AT = b is:
N
Z (lijl'j = bl'
=1

solve for z;:

1
Ty — — bl — Zaij$]’
Qi —
J#
Precondition: a;; 20 Vi=1...N. This is not true for all matrices

GauB-Seidel Iteration: Algorithm
Update all columns one after the other:

givena‘;’(k)
for(i=1;i < Nj;i=1i+1)

1
$§k+1) == - Z aijxngrl) _ Z aijx§k)
i j<i j>i

yields Z(F+1)

This scheme is called Gauf3-Seidel Iteration.

Complexity for calculation of Z++1) from #*) proportional to number of non-zero elements
of the matrix, therefore O(N) for sparse matrices.

Open Questions

e Under which conditions is the sequence converging with klim 7k = z.

— 00
e How many iterations are necessary to reach ||Z*) — #|| < e for a given precision €?

e How can one determine efficiently if ||Z(*) — Z|| < € is reached? (we don’t know the exact
solution )
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Other Relaxation Methods
Jacobi Iteration:

k+1 1 k)
1‘5 ) = aTZ bz — Z aijxg»
J#i

Damped Jacobi Iteration:
w
d = (1= w) el + 2 b= Y agal
Qi .
J#i
special case: w = 1 = Jacobi Iteration

SOR (successive overrelaxation) Iteration:

25D = (1 —w) 2 Rl - Zaijxycﬂ) _ Zaijxg-k)

it j<i j>i
0 < w < 1: underrelaxation 1 < w < 2: overrelaxation special case: w = 1 = Gauf3-Seidel Iteration

Damped Richardson Iteration:

xEkH) = (1 —auw) a:l(k) +w | b — Z aijarg»k)
JFi

Matrix Notation of Relaxation Methods
For an analysis of the convergence behavior it is more convenient to write the iteration
schemes as matrix operations:

As 7 = 7®) 4+ &k) and Aeth) = b — A#® we could calculate # from

F=a® 4 47! (5 - Af“f))

However inverting A is at least as expensive as calculating the solution of A¥ = b with a
direct method. We therefore approximate the matrix A~ with a matrix M !, where M is an
approximation of A, which is easy to invert, and get the new formula

gD = 7®) 4 -1 (5 - A:E(k’))

Z*+1) is no longer the exact solution but (hopefully) an improvement to k)

We split A = L+ D+U into a strictly lower tridiagonal matrix L, a strictly upper tridiagonal
matrix U and a diagonal Matrix D.

Now we can get the iteration methods described above by

M=w'I damped Richardson iteration
M=D Jacobi iteration

M=w"'D damped Jacobi iteration
M=L+D GauB-Seidel iteration

M=L+w 1D SOR iteration
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Now we want to analyse the change of the error &*) in one iteration.
For the general iteration scheme we get:

gD = g0y g (5 —Af“”)

of-gkD) = g gk -1 (5 - Ag?(k))
a(k+1) ak)

gkt = k) _ gyt <A.f _ Aj:’(k))
— &M _ g (:E _ f<k>)
= (I-M1t4)e®
_.S

We call S = I — M~'A the iteration matrix.
The error propagation is therefore:

sk — g . 5(k)

with the iteration matrix S =1 — M1 A.
Recursive insertion yields:

A gL gk1) _ g2 k-2 _ . _ gk &0)

If klim Sk = 0 (zero matrix) the scheme converges independently of e,
— 00

This is guaranteed if p(S) < 1, where p(S) = max{|A| | X is eigenvalue of S} is called spec-
tral radius of S.

Eigenvalues and Eigenvectors

e If A is symmetric and positive definite (and often if it is not) = there exists a set of N
linearly independent eigenvectors 71, 25, ..., ZN.

If Z; is eigenvector of A, az; with o € R is also eigenvector of A.

The product of A and z; is equal to z; times the scalar eigenvalue \;:
AZ; = NiZi

e Asthe N eigenvectors are linearly independent, they form a basis of R, i.e. every vector
T can be expressed as a linear combination of the eigenvectors.

N
F=Y &z
=1

As matrix-vector multiplication is distributive:

N N
AB =3 GAZ = &N
=1 i=1
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Matrix multiplication with eigenvector if eigenvalue < 1

ORI

Matrix multiplication with eigenvector if eigenvalue > 1

figures from J. R. Shewchuk (1994): “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain”

Convergence Analysis for the Damped Richardson Iteration

If we assume that A is symmetric and positive definite = all eigenvalues of A are real and
positive. A convergence analysis can then easily be made for the damped Richardson iteration
(M = wtI) with the iteration formula:

FkHD) — 70 4, (5 - Af“f))

The iteration matrix S is S = I — M~'A = I — wA and has the eigenvalues j; = 1 — w);
where \; is an eigenvalue of A.
If we use w = m, we get:

)\max(A) )\min(A) 1
0=1- <p<1- =1-

Amax(A) =H )\max(A) KQ(A)
We call ka(A) = % the spectral condition of A.
The spectral Radius of S is:

1
S)<1——+—, withs(4)>1
pUS) < 1= o with n(4)
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Convergence for Matrices from PDE-Discretizations
For the solution of the Laplace equation

Ap=V-(Vp) =0

in Q C R? with the Finite-Difference discretisation (i.e. A € RV*N) we get ro(A) =
O(N?/4).

= the defect reduction is decreasing with increasing matrix size.

Similar results can be obtained for other relaxation methods like Jacobi or Gauss-Seidel
iteration.

Further Convergence Results

e If Aand 2-D — A are both positive definite the Jacobi iteration converges.

e If A is strictly diagonally dominant (a; > 2, [aij|Vi) the Jacobi and Gauf-Seidel
iterations converge.

e SOR can only converge if 0 < w < 2.

If A is positive definite, both SOR and Gauf-Seidel converge.

e For many problems occurring in engineering no convergence proofs exist.

Terminating Condition
We call &%) := 7 — #*) the error of the kth iterate. As we do not know the exact solution
I the error is hard to determine.
With
Ae® = A (:E - ;1?(’“)) = A7 — AZ® =p — AFW = q®

we derive the defect vector d® := b — AZ® which can be computed easily.

Because of Ae®) = dF) & &) = A~1q%) and therefore ||e®)]] < [|A7Y| - ||dP)]|

we can use the norm of the defect ||d*)|| as terminating condition.

As ||A~!|| can be very large, we use a relative termination criterium: ||d®|| < [|d®|| with
a suitable €.

The new defect is better not calculated from d*+1) = — AZ*+1 as with this formulation
cancelation errors are increasing if the defect gets smaller.

The defect in step k + 1 is:

T = B A = F— 4 (79 4 50)
= b—AZ® — 450 = gk — A"
dk+D) = k) — A5k is therefore an equivalent reformulation which reduces the cancelation

errors.
The iteration scheme can also be reformulated in terms of the defect and the correction:
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(k+1) _ (k) w ) (k1) (k)
z; =(1-w)z; +a—“_ <bZZa”a:j Za”xj )

j<i j>i

Jj<i Jj=i

k1 k w k+1 k
xf ) —xg ) = s (bi - E au’xg' ) - E :aijx; ))
(k) w (k) (k) (k)
v, @i (bi - E @ij (371' +v; ) - Za”wj )

Jj<i j>i
k w k k
v = s (bi - Zaijl';- - Zaiw](. ))
J i<z
(k) _ W (k) (k)
o = 2 (- o)
“" j<i

Damped Richardson Iteration:

vfk) = wdl(-k)
Damped Jacobi Iteration:
OB )

special case: w = 1 = Jacobi Iteration

SOR (successive overrelaxation) Iteration:
k w E k
Ui( )= X dz(» )—Zaijv§ )
Qi —
1<t
0 < w < 1: underrelaxation 1 < w < 2: overrelaxation special case: w = 1 = GauBl-Seidel Iteration

The usage of the defect formulation allows it in theory to reduce the defect to an arbitry
fraction of the initial defect. However, in practice there is no further change of the solution if
the correction is too small compared to the current solution.

Example Algorithm
The initial guess &, the matrix A and the right side b are given.

d=b— AZ;
do = ||d|[;
dy, = do;

while (di > € - do)

{

Solve M - ¥ =d
=2+ 7,
d=d— Aw;
dy, = [|d]|;
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5.2.2 Data Structures for Sparse Matrices

To save memory A should not be stored as ordinary two-dimensional array.
One of the alternatives is called “compressed row storage” (CRS).
If Ac RV*N and s with N < s < N2 is the total number of non-zero elements of A.

e All non-zero elements are stored line by line in a one-dimensional floating-point array a
of size s.

e The corresponding column indices are stored line by line in a one-dimensional integer
array j of size s.

e The start indices of each line are stored in an one-dimensional integer array r of size
N + 1, where the total number of non-zero elements s is stored as last element of r

(r[N]l=s).

Example Matrix

2.8 0 0 31 6

a = {2.1,3.4,1.3,2,6.4,1.1,5.3,7.8,3.9,2.3,5.8,3.1,6}
j = 1{0,2,1,3,4,0,2,1,3,4,0,3,4}
r = {0,2,5,7,10,13}

Memory consumption: if double arrays are used for the floating point variables and int
for the integer arrays: 200 bytes for storing the full matrix, 180 bytes for the CRS matrix (The
gain is much larger if the size of the matrix increases).

Access an Element in a CRS-Matrix

double &GetA(int row, int column)

{
for(k=r[row];k<r[row+1];++k)
{
if (jlk]l==column)
return (alk]) ;
}
return (0.);
}

Computing y = A x = for a CRS-Matrix

for (i=0;i<N;++1i)
{
y[il=0.;
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for (k=r[i];k<r[i+1];++k)
y[il = y[il + alk]l * x[j[k1];

Improved CRS

e Assume that diagonal element does always exist
e Store diagonal element at position r[row]
e Do not store diagonal index

e Store number of elements in the row at j [r[row]]

Advantages:
e The position of the diagonal element is always clear (necessary for relaxation methods)

e The structure of the matrix (sparsity pattern) can vary a bit

5.2.3 Multigrid Methods

Smoothing Property of Linear Iterative Methods
We assume again that A is symmetric and positive definite. If Z} is an eigenvector of A:

AZ), = M2
with 0 < Amin < At < Amax-

—

% we obtain

(i+1) _ . 7 _ . k (3)
€ <I )\maXA> ZL <1 )\max> e,

Ak close to Amax = (1 — e )~

An']a)(
Ak

)\max

For Richardson’s iteration with w = 1/Amax and el =

This means:

~1

A close to Amin = (1 —

e Error components corresponding to large eigenvalues are damped efficiently.

e Error components corresponding to small eigenvalues are damped slowly.

For second order problems we have Amin/Amax = O(h2), i.e. the asymptotic convergence
factor is

p=1-0(h?).

The (damped) Jacobi and Gaufi—Seidel iteration have an asymptotically similar behavior in
contrast to an optimally damped SOR. However, the optimal damping coefficient for SOR is
hard to determine.
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Error Smoothing Example
We discretize —Ap = r with the cell-centered Finite-Volume method on a structured mesh.

The initial error consists of low and high frequency parts.

The graphs show the initial error and the error after 1 and 5 iterations.
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il
| ‘1“ " i
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figures P. Bastian (personal communication)

Multigrid Idea
Construct an iteration that is complementary to the smoother reducing low frequency errors.

Idea: Low frequency errors can be represented on a coarser grid:

This requires a hierarchy of grids Qg, 1, 0, ...

Correspondingly there will be a hierarchy of linear systems

AT = b

1D case

| | | | | | | | |
level 2 | T T T T T T T |

level 1 | ] ] ] |

level 0 | | |
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2D case

level O level 1 level 2

level O level 1 level 2

figures P. Bastian (personal communication)

Multigrid Algorithm
(k)

e (pre)smoothing of the fine grid solution Z;" (usually with some steps of a damped Jacobi
or Gauf-Seidel iteration)

k)

e compute defect d,

e restrict defect d_l(k) to coarse grid d_l(ﬁ)l (either by just using the values at the grid points
of the coarse grid or by averaging of fine grid values)

e compute solution 171(5)1 of Al,lﬁl(ﬁ)l = Jl(ﬁ)l (with direct solution, relaxation methods or
another coarse grid correction = multigrid method)

e prolongate Ul(f)l to the fine grid ; (interpolate Ul(k) at the fine grid points)

e update fine grid solution a?l(kH) = fl(k) + 17l(k)
e sometimes (post)smoothing of the fine grid solution a_:’l(kﬂ) (usually with some steps of a

damped Jacobi or GauB-Seidel iteration)

Multigrid methods

e have a overall work, which is still dominated by the finest grid. If C operations are
necessary on the fine grid only C/4 operations in 2D and C/8 operations in 3D are
necessary on the next coarser grid ...
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e have a optimal complexity of O(N) to solve Az = b for appropriate matrices (compared
to O(N?) to O(N7/3) with Gaussian elimination for banded matrices)

e there are also “Algebraic Multigrid” (AMG) solvers, which do not really construct a
coarse grid, but use empirical schemes to generate coarser matrices from the fine-scale
matrix. They have a complexity of O(N - In(N)).

5.2.4 Gradient based iterative methods

If A is symmetric and positive definite then 7 AZ > 0 V& # 0. Then A% = b is equivalent to
finding the minimum of the quadratic form

1
fla) = EfTAf — b Z+c
where ¢ € R is an arbitrary scalar. As A is positive definite, the hypersurface defined by

f (%) forms a paraboloid in RV*!, The minimum & is unique and global.

Different gradient based methods depend on the strategy to find this minimum.

———t== 0
= |

7

N

from J. R. Shewchuk (1994): “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain”

Proof of Correspondence
The gradient of f(Z) is

for symmetric matrices this reduces to
f(®):=AZ—b
At the minimum the gradient vanishes
FI(Z) = AT —b=0

Therefore # at the minimum solves AZ — b
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Shape of the quadratic form f(%)

Quadratic form f(Z) for
e (a) a positive-definite matrix
e (b) a negative-definite matrix
e (c) a singular (and positive-definite) matrix
e (d) an indefinite matrix

from J. R. Shewchuk (1994): “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain”

Method of Steepest Descent

Steepest Descend uses the direction of the negative gradient — f/(£*)).

The improved solution is calculated from Z*+1) = k) — o f/(7(F)),

The optimal step width « is chosen such that the minimum along the search direction is
obtained. This results in the next descend being orthogonal to the search direction.
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from J. R. Shewchuk (1994): “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain”

Optimal step size o

F(ER) = AZW _f = — (z‘; - A:E(k)> — —q®

) = 50 4 o d®)

We want to find a minimum along the search direction 7% = dtv)

d ..
@f(w(kﬂ)) =0

f/(f(k+1))Tdif(k+l) = pEEYTHR Z
(6%

with f/(Z*+D) = —qlk+1) .

JEDT k) 0

JEDT HE) 0

(B—A:E’(k“))Tﬁ(’“) - 0

(5— A (a‘g’(k) + aﬁ’U‘?)))T 70 — 0
(5_ Af(k))T 7R _ g (Aﬁ(k)f B —
a (A{)(k) g gk = (5_ Af(k))T 7k
at® ATG0) = )T )

0 k)
T )

4R qUk)

Qsteepdesc  — m

Steepest Descent Algorithm
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-

d=0b— A%

do=drd

d, = do;
while (dy, > €2 - do)
{

d=b— A%

do=d"d

dy, = do;

while (dy > &2 - dp)

{
f=Ad
a:@/fﬂ
F=i+ad
d=d—at
di =d*d

}

Convergence of Steepest Descent

Convergence of steepest descend depends strongly on the matrix condition x(A) and on the
initial value. Convergence is reduced by the fact that achievements of previous steps can be
lost again in later steps.
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from J. R. Shewchuk (1994): “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain”
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Figure 12: Convergence rate w of the steepest descent method for different spectral conditions
r of the matrix A (from J. R. Shewchuk (1994): “An Introduction to the Conjugate Gradient
Method Without the Agonizing Pain”).

Convergence Rate

k—1\F
16 < (551) 1900
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with the “energy norm”

&4 = VETAE

Improvement of Gradient Based Methods

e Avoid loss of achievements
e Take orthogonal search directions 7" 50) = 0 Vi #*3j
e Take one step each search direction, which eliminates error in this direction

e Problem: The step width is

gD

17 (89 4 i) = o
Y 0" (k)
T T

we do not know &)

e Idea: Make search directions A-orthogonal 70" AF0) = 0 Vi # j as we know Aék) = 4k

Creation of A-orthogonal Search Directions

e A-Orthogonal vectors can be created from a set of n linearly independent vectors g, @1, -
by Gram-Schmidt conjugation.

e In a recursive procedure take vector #; and subtract all components that are not A-
orthogonal to the previous vectors ¥j;.

i—1

" A0 = @@ A9 + 3 g’ Ag) (7)
k=0
0 = @@ AgY) + g, 50" A (8)
70" Az
u v
Bij = ———=F o (9)
70" AT0)

e Yields in exact arithmetics the correct solution in n steps

e Problems:

— We have to store all previous search directions

— The memory consumption and the arithmetic complexity is O(n?)
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Conjugate Gradients (CG)
e Idea: Use the residuals as basis vectors for the Gram-Schmidt conjugation

e The residual d® is already orthogonal to all previous search directions (17(i)TcZ(k) =
0 Vi < k), because of the A-orthogonality of the search directions, so the residual gives
a new linearly independent search direction unless it is zero = the problem is already
solved

e The condition for the Gram-Schmidt constants
™" Az
T LE]
gives By = 0 for j < (k — 1) if we use u®) = d*)
e We only need to make the new search direction #®¥) A-orthogonal to the last search

direction 7*~1) and get

40" gk 40" gk

B =0T Jl—1) Q=17 glk—1)

Il
|
|

|
//
\\
\

Figure 13: A-orthogonal search directions (left) are orthogonal in a stretched space where
the hypersurface of f(Z) is spherical (from J. R. Shewchuk (1994): “An Introduction to the
Conjugate Gradient Method Without the Agonizing Pain”).

The Conjugate Gradient method uses a sequence of A-orthogonal search directions (Figure
13)), using the residuals as basis for the creation of the search directions.

In exact arithmetic the minimum is found after at most N iterations (semi-iterative method,
Figure . However round-off errors make CG to a iterative method.

e We have do not need to store previous search directions

e The memory consumption and the arithmetic complexity of one iteration is O(n)
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Figure 14: The method of conjugate gradients converges in exact arithmetics in n iterations
(from J. R. Shewchuk (1994): “An Introduction to the Conjugate Gradient Method Without

the Agonizing Pain”).

CG Algorithm

Optimised CG Algorithm

T=d=0b— A%

do =d*d

dy, = do;

while (dx > 2 - dy)

{
o = (d7d) / (7" A7)
=7+ at
doew = d — QAT
6= (ddren) / (d7d)
¥ = dpew + BT
d = dpew
dr =d'd
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do = d*d:
dy, = dy
while (dy > €2 - dp)
{
= Av
o = dk/ (’UTIE)
Z=7+al
d=d—af
diye = di;
d, =d-d
/6 = dk/dkold
v=d+ 37
}
w
1 ]w
L~
0.8 / 0.8 ///
/
0.6 l/ 06 //
04 04 //
) A
0 K
0 K 20 40 60 80 100

20 40 60 80 100

Figure 15: Condition dependent convergence rate of steepest descend (left) and conjugate
gradients (right) (from J. R. Shewchuk (1994): “An Introduction to the Conjugate Gradient
Method Without the Agonizing Pain”).

Convergence of Conjugate Gradients

Convergence depends on the condition x(A) of the matrix, but less than in steepest descend
(Figure . It also depends on the distribution of eigenvalues.

Complexity for discretisations of second-order elliptic PDE’s

two-dimensional three-dimensional
Steepest Descent O(N?) O(N?/2)
Conjugate CGradients O(N®/3) O(N*/3)
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Convergence Rate
Steepest Descent

k—1\"
e < (1) 1@
Conjugate Gradients
Vr—1\"
le¥a <2 (YEET) 1601

with the “energy norm”

|éll4 = VETAZ
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Figure 16: Quotient between convergence rate of steepest descend (left) and conjugate gradients
(right) dependend on the condition (from J. R. Shewchuk (1994): “An Introduction to the

Conjugate Gradient Method Without the Agonizing Pain”).

Preconditioning

e While CG-methods usually have a better convergence than simple relaxation methods,
the convergence still depends on the grid size for matrices generated by discretisations

of partial differential equations.

e C'G-methods therefore are often improved by using so-called preconditioning.

e Instead of Az = b we solve a system M ~'Ax = M~'b, where the preconditioner M
improves the distribution of eigenvalues or the condition of the matrix and thus provides

an improved convergence behaviour.
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e A~ would be the optimal preconditioner as the eigenvalues of the resulting identity
matrix I would all be identical and thus the system could be solved in one step, but it is
of course too expensive to calculate.

e A simple possible choice is M = D (so-called Jacobi preconditioning).
e The best choice is often a multigrid scheme for the coarse grid corrections.

e As the CG-method requires symmetric matrices, the SOR scheme can not be used. How-
ever, there is a variant called SSOR (symmetric SOR) which consists of a SOR step
followed by a backward SOR step where we start with the last unknown and then decre-
ment the indices.

MT M Az = M7 M

with M = L +w™ D
Preconditioned CG Algorithm

d=b— Az

solve Mo =d
T

pr=po=d 8

while (pr > g2 - po)

{
t= Av
a=pr/ (17Tt)
=2+ av
d=d—of
solve M5=d
Phoa = Pk
Pk = d's
B = pr/Pryq
U=5§+ (U

}

SSOR-Preconditioner .
For the SSOR-preconditioner the step solve M7 = d is:

for (i = 054 < n; ++1)

Vi = w <di — Zaijvi> Jaii

Ji<i

for (i=n—1;i >=0; ——1)
VU; = W <d1 — Zaiﬂwi> /aii
J>i
U+ = b
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Figure 17: Solution of test case A in 2d and 3d.

More information on gradient based methods can be found in

J. R. Shewchuk (1994): “An Introduction to the Conjugate Gradient Method Without the
Agonizing Pain”
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient. pdf

5.2.5 Numerical Results

The following examples show the convergence of some of the covered iteration schemes for test
cases with varying difficulty in two and three space dimensions.

The tables contain the number of iterations necessary to reduce the initial defect by a factor
of 108. The computation time is given in seconds (Core 2 Duo processor with 2.5 GHz, gcc-4.2
with -O2 optimisation). If an entry is missing the desired reduction could not be reached in
20000 iterations.

Test Case A

—Au = (2d — 4||z|?)e = in Q= (0,1)%,

_ 2
u = e Il on Of).

The exact solution is:
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 http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

Table 1: Convergence Results for Test Case A for triangles (Py), rectangles (@1, 2d) and
cuboids (Q1, 3d).

Test Case A, Py, 2d

h Jacobi GauB3-Seidel Gradient Grad+SSOR CG CG+SSOR CG+ILUO
IT Time IT Time IT Time IT  Time IT  Time IT  Time IT  Time
1/8 218 112 220 51 22 13 13
1/16 840 0.02 427 854 177 48 26 24
1/32 3165 0.21 1607 0.11 3230 0.12 645 0.07 98 49 45
1/64 11820 3.04 6004 1.57 | 12096 1.74 2403 0.95 | 193 0.03 95 0.04 88 0.02
1/128 8955 13.9 | 378 0.24 | 184 0.30 | 172 0.20
1/256 739 2.25 | 359 2.58 | 336 2.18
l Test Case A, Q1, 2d
h Jacobi GauB3-Seidel Gradient Grad+SSOR CG CG+SSOR CG+ILUO
IT Time IT Time IT Time IT Time IT Time IT Time IT Time
1/8 147 75 113 24 16 10 8
1/16 562 0.01 282 431 79 35 18 14
1/32 2113 0.15 1056 0.08 1621 0.06 275 0.03 69 34 25
1/64 7886 2.18 3939 1.10 6059 0.94 1011 0.43 | 136 0.03 64 0.03 46 0.01
1/128 14615 16.1 3741 6.42 266 0.18 120 0.22 87 0.10
1/256 13823 115 521 1.94 | 217 1.89 162 1.23
[ Test Case A, Q1, 3d
h Jacobi GauB3-Seidel Gradient Grad+SSOR CG CG+SSOR CG+ILUO
IT Time IT Time IT Time IT Time IT Time IT Time IT Time
1/8 98 0.01 51 77 18 16 9 8
1/16 376 0.24 189 0.12 290 0.10 55 0.05 34 0.01 17 0.02 15 0.01
1/32 1416 10.1 708 4.87 1087 4.10 187 1.95 67 0.26 32 0.34 27 0.25
1/64 5287 304. 2641 152. 4063 129. 681 65.6 | 132 4.43 59 5.86 51 4.18
Test Case B
—Au=f in Q= (0,1)4,
U = on I'p,
—Vu-v=j on [y,
with
f(z) 50 0.25 < zg,21 <0.375
xr) =
0 else ’
FN:{a:]acle\/xlzl\/(:Eozl/\xl>1/2)} FD:aQ\FN,
—|lz—z0]|? T
glz) = e le=ml® —pp = (1/2,...,1/2)T,
(.T)— -5 $0=1/\1‘1>1/2
J 0 else ’
Test Case C
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on 0f2,




with

200  |zo/H
0.002  |zo/H
0.2 on/H
2000.0 |zo/H
1000.0  |zo/H
0.001  |zo/H
\ 10.0 Ll‘o/H

even, |x1/H | even, |zo/H| even
odd, |z1/H]| even, |z2/H | even
even, |z1/H| odd, |z9/H| even
odd, |xz1/H] odd, |z2/H | even
even, |x1/H| even, |zo/H | odd
odd, |z1/H]| even, |z2/H | odd
even, |x1/H| odd, |zo/H | odd
odd, |z1/H] odd, |z2/H | odd

3
—~
8
~—
I
L

Test Case D
~V - {k(z)Vu} = f in Q= (0,1)¢,
u=g on I'p,
—Vu-v=>0 on I'y,
with
FD:{$|.T0:0\/1’0:1} FD:(?Q\FN,

o 1 Trog = 0
g(x) - { 0 o = 1
The function k(z) is log-normal distributed with a given mean of 0, a variance of 3 (i.e. the

permeabilities alternating between 10~3 and 10%) and a correlation length of 1/64 in 2d and
1/32 in 3d. Examples are shown in figure

Test Case E

~V - {K(z)Vu} =1 in Q= (0,1)¢,
u = on 01},

with K (x) a diagonal tensor

1076 i=35=0
0 else

Attention: The matrix is symmetric and positive definite for 21 but not irreducible diago-
nally dominant. Jacobi iteration does not converge for every s.p.d. matrix without damping,
this explains the problems with the Jacobi iteration for @)1 elements. The matrix is approxi-
mately tridiagonal in 2d, the ILUy method with the correct ordering is exact for tridiagonal
matrices.
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Table 2: Convergence Results for Test Case B for triangles (P;), rectangles (@1, 2d) and
cuboids (Q1, 3d).

Test Case B, P, 2d

h Jacobi GauB-Seidel Gradient Grad+SSOR CG CG+SSOR CGH+ILUO
IT Time IT Time IT Time IT Time IT Time IT Time IT Time

1/8 667 338 830 138 41 18 16

1/16 2619 0.04 1327 0.02 2969 0.03 525 0.01 82 35 32

1/32 10009 0.60 5075 0.32 | 10778 0.40 2017 0.20 159 68 62

1/64 19131 4.57 7637 2.81 306 0.05 | 133 0.05 | 124 0.04

1/128 590 0.36 | 259 0.39 | 244 0.28

1/256 1143 3.45 | 505 3.47 | 478 3.08

[ Test Case B, @1, 2d

h Jacobi GauB3-Seidel Gradient Grad+SSOR CG CG+SSOR CGH+ILUO
IT Time IT Time IT Time IT Time IT Time IT Time IT Time

1/8 456 230 424 65 32 14 11

1/16 1770 0.07 888 0.02 1504 0.01 237 59 24 18

1/32 6720 0.43 3364 0.21 5436 0.22 877 0.09 112 45 32

1/64 12614 3.20 | 19895 3.11 3249 1.28 215 0.04 87 0.04 61 0.02

1/128 12055 18.8 415 0.28 | 168 0.27 | 118 0.13

1/256 806 2.88 | 328 2.63 | 231 1.71

Test Case B, Q1, 3d

h Jacobi GauB3-Seidel Gradient Grad+SSOR CG CG+SSOR CG+ILUO
IT Time IT Time IT Time IT Time IT Time IT Time IT Time

1/8 180 0.01 92 176 29 29 12 10

1/16 694 0.42 349 0.21 596 0.22 95 0.09 54 0.02 22 0.02 19 0.01

1/32 2622 17.6 1313 8.74 2126 7.86 343 3.54 102 0.39 42 0.44 35 0.32

1/64 9813 531. 4908 263. 7747 240. 1269 119. 197 6.42 80 7.70 67 5.40

Figure 18: Solution of test case C in 2d and 3d.
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Table 3: Convergence Results for Test Case C for rectangles (Q1, 2d) and cuboids (Q1, 3d).

Test Case C, Q1, 2d

h Jacobi Gauf3-Seidel Gradient Grad+SSOR CcG CG+SSOR CG+ILUO
IT Time IT Time IT Time IT Time IT Time IT Time IT Time

1/8 4665 0.06 2354 0.01 | 3334 0.01 724 27 17 8

1/16 13573 0.26 4335 0.12 281 38 27

1/32 17512 1.91 | 1761 0.08 73 52

1/64 8644 1.48 | 142 0.06 99 0.03

1/128 282 0.49 | 196 0.22

1/256 577 4.82 | 405 2.96

Test Case C, Q1, 3d

h Jacobi Gauf3-Seidel Gradient Grad+SSOR CG CG+SSOR CG+ILUO
IT Time IT Time IT Time IT Time IT Time IT Time IT Time

1/8 127 0.01 65 96 22 21 10 8

1/16 1326 0.83 667 0.42 208 0.20 | 1179 0.45 32 0.03 23 0.02

1/32 9966 68.2 4996 34.8 1425 14.8 | 8594 32.9 71 0.76 56 0.51

1/64 8382 792. 151 14.6 | 124 9.96

Figure 19:
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Figure 20: Solution of Test Case D in 2d and 3d.

Table 4: Convergence Results for Test Case D for rectangles (Q1, 2d) and cuboids (Q1, 3d).

Test Case D, Q1, 2d

h Jacobi GauB3-Seidel Gradient Grad+SSOR CG CG+SSOR CG+ILUO

IT Time IT Time | IT Time IT Time IT Time IT Time IT Time
1/64 11307 4.58 1825 0.31 193 0.08 | 110 0.03
1/128 5755 3.87 375 0.62 | 250 0.28
1/256 15489 57.2 707 5.72 | 492 3.67
1/512 385. | 1345 53.6 | 955 35.2

Test Case D, @1, 3d

h Jacobi GauB3-Seidel Gradient Grad+SSOR CG CG+SSOR CG+ILUO

IT Time IT Time | IT Time IT Time IT Time IT Time IT Time
1/16 2538 1.52 1280 0.78 395 0.37 452 0.17 48 0.05 36 0.03
1/32 10096 67.8 5069 34.0 1401 14.6 2190 8.48 88 0.93 73 0.69
1/64 19158 1046 4905 469. 5859 195. 166 16.3 | 140 11.9
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6 Simulation of Groundwater Flow

6.1 Boundary Conditions

There are two cases where simple Dirichlet or Neumann boundary conditions are not sufficient.

6.1.1 Heterogeneous Systems

The naive use of a Neumann boundary condition for a heterogeneous porous media can yield
surprising results. A Neumann boundary condition forces exactly the same flux into (or out
of) each element. If the permeability of the element is very low, this is compensated by a huge
pressure gradient, which can be absolutely unrealistic. This is usually not what happens in
nature.

Two possibilities to avoid this are

e weight the flux with the permeability of the element

Zboundary elements Al
Zboundary elements AlKZ

jboundary = jNeumann : Ke

e Add a redistribution layer with high conductivity at the boundary.

6.1.2 Vertical Boundaries

If gravity is taken into account the steady state solution is a pressure which is increasing with
depth so that the pressure gradient compensates the driving effect of gravity. If vertical cuts in
two dimensions or three-dimensional regions are simulated, this has to be taken into account
when Dirichlet boundary conditions should be specified on vertical boundaries.

If the z-Axis is in pointing upwards with the zero coordinate at the bottom of the domain,
the boundary condition should be

Pboundary = PDirichlet — Pw3d?

6.2 Wells

An important aspect of groundwater flow modeling is the assessment of human influence on
the groundwater by extracting water from wells (or by water injection with wells).

6.2.1 Wells in Simulations of Horizontal Flow

In 2D simulations of horizontal groundwater flow wells can be represented as point sinks or
sources (for extraction or injection wells).

While the source term in the groundwater flow equation expects a source density r,, in m/s
the data is usually a flow rate g, in m®/s. It would be natural to divide the flow rate by
the volume of the well. However, as the well is usually not exactly resolved in the simulation,
the flow rate in the simulation would be wrong by Viim well/Viealwell Therefore it is necessary to
divide ¢, by the volume V of simulated well, which is just the volume of the element in which
the point source is located: 1, = C{/—t.

Figure 21| shows a example simulation with a pressure gradient from left to right and no-flow
boundary conditions at bottom and top. As the domain is homogeneous the pressure isolines
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Table 5: Convergence Results for Test Case E for triangles (P;), rectangles (@1, 2d) and
cuboids (Q1, 3d).

[ Test Case E, P1, 2d, space depth-first ordering ]

h Jacobi GauB3-Seidel Gradient Grad+SSOR CG CG+SSOR CG+ILUO
IT Time IT Time IT Time IT Time IT Time IT Time IT Time

1/8 233 119 228 50 8 17 9

1/16 946 0.02 481 0.01 946 0.01 180 0.01 16 36 35

1/32 3798 0.24 1930 0.12 3834 0.14 638 0.07 32 76 0.01 89

1/64 15203 3.79 7724 1.94 | 15422 2.22 2362 0.96 66 0.01 | 157 0.07 | 183 0.05

1/128 9020 14.3 173 0.11 | 318 0.52 | 373 0.44

1/256 386 1.16 | 674 4.94 | 756 4.97

[ Test Case E, @1, 2d, lexicographic ordering

h Jacobi GauB3-Seidel Gradient Grad+SSOR CG CG+SSOR CGH+ILUO
IT Time IT Time IT Time IT  Time IT Time IT Time IT Time

1/8 186 524 46 16 20 2

1/16 756 0.02 2102 0.02 176 75 43 2

1/32 2949 0.19 8250 0.33 666 0.07 255 0.01 89 0.01 2

1/64 11423 2.89 2614 1.03 547 0.09 | 175 0.07 2

1/128 10102 15.7 | 1106 0.74 | 344 0.55 3

1/256 2188 7.72 | 664 5.19 3 0.02

[ Test Case E, Q1, 3d, lexicographic ordering

h Jacobi GauB3-Seidel Gradient Grad+SSOR CG CG+SSOR CGH+ILUO
IT Time IT Time IT Time IT Time IT Time IT Time IT Time

1/8 127 0.01 264 0.01 34 26 18 8

1/16 505 0.30 1046 0.38 122 0.11 84 0.04 37 0.04 14 0.01

1/32 1952 12.8 4100 15.2 458 4.71 209 0.80 73 0.76 24 0.22

1/64 7582 404. | 16014 495. 1796 169. 422 13.8 | 143 13.8 44 3.72

Figure 21: Pressure distribution with flux vectors (left) and flux density with pressure isolines
(right) around a well in a horizontal simulation of groundwater flow
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are straight lines from bottom to top. The well is situated in the middle of the domain. The
well creates a depression in the pressure field and a high flux density around the well, which is
due to the decreasing cross-section through which the flow has to be extracted.

If the aquifer is heterogeneous with a log-normal permeability distribution (Figure the
pressure distribution is more complicated with a locally high pressure gradient compensating
regions with low permeability. Streamlines originating on the left boundary show that the
flow concentrates nevertheless on high permeability regions. Some streamlines end in the well
indicating the region from which the water is drawn. Due to the Dirichlet boundary conditions
the flux density is very heterogeneous over the domain.

Figure 22: Permeability and pressure distribution with streamlines and flux density with pres-
sure isolines around a well in a horizontal simulation of groundwater flow in a heterogeneous
aquifer.

6.2.2 Wells in Simulations of Vertical Flow

In 2D simulations of a vertical cut through an aquifer or in 3D simulations wells have to be
represented in more detail. However, as they are usually thin compared to the size of the
domain, they can be assumed to be line sources/sinks.

It is then necessary to distribute the extracted amount of water over the volume of the
elements contributing to the line source on the grid r,, = Zimlvej:ements A

The simulation of horizontal flow in a vertical cut through a homogeneous aquifer with a
line sink in the middle of the domain (Figure is a good example that two-dimensional sim-
ulations can be misleading. The pressure isosurfaces are straight lines this would be expected
if the well is a trench of infinite length. The real solution should show an increasing pressure
gradient closer to the well due to the decreasing flow cross-section as obtained in Figure
This can be rectified by either using a radially symmetric coordinate system or by performing
a three-dimensional simulation.

If the aquifer is heterogeneous a second problem occurs (Figure . If the same source
density is used everywhere even in regions with a very low permeability a huge pressure gradient
has to be applied. However, in a real system, the water would just be extracted easily from a
region with high permeability.

Alternatives
There are different possibilities to obtain a more correct result:
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Figure 23: Pressure distribution with flux vectors (left) and flux density with pressure isolines
(right) around a well in a horizontal simulation of groundwater flow along a vertical cut.

Figure 24: Source density with pressure isosurfaces (upper left), log-normal permeability dis-
tribution with streamlines (upper right), pressure distribution with streamlines (lower left) and
flux density with pressure isosurfaces (lower right) for horizontal flow across a vertical cut with
a line source in a heterogeneous aquifer.
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Perform a weighting with the conductivity K. of the elements:

ro = q K. Zinvolved elements Vi
w = qu
Zinvolved elements K;V;

Add the well as line of elements with very high permeability (the bore hole) and either
a Neumann boundary condition at the point where the well hits the boundary or a line
sink /source

Add the well as a lower-dimensional element (a line) coupled to the volume simulation

6.3 Fractures

Fractures can be very important in certain rock formations (limestone, granite ...).
They can provide a path for very rapid solute transport.

In small scale simulations fractures can be resolved explicitly by adding areas of high
permeability (if the fractures are always water filled)

In large scale simulations this is hard to realize as fractures are very thin compared to
the size of the domain a would require very anisotropic elements

One possibility is a dual continuum model, where the fracture domain is a separate
continuous porous medium with a rate limited (solute) exchange with the matrix do-
main. This includes the assumption, that there are many small fractures so they can be
represented on a continuum scale at the level of interest

Another possibility is the representation of the fractures as one- or two-dimensional
objects in a two- or three-dimensional space

6.4 Interpolation of the Flux Field

The Finite-Volume scheme only gives the normal fluxes at the interfaces. However for a
visualization of the flux field we need the flux vector and for the calculation of solute transport
on a grid not identical to the grid used in the water transport calculations we also need to
interpolate the flux vector.

This can be done by using RTy Raviart-Thomas elements with the Ansatz

axr +b
j = cy+d
ez + f

The coeflicients for the flux vector calculation on each grid cell can easily be calculated from
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the normal fluxes:

Jh-Li, = Ok 1+ big
Jkidi, = OkiTpylg+big
Tttty Ikt = ki ($k+%,l - $k7%,l)
Tkt i, — Jk-11,
[N —
’ Py
. Tktdlte — Ie-1 1,
by = -1, — L1

7 Parabolic PDEs - Heat Transport

7.1 Heat Transport in Porous Media
7.1.1 Flux Law

P,

Heat is transported in a saturated porous media either by convection of the liquid phase or by

heat conduction. This processes can be described by:

‘]_;'L = J_;lconv + ']_;l

cond

where
j;'bconv = T ! Cw ’ jw
<]_;7*cond = _)\(aw) : VT
with:
T Temperature
Cu Volumetric heat capacity of water
Juw volumetric water flux
A(0,) Heat conductivity

7.1.2 Heat Capacity

Heat Capacity
The thermal energy content of a soil can be calculated as

Eh(f) = Ctot : Ta

(10)

(K]

[Jm™3 K
m s~ 1]
[Wm~t K1

where Clot is the total heat capacity of the soil The heat capacity of a soil can be computed
from porosity @, water content and the heat capacity of the components.

Ciot = 04,Cp+ (P —60,)Cy+(1—-9)-C; (13)

with:

Cy, Volumetric heat capacity of the gas phase [J m™3 K™!]
Cs Volumetric heat capacity of the matrix [J m=3 K™
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Cquartz  2.23MJ m—3 K~!
Typical Values: Cyater 4.18 MJ m™3 K1
Cair 0.00117 MJ m—3 K1
Thus a saturated soil with a porosity of 33 per cent would have a heat capacity of approxi-
mately 2.88 MJ m—3 K1

7.1.3 Heat Conductivity

The heat conductivity of a porous medium depends not only on its composition, but also on
the geometry of the pore space and the distribution of the phases. The problem is simplified
by the strong dissipative nature of heat transport.

De Vries [I] developed a method to estimate the composition dependence of heat conduc-
tivityﬁ In analogy to the description of polarization, heat conductivity can be estimated with
the formula

Heat Conductivity

N piyiyi
i=0
with k% Ratio of the average temperature gradient in particles of type i
to the average temperature gradient in the surrounding medium [
X' volume fraction of component i [-]
A¥: heat conductivity of component i [W m~1K™1]

Aquartz  6.1-9.5 W m K1
Typical values: Awater 0.57 W m~ 1K1
)\air 0.025 W m 1K1

Heat Conductivity
The value of k* depends on the ratio A*/ )\OEI and the size, form and position of the particles.
If they are assumed to be ellipsoids with a distance large enough to be treated independently,

k' can be calculated: ' .
| A B

k' == 1 — =1 15

2 (5 -1) g (15)

l=a,b,c

Ja, 9b, gc are dimensionless form factors, depending on the ratio of the axes a, b and ¢ of the
ellipsoid. Their sum is equal to one. If two axes are equal, their form factors are equal as well.
For spherical particles g, = g» = g. = 1/3.

Both assumptions are clearly not valid for a natural porous medium, but according to de
Vries theoretical reasons as well as measurements hint at an applicability of equation My
own research [2] showed a good agreement of this approximation with results obtained from
simulations explicitly considering the structure of a soil sample.

The heat conductivity can only be calculated with equations [14] and [15| for fully saturated
porous media or completely dry soils. For water contents in between, the form factors g, g,

3The heat conductivity is also temperature dependent. This dependence is not considered.
4)o is the heat capacity of the surrounding medium.
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a b c d

Figure 25: Sketch for dependence of thermal conductivity on water content in a coarse-textured
porous medium. The contact between the grains is restricted to small regions (red) and the
corresponding cross-sectional area is limiting for heat flow in a completely dry medium (a).
As the water content increases, the pathways widen considerably thereby leading to a higher
conductivity (b...d). (from K. Roth (2005), Soil Physics - Lecture Notes v1.0, Institut fiir
Umweltphysik, Universitat Heidelberg)

ge for air bubbles are necessary. De Vries [3] gives in example 7.6.1 a method to estimate them.
Additionally, the increase in heat conductivity of the gas phase due to water vapour transport
must be considered.

7.1.4 Heat Transport Equation

D) | @) + (@) =0 (16)

The time derivative of the thermal energy content is:

OEL(Z) O (Ciot(D)T)

= 17
ot ot (17)

if we neglected the temperature dependence of the heat it: capacity to

OBy (Z) _oT
g~ Cret(@) 5, (18)
yielding the heat transport equation
oT (x >

Cor@® DD 9 (N@0,)VT@) + Y - (T@T@) + @ =0 (19

The heat transport equation is a parabolic equation as for constant heat conductivity and
constant water flux density:

0°T(7) - OT(%) _ OT(7) o
—A 92 +ijw(x)78x + Ciot(T) T +rp(@) =0 (20)
)
der ()1 9) =0 21)
and .

-\ 0 Cwa(f)]
Rank 0\ =2 22
a [o 0 Cror(d) (22)
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volumetric water content ¢

Figure 26: Measured values of thermal conductivity A for two soils at 25°C(open circle) and
at 40°C(closed squares). The solid lines are parametrized with the model of de Vries (from
K. Roth (2005), Soil Physics - Lecture Notes v1.0, Institut fir Umweltphysik, Universitét
Heidelberg)

7.2 Solution with Fourier Series

We want to analyse the one-dimensional problem: Find u(z,t) such that

ou  %u )
E — @ = m (0, 1) X (07 OO) (23&)
u(z,0) = f(x) for t =0 (initial condition), (23b)
0,t) =0
ZEL t; _ O} (boundary condition). (23c)

One approach to obtain a solution is the separation of the variables. We use the trial function
u(z,t) = X(x) - T(t).

with this we get

ou 0%u
— =XT' and — =X"T.
ot ane 52
If we insert the trial function in the PDE we get
T(t) X"(x)
XT' - X"T =0 < = 24
W0 ~ X 2

under the condition that u(x,t) = X (z) - T(t) # 0.
The left side of is independent of z, the right side is independent of ¢t. If both sides
have to be equal for all z,t the only possible solution is

(1) _ X"(x)

0 X =\ (const).
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With this we get

T'(t) =AT(t) = T(t) =cieM
/x X it is the same Al
X'x)=2X(z) = X(z)=coeV" +cze” VNV

So
u(z,t) = e (Aeﬁ’: + Be‘ﬁz) .

To fulfill the boundary conditions (23c]), we set

A=a+1ib | .
) = A+B=2a=0 A—B=1i2b
B =a—1b
and A = —n?n%, n € N (~ sinnnz).

With this we get
22—

=~
Ae\/X:C—i-Be_\/Xm — Ae mnm :c+B€—in7rJ:

= A(cosnmx +isinnrz) + B (cos(—mrx) +i sin(—nﬂ'x))

=cosnmx =—sinnrx
= (A+ B)cosnrx +i(A — B)sinnnx

= 2acosnmx — 2bsinnrmx

-~

fulfills the bc

Solutions which fulfill the boundary conditions therefore have the form (with a new A):
u(z,t) = Ae "™t sin nrra.

To fulfill the initial conditions (23b|) we develop f in a Fourier series
[e.9]
f(z) = Z Ay sinnrz
n=1
therefore fulfills
> 2.2
u(z,t) = ZAne_” ™tsinnrx
n=1

equation (|23al).

Remark 7.1. If u(z, t) is defined in this way it is no classical solution in C?(Q x (0, 00)). For
each t u(-,t) is a function in L?(Q), as it is the limit of a Fourier series.

Remark 7.2. Due to the n? term in the e-function high ,frequency® parts (large n) of the
initial condition are damped much more efficiently and faster than low frequency parts. This
is called the ,,smoothing property*“ of parabolic problems.
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7.3 Finite Differences Approach for Parabolic Problems

We limit ourselves to the one-dimensional problem

2
%_%:f iHQxT, Q:(Oal)7T:(O>TE7Ld)

U=y on Of) (25)

u = ug for t = 0.

Discretisation is done with the so-called Method of Lines, i.e. first a spatial discretisation is
applied then a discretisation in time.

Spatial discretisation: Finite Differences with grid z; =i-h, h = %, i=0,...,N.

Taylor series for % at point (x;,t) yields:

ou(x;, t) 1

ot = ﬁ [u(wi_l,t) — QU(CCZ‘,ZL/) + u(xiﬂ,t)] + f(l’i,t) + O(h2) 1= 1, ceey N-—-1 (26)

F(x;,t)

This is a coupled system of ordinary differential equations for the N — 1 unknown functions
nui(t) = U(.’Ei, t)“'

For the time discretisation we use the grid t* =k -7, 7= Te"d, k=0,....K.

Onestep-0-Method: Numerical integration yields:

ou(x;, t) B .
T—F(.’E“t) ’l—].,...,N 1
fht1 ' el
= Ju(@it) 4y :/ F(as,t) dt
th ot tk

= i, 1) — u(w, 1) = 7[(1= ) (s, %) + 0 F(as, )] + 0()
with p=

By rearranging (insert F, bring all u(.,t**1) to the left side) we get
"
—0';u(:ci_1, ) + (1 4 207 u(xi, 9 — Oyu(aig, 771 =
= (1 = O)yu(wim1, t*) + (1 = 2(1 — 0)y)u(zi, t*) + (1 — O)yu(wisr, t*) i=1,...,N -1 (27)

RS 5 B
as 7 F!

with the abbreviation ;5 =
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For each discrete time t* we obtain the grid function ul;;: Q, — R by neglect of the error
term in and insertion of the boundary and initial conditions:

— Oy (i) 4 (1 + 207)uy ™ (2:) — Oy (1)
= (1= O)yufi(wio1) + (1 —2(1 = 0)7)up () + (1 — 0)yup (zit1)
+T[(1 — ) f i, ) + Gf(:vi,tk“)] i=1,...,N—1, k>0 (28a)

() = gla, 1) i=0,N, k>0 (28b)
u () = ug(z;) i=1,...,N—1. (28¢)

Remark 7.3. This system has the following properties:

1. (28a)/([@8D) is a recursion for the grid function at time t*.

2. In each time step a linear equation system
Lhuffl = Myuf +7fF
has to be solved.
3. Ly, is diagonal if # = 0 and tridiagonal else.

where Ly, My, f}'f have the form:

1 0 0
—O0y 1420y —0y
0 -0 1420y -6
Ly = T (29)
—0y 1420y —0v
0 0 1
0 0 0
(1—=0)y 1-2(1-0)y (1—-0)y
0 1-6 1—-2(1-46 1-6
M, = ( )Y ( v ( | )y (30)
(I—=0)y 1-2(1-60)y (1-0)y
0 0 0
%g(x07tk+l)
(1- a)f(xhtk) + gf(xlvtk—H)
= : (31)
(1—0)f(zn-1,t%) + 0f (xy_1,t"T)
%g(xl\hthrl)

Example 7.4 (Designation of the Standard Methods).
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f# = 0 is call explicit Euler method.
As Ly, = I the values uﬁ“ can be calculated from qu directly without solution of a linear
equation system.

0 =1 is called implicit Euler method.
Ly, is tridiagnoal (for one space dimension).

0= % is called Crank-Nicolson method. It corresponds to the trapezoidal rule for ordinary

differential equations.

It also requires the solution of a linear equation system with a tridiagonal matrix, but
the precision in the time direction is higher (see below).

7.4 Error Analysis

For the error analysis we need the restriction operator Ry, picks the values at the finite difference
nodes from the set of steady function on €Q:

Ry, : C%(Q) — RVH! (32)
(Rpu); = wu(xy) (33)
We can then define the error at time ¢*:
k k k
e = Ry u(.,t - u
h ( s ) h
restriction
exact solution solution
operator
of generated by
at time tF the FD scheme
For u]fLH the equation
Lhu]fL—H = Mhulﬁ + Tf}]f
holds. We define z;f'H by the equation
Lhz}’frl = M}, Rpul(. ,tk) —|—7’f;f
—_——
exact values
at last time step
For the errors in zi“ (after one step with the exact values) we get:
Ly (Rhu( Ry z’,j“) = LyRyu( ., tFY) = Lyzft
= Lthu( . ,tk+1) — Mthu( . ,tk) — Tf}]f
this is the exact solution inserted (34)

in the differential equation (28)). This is also (27)

apart from the error term!

=: 17’,2 ,local truncation error*
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From we get
0
HnﬁHoo = O(Th2 +7P) with p= 1
2

Application of Lj, to the global error eiﬂ yields

Lhef;rl = Lh <Rhu( . ,tk+1) — UZJrl)
= Lthu( . ,tk+1) — Lhulffl
\ \Rem. 3
= MyRpu(.,t*) +7ff}f/+ g —Myuf —7ff
= My (Rpu(.,t*) = uj) +nj
—

k
€h

therefore:

Lheffl = Mheﬁ + nﬁ recursion equation for the error

This equation has the same structure as the evolution equation for quLH. The source term is
the “local truncation error” (the error done in one step). If we solve for elfLH we get
1 —1 -1
eyt = L Myef + Ly 'y

Which can be analysed in different norms. If we apply the maximum norm ||.||oc we get:

k _ —
e loo < 1125 M llsolle oo + 1L, ool oo

(35)
One can show:
oo if =1
1. L My loo < 1|L; o <1 ) provided y < { 1 if §=1/2 Stability
1/2 if 0=0
1 0+£1/2 .
k| < 2, .8 _
2. |nillec £ TO(R" +77) B { 5 =1/ Consistency
In total this gives the estimate:
Oh?+71) 6=0,0=1
k 0
e < e + 1 36
llenlloo lenlloc o+ o=1 (36)
error in initial cond. e.g. roundoff 2

It is also possible to analyse the scheme in the Euclidean norm. One obtains than

0=1,0=— stable in the || .||2 norm without time step limit

1
0=0 again demands 7 < §h2.

Order of convergence is the same as above. In total we get the following result:
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6 =1 (impl. Euler)

absolutely stable in || . ||oc and ||. ||2
order of convergence O(h? + )
always fulfills maximum principle (= stability in || . [|c0)

0 = 1 (Crank-Nicolson)
stable in ||.||o for 7 < h2, absolutely stable in || .||o-norm.
maximum principle only fulfilled if time step condition is kept.
order of convergence O(h? + 72)

6 = 0 (expl. Euler)
stable in || . ||oo and || . [|2only if 7 < h;
order of convergence O(h? + )

Remark 7.5. Due to the smoothing property of parabolic equations the solution initially will
change quickly with time. With advancing time (with suitable boundary conditions and right
side) only the long wave contributions are remaining which change slower with time.

Therefore one would like to have a small time step at the beginning of the simulation which
increases with advancing time. This is prevented by the condition 7 < ch? for the explicit
Euler scheme (and for the Crank-Nicolson scheme if the maximum principle is to be observed).
The explicit scheme is therefore not well suited for parabolic problems.

The spatially discretised parabolic equation yields a stiff system of ordinary differential
equations. The ratio of largest and smallest eigenvalue increases with O(h~2) (it is a discretised
elliptic operator). Therefore absolutely stable time discretisation schemes are necessary. O

7.5 Time Step Condition for the Heat Transport Equation

The timestep condition 7 < ch? seems to have problems with the dimensions of the contribu-
tions. However, for the problem including a coefficient a:

ot~ “oa?
u=g on 0f)

=f in QxT, Q= (07 1)7T:(07Tend)
(37)

U = Ug for t = 0.

we get the condition ar < ch? as a has the dimension L?/T this results correctly in a dimen-
sionless number.

To bring the heat transport equation in the same form, we have to assume that A and Ciot
are constant over the domain and there is no convective heat transport. Than we can divide
by the heat capacity and get

oT(¥) A
— AT(Z) = —rp(Z 38
5~ GoAT(E) = (@ (39)
Thus we get the time step condition 7 < % The quotient ﬁ can be interpreted as

thermal diffusivity.
For a realistic heat capacity of a saturated soil of 2.88 MJ m~2 K~! and a heat conductivity
of 1.5 W m~! K~! we get a thermal diffusivity of 5.2-10~7 m? s~
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7.6 Numerical Comparison of the Time Discretisation Schemes

We solve with At =~ - h? and the initial condition

15

Anfangsbedingung Sinus

= i
-1.5 1 1 1 1
0 0.2 0.4 0.6 0.8 1
t
Zur Zeit t = 2*h*h, gamma = 0.5 (vier Schritte)
15 T T . L
Expliziter Euler
Crank-Nicolson
//\\ Impliziter Euler ---------
1r / \ i
/ \
g
05 // \ i
/ \\“.._«-\\
/ \
ERA \\ Ve
\ /
05 ‘\\ /" i
\
N /
1 \"/ \\ /
-/
15 1 1 1 1
0 0.2 0.4 0.6 0.8 1

First look at the solution
0,1/2,1.

after four timesteps using v = 1/2 and the three schemes for 6 =
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Zur Zeit t = 2*h*h, gamma = 2 (ein Schritt)

15 : . il
Expliziter Euler

T Crank-Nicolson --------

1 Al Impliziter Euler -
05 + ) R P .‘:\‘{‘ |
g of ! _
-05 r A I |
_1 - y N \ |

-1.5 I ) | |
0 0.2 0.4 0.6 0.8 1
t

Now we use 7 = 2 and perform one timestep. The stability criterion is violated for § = 0,1/2.

Expliziter Euler, gamma = 2

4 T T T T
Schritt 0 ——
o Schritt 1 --------
3r P Schritt 2 -==+-----
Schritt 3 e
2
1
s 0
-1
-2
3}t i
4 1 1 1 1
0 0.2 0.4 0.6 0.8 1
t

The explicit Euler scheme is unstable for v = 2.
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u(t)

v =1/2 and 200 timesteps.

u(t)

~v = 2 and 50 timesteps: The Crank-Nicolson scheme 6 = 1/2 seems to be stable.

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

Zur Zeit t = 100*h*h, gamma = 0.5 (200 Schritte)

Expliziter Euler

Zur Zeit t = 100*h*h, gamma = 2 (50 Schritte)

TS Crank-Nicolson
// ™ Impliziter Euler ---------
/ \
\‘
\\\\
\
\
\
\\\\ )
\\ /

~_

0.2 0.4 0.6 0.8

Crank-Nicc')Ison
Impliziter Euler

0.2

0.4
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Anfangsbedingung Step

t_ _

0.8

06

u(t)

04 r

0.2

Now we test this non-smooth initial condition

Expliziter Euler, gamma = 0.49

t=0 ——
r ' t=2%h*h e
t = 20*h*h ---eeee-
N t = 100*h*h e
08 | . .
0.6
1
04
0.2
o J E ; e
0 0.2 0.4 0.6 0.8

Explicit Euler scheme with v = 49/100: stable.
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Expliziter Euler, gamma = 0.5

0.8

0.6

u(t)

04 r

0.2

t=0 ——

t= 2% e
t= 20%h*h -
t = 100*h*h

Explicit Euler scheme with v = 1/2: this is the limit.

Expliziter Euler, gamma =1

u(t)

04 r

aniiazt

0.2 r

Atk

Explicit Euler scheme with v = 1: unstable.

0.6

0.8



u(t)

0.8

0.6

0.4

0.2

Crank-Nicolson, gamma = 2

Crank-Nicolson with v = 2: looks fine.

u(t)

0.8

0.6

0.4

0.2

...also for v = 10 (except for the strange jags).

91

t=0 ——
t = 50*h*h (Schritt 25) -------- -
t = 300*h*h (Schritt 150) -+
0.2 0.4 0.6 0.8
t
Crank-Nicolson, gamma = 10
| | ' t=0 ——
t = 50*h*h (Schritt 5) -------- -
t = 300*h*h (Schritt 30) ===+
[ i
0.2 0.4 0.6 0.8



Crank-Nicolson, gamma = 10

T ' ' Schritt 0 ———
1L Schritt 1 -~ N
Schritt 2 -
Schritt 3 s
0.8 |
0.6 |
5
04 |
0.2 |
0
0 0.2 0.4 0.6 0.8 1

Crank-Nicolson for v = 10: Non-physical behaviour around the jump in the initial condition
for the first time steps.

Impliziter Euler, gamma = 2

It =0 ———
Lr t = 50*h*h (Schritt 25) - i

t = 300*h*h (Schritt 150) -
0.8 | |
0.6 | , |

= \

04 i L \ _
0.2 | |
0 == e |

Implicit Euler scheme with v = 2: stable.
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Impliziter Euler, gamma = 10

| I I It =0 ——
di t = 50*h*h (Schritt 5) -~ -
t = 300*h*h (Schritt 30) -
08 AT _
06 | |
% ! ‘\\
04 i ’Ill LTI “‘\ .
ol L e T |
0 0.2 0.4 0.6 0.8 1
t

...and for v = 10: stable as well.

Impliziter Euler, gamma = 10

| | I Sch'rittO _—
tr - Schritt 1 ---—----- -
St Schritt 2 -
Schritt 3 e
0.8 | |
0.6 |
=1
0.4 |
0.2 |
0
0 0.2 0.4 06 0.8 .

There is no non-physical behaviour in the first time steps for the implicit Euler scheme.
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Vergleich IE/CN, gamma = 10

| I I It =0 ———
Lr t = IE 50*h*h (Schritt 5) |

t = CN 50*h*h (Schritt 5) -

t = IE 300*h*h (Schritt 30) -

0.8 t = CN 300*h*h (Schritt 30)
% & Y
04r K E— B i
0.2 i
op L e ]
0 0.2 0.4 0.6 08 1

But: the Crank-Nicolson scheme has a asymptotically better convergence rate in time.

7.7 Summary

e The solutions of parabolic equations are getting smoother over time.

e In the method of lines the PDE is first discretised in space yielding a system of ordinary
differential equations, which is discretised in time.

e Absolutely stable (and thus implicit) methods are used for time discretisation as they
are better suited for stiff systems. A very small time step is needed with explicit schemes
if the spatial resolution is high.

8 Hyperbolic PDEs - Solute Transport
8.1 Solute Transport in Porous Media

8.1.1 Flux Law

Solutes are transported in a saturated porous media either by convection of the liquid phase
or by diffusion. This processes can be described by:

o = T, + g (39)

where
Jecons cs Ju (40)
Jogn = —Ds(0w) - Veg (41)

with:
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Cs solute concentration  [mol m™3]

Jw volumetric water flux [m s™1]
D4(6,,) dispersion coefficient  [m? s™!]

8.1.2 Solute Dispersion

Molecular Diffusion

Just as in free liquid molecular diffusion of solutes occurs in porous media. However, the
diffusion is hindered by the solid matrix and in unsaturated porous media by the geometry of
the water phase.

There are different models for this reduction of solute diffusion. Two popular parameterisa-
tions are the models of Millington and Quirk [4]:

§10/3
Dseff - ?Dsmolecular (42)
and [5]
0
Dy = D (43)

@2/3 Smolecular

The diffusion coefficient of C1~ in water is 2.03 - 1079 m?2 ¢!

Dispersion

The combination of molecular diffusion, diffusive mixing and convective mixing leads to a
larger macroscopic dispersion coefficient. This coefficient is a tensor, which is symmetric with
the main directions parallel (longitudinal) to and perpendicular (transversal) to the water flow.
According to [6] and [7] for the case of pure hydrodynamic dispersion its components are

Vn; Va; .
Dy,; = [\ = M] 7 + Ml [T ]2635 (44)
1T ]2
where
Al longitudinal dispersion coefficient [m]
At transversal dispersion coefficient  [m]
Uy = g—z‘: water velocity [m s
8.1.3 Convection-Dispersion Equation
0 ‘9w S r T /= —»
(ai(x))—FV-JS(x)—i—Ts(x) — 0 (45)
0 (Oyes(& - S > L
%(‘”” = V- (D(@0)Ves(@) +V - (e Tu(@)) + (@) = 0 (46)
or if we divide by a homogeneous 6,,:
dcs (T D(Z, 0, . Lo 1
Caff) -V <(z)Vcs(x)> + V- (es0u(®) + 5@ = 0 (47)
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The convection-dispersion equation is a parabolic equation as for homogeneous dispersion
coefficient and water flux density:

D ?%*c,(Z) ., 0cs(®) Ocs() 1 .
~ 0 e + Uy () o + ot + %rs(x) =0 (48)
_62 0
det(ow 0):0 (49)
and b @
—2= 0 U,(Z
O w _
Rank[ 0 0 1 } 2 (50)

8.1.4 Effective Hyperbolicity of the Convection-Dispersion Equation

Mathematically the convection-dispersion equation will always be a parabolic equation. How-
ever, in its discretised form, the equation can get convection dominated. The distance covered
by a diffusive process is v/ Dt, while the distance covered by a convective process is vt. The
times to travel the distance h (the grid size) are then tp = h?/D and tc = h/v. The process
is convection dominated if tp > t¢. This results in the condition

h?> h hv

ooy
D vD"

From the analysis of the matrix for a Finite-Differences discretisation one can derive the
condition 2}% > 1.

This happens more often for solute transport than for heat transport as the diffusion coef-
ficient for e.g. Cl~ in water is 2 - 1072 m? s~! which leads in combination with the model of
Millington Quirk for a porosity of 33 % to a diffusion coefficient of 4 - 10719 m? s~! whereas

the heat diffusion coefficient is in the order of 5-10~7 m? s~ L.

8.2 Finite Differences for linear hyperbolic PDEs

We analyse the multidimensional, hyperbolic, linear transport equation

—+V-(u)=f inQxT

u=g onI‘m:{(x,t)EOQxTﬁ(f)-ﬁ(f)<0} (51)

outer normal

u=mwug fort=0

for a given velocity field 7: Q x T — R,
Often we limit ourselves to the spatially one-dimensional case with constant velocity a > 0:

Oou  O(au) .
5_’_ o =0 in (0,1) x (0,00)
u(0,t) = g(t) )

u(z,0) = up(z)
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Same Ansatz as for parabolic equations: Method of lines
The fully dicretized version (second order in space (central difference quotient), one-step 6
method in time) is:

k+1 k
uy () —u 1—0)a
w2t B0 o) — )
ar ki1 1
il ) — > — _
+ o, {uh (1) — uy, (mz_l)] 0 k>0, 1 ,o..,N—1
T0a ;.4 1 Tha
_ﬁu}ﬁ_ (iz—l) + Uh+ (xz) -+ ﬁu,f (xl-i-l) =
7(1—0)a 7(1—0)a
= T D) ) — O D)

The equation system has the same structure as in the parabolic case Lhulffl = Mhufl.
However,

o L) is no M-Matrix (pos. sign) if 6 > 0.
e [} is not symmetric

e L, diagonally dominant if 2 - 5% < 1

therefore 6 =0 and 7, h, a arbitrary, obvious: Ly =1
h
0#0 and 7 < —.
fa

e Remark: How do we handle the right boundary if @ > 0?7 We did not specify boundary
conditions for Finite-Differences up to now.

f = 0, explicit case

u]fL'H = Mhul;’; with M}, = tridiag (—%, 1, %)
7lal
= [[Mplloo =1+ o 1 for all 7, h

= Method is unconditionally instable in the maximum norm

6 = 1, fully implicit case

no M-Matrix!
/
Lhuffl = ufb with Ly, = tridiag(%, 1, —%)

Numerical results show, that the method is stable for 7 > C(a), i.e. if 7 is large enough
(!), but not in the maximum norm.
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with one-sided difference quotient in space (which one?).

uk'H €Ti) — uk X — a a
h( )T i (i) n (1 h9) [UQ(%') B uz(ﬂfi_n] n %[uﬁﬂ(ﬂfi) _ Ul;iﬂ(xi—l)} _0
_TzauiJrl(g;i,l) + (1 + TZ%L> u;?rl(xi) — 7—(1;0>auh($2’1) + <1 — 7'(1;0)@) uh(l‘z)

again Lhu’,j'H = MhulfL
Ly, is a M-Matrix, if a > 0. If a < 0 one chooses the other one-sided difference quotient.

ou, o u(@it1,t) —u(zi,t)
O (a1.1) = - +o(h)

and again gets a M-Matrix!
Thus the choice of the difference quotient depends on the sign of a.

e [; is unsymmetric, but bi-diagonal.

e There is no boundary condition at the right boundary as in the continuous case!

f = 0, explicit case

Diagonale
!
ub = Myub with M), = bidiag(%a, 1— %)

TG TG TG
M, :‘7 ‘1——’:1,'f <18

%1 >0 obvious
% <1 is called CFL-condition after Courant, Friedrich, Levy (1928)
graphically:
slope a < I (in the 2-t graph)
tk+1
T . g
ok - allowed

6 = 1, implicit case
Lyt =k L, = bidiag (—E, 14+ E)
h h
I1L;; oo < 1 for all % as Lp1 >1

method is unconditionally stable!

98



8.2.1 Numerical Comparison

Model problem, a = 1, h = 1/200.

u(t)

Explicit Euler,

u(t)

Explicit Euler,

12

Linearer Transport, expliziter Euler, upwind, gamma=0.5

' Anfangsbedinéung —_—

t=0.2 (80) -
t=0.4 (160) -+

T
,
/
/
\
! 0y
' 1
! [}
! [l
! [l
o 1
./
3 \
o \
! \
! \
! \
! \
! \
|
! \
! \
! B \
\ \
H \ !
H \
i . 1
! \
! \
! \
: |
; |
N 1
: |
! |
: |
\ : |
[} N ]
\ |
\ |
/
|
) 1
/
/
/
1 1

0.2

upwind with v =1/2.

1.2

0.8

Linearer Transport, expliziter Euler, upwind, gamma=0.8

' Anfangsbedinéung —_—

t=0.2 (50) -
t=0.4 (100) -+~

‘
/
!
\ !
\ g \
.
\ . i
1 I 1
[l : s 1
\ ! ' -
1 ! 1
1 ! 1
1 ! 1
1 N 1
1 H 1
[} ! ]
[} ! ]
[} ! 1
[} ! 1
[} ! 1 N
[} ! 1
) ! ]
1 1 1
\ H :
\
\ ! \
' 1 H
' 1 H
1 1 H .
1 1 H
i 1 H
1 1 '
[} 1 1
[ 1 1
1 1 1
1 ' 1
[} 1 1
[} ! i
| i | -
| '
\ ' !
I
1 [l H
) 1 '
\ !
\ !
\
R
1 1 1

upwinding with v = 4/5.
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Linearer Transport, expliziter Euler, upwind, gamma=1

12 ' ' IAnfangsbedin('gjung —_—
t=0.2 (40) -
t=0.4 (80) -+

s
0 0.2 0.4 0.6 0.8
t

Explicit Euler, upwinding with v = 1.

Linearer Transport, expliziter Euler, upwind, gamma=1.2

1.4 | Anfangsbe'dingung — ' T
t= 1*gamma*h --------
12+ t= 3*gamma*h oo

u(t)

Explicit Euler, upwinding with v = 1.2: Courant condition

0.1

0.2

100

0.4

is strict.

0.5



Linearer Transport, expliziter Euler, upwind, t=0.4
12t gamma=0.5 (160) —— ' -
gamma=0.8 (100) --------
gamma=1.0 ( 80) -+
1 -
08
£ 06
=]
04
0.2
0

1
Explicit Euler, upwinding: stable for v < 1, is getting better with increasing .

Linearer Transport, impliziter Euler, upwind, gamma=0.5
1.2 ' ' IAnfangsbedinégung — 1
t=0.2 (80) -~
t=0.4 (160) ---------
0 0.2 0.4 0.6 0.8 1
t
Implicit Euler, upwinding with v = 0.5.
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Linearer Transport, impliziter Euler, upwind, gamma=1

u(t)

Implicit Euler, upwinding with v = 1.

' Anfangsbedinéung
t=0.2 ( 40)
t=0.4 ( 80)

0.6 0.8

Linearer Transport, impliziter Euler, upwind, gamma=2

12

u(t)

Implicit Euler, upwinding with v = 2.

0.4
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' Anfangsbedinéung
t=0.2 ( 20)
t=0.4 ( 40)

0.6 0.8



Linearer Transport, impliziter Euler, upwind, t=0.4

1.2 + T T i gamma=0.5 (IlGO) ]
gamma=1.0 (100) --------
gamma=2.0 ( 80) -
1 I -
0.8 | |
= 06
=}
04
0.2
0
0 0.2 0.4 06 0.8 .

Implicit Euler, upwinding: stable for all v but diffusive. Is getting worse with increasing ~y

Linearer Transport, impliziter Euler, zentral, gamma=0.1

Lz r | I IAnfangsbedinégung -
t=0,2 (400) -
2 =04 (800) -

u(t)

0.4 0.6 0.8 1

Implicit Fuler, central differences with v = 0.1.
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1.2

u(t)

Linearer Transport, impliziter Euler, zentral, gamma=0.5
T

0

' Anfangsbedinéung — 1

t=0.2 ( 80) --------
t=0.4 (160) ---------
i ' | 1
Y \ \
] v 1
(:\ \ \
i ¥
iy,}}_}-\ﬁ;«_fy‘{}i‘éﬁ'.j";{f‘.ﬁ‘{:>=,a,n'. LI O N
1 1 1 1
0.2 0.4 0.6 0.8

Implicit Euler, central differences with v = 0.5.

1.2

Linearer Transport, impliziter Euler, zentral, gamma=1
T

' Anfangsbedinéung — 1

t=0.2 (40)
t=0.4 ( 80) -----eooe
\ H 7
; Y I
! 1 I
o R
3 I
— K -
R ! \ ,,'
=) ! \ '
i . !
; : :
i \ i
! [} 1 —
" [ i
\ ,
u \ / \ 1
IH \‘ ] \"..
i
.
)
0 _.‘-.-f‘f‘:".?{.‘-‘,‘?!glﬁ:"'w'ﬁ-"’-l'j‘u e =
1 1 1
0 0.2 0.4 0.6 0.8
t

Implicit Euler, central differences with v = 1.
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Linearer Transport, impliziter Euler, zentral, gamma=2

12 ' ' IAnfangsbedin('gjung — 1
t=0.2 (20) --------
t=0.4 (40) -

1 i ) |
; g 1
0 0.2 0.4 0.6 0.8 1
t

Implicit Euler, central differences with v = 2.

Linearer Transport, impliziter Euler, zentral, gamma=10

1.2 ' ' IAnfangsbediné;ung — 1
t=0.2 ( 4) -~

=
S
=}
BRIN
":\"A ,'u‘v\",\ e i
o S S
[P AR IR S
,
‘ .
O Forp sy
1 1 1 1
0 0.2 0.4 0.6 0.8 1
t

Implicit Euler, central differences with v = 10.
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Linearer Transport, impliziter Euler, zentral, t=0.4

1.2 gamma=0.1(800) —— . - ]
gamma=0.5 (160)
gamma=1.0(80) )
1} gamma=2.0(40) 1
gamma=10. ( 8)
08 |
= 06
=]
04}
02+
o
| 1

Implicit Euler, central differences: diffusive, oscillations are decreasing with increasing ~.

Linearer Transport, gamma=0.5

12 r Anfangsbedingung ——

expliziter Euler upw, t=0.5 (200) --------
impliziter Euler upw, t=0.5 (200) -
impliziter Euler zen, t=0.5 (200) -

u(t)

Comparison of all methods with v = 0.5: Explicit Euler with upwinding is the method of
choice.

8.2.2 Numerical Diffusion
A closer inspection of the discretisation error yields an explanation why the one-sided differ-

ences are working well:

106



We analyse the one-sided difference quotient with implicit Euler scheme:
Taylor series expansion yields:

EXT

!
@: u(az,t-l-T)—u(a:,t):@ _zﬁg Lo
ot T M lgprr) 2 O (a4
!
l 1
%: u(ac,t—i-T)—u(:U—h,t—i-T):gu _hg%; o2
x h Tl ptr) 2 0T (g 14r)
For sufficiently smooth w:
L Pu O
ou ou ot oot 0%u 0u
e g, =0 L o2 o =0
“ +a- g _ 0
otox Ox?
thus
Pu_ a0
o2 Ox?
If we insert the exact solution in the difference equation we get:
u(z, t + 1) —u(z,t) u(x,t+7) —u(x —h,t +71)
+a =
T h
ou 8u> <7‘ 0’u  ah 82u> 9 9
=5 +a— N353+ 573 +O(h? + 72)
(375 0 ) | (4 447) 2002 2022|440
2 h 2
—<8u+aau> e rah O +O(h? +72)
ot 97 ) | (2417 2 02y

This implies:

e The leading term of the discretisation error acts as a diffusion term. Note that the sign
is correct.

e The discrete method can also be interpreted as a second order exact (!) discretisation of
the Convection-Dispersion equation

@—i— @_a%’—i—dh@_o
ot aax 2 ox?

The diffusion coefficient depends on the position.

e The central difference quotient can be stabilised by addition of an ,artificial* diffusion
term.
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e Because of % = az% the time discretisation error of the implicit Euler scheme can
be interpreted as a diffusion term in space. This explains the stabilisation of the central
difference quotient for a large enough 7 (!).

e The upwind-method smears steep fronts in the solution.
= This is called ,,numerical*“ Diffusion.

8.3 Method of Characteristics
Under the assumption V - v = 0 (source/sink free flux field) and f = 0 we get from :

ou
E—i—v-Vu—i—(V_‘ov)u:O

ou

This is called the ,,non-conservative“ form of the hyperbolic equation.

Let (2(s),(s)) be a curve in  x T’ parameterised with s.

Calculate the derivative of u in the direction of the curve

~

d - ou ox; ou ot
— |u(&(s),1(s))| = Z : o ac (53)
il | = Oilaie) 95l Wlaeie) 95l
Up to now the curve was arbitrary. Now we choose:

A £(0) = t

ds

o (54)

€T . 2 .

| =i (2(s5),1(s)), #i(0) = o,

This is a system of ordinary differential equations for the curve which is only determined by
the data of the differential equation.
Evaluation of the derivative along this special curve yields:

% [u(@(s),f(s))} = Vu(i(s). i(s)) - 0(@(s), 1(s)) + — =1 =0

this is the PDE

Conclusion: Along the ,,Charakteristic® the solution of u is constant.
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Example 8.1. We use 2 = R, i.e. no boundary condition, only initial condition, and v = a =
const.

Charakteristic:
di(s) . - choose  as inde-
ds ’ (0)=0 = [fe) =5 pendent variable
1D!
N\
dz(s)

0 aomm = [fmmred] oo
S

///£V —slope a in (t,a)

o

IS

How can u(z,t) be determined?
,Backtracking “ of the Charakteristic: Determine (x,t) to zo(z,t) such that
x = xo(z,t) +a-t
——

unknown

— xo(z,t) =z —a-t

and

‘U(ZL', t) =up(x —a-t) ‘ ,Displacement of the function ug to the right (a > 0).

This also works for non-steady initial conditions!

uo(x):{1 x>0

0 sonst

The jump moves with the velocity a to the right.

1 z>a-t
u(m,t):{ -

0 sonst

Generally (with boundary, multidimensional): Define the ,tracking operator* ®(z,t,t) € Q
with:
i. e. ®(xz,t,t') traces the point (z,t) up to the time ¢/ and then yields the new position.

SO].Ve fOI‘ to = t7 xo = 7.
Set ®(z,t,t') = (s*), such that £(s*) =1'.

{uo(q)(x,t,O)) if ®(x,t,0) € 0
S

(2.1) = )
= g(t") for ®(z,t,t")

o2

109



8.4 Particle Tracking

Continuous versions of the method of characteristics are possible (e.g. Ellam, Modified method
of characteristics...) but difficult. A rather straight forward version is particle tracking.

In particle tracking space and time are treated as continuous but the concentrations are
discretised. The solute is represented as a set of particles each of which has the same mass.
The particles are propagated with the velocity field and afterwards concentration in a grid is
calculated by counting the particle number per grid cell and dividing it by the volume of the
grid cell.

If P(%,t) is the probability for a particle to be at location & at time ¢ one can show ([8] that
the time dependency of P(Z,t) is given by the Fokker-Planck-Kolmogorov Equation (FPKE)

= 2
P& _ 0 (4@ P ] + %% [B(%)P(&,1)] (55)

ot - Or

under the conditions:

e A(Z) is the mean of the jump velocity
e B(¥) is the statistical dispersion tensor of the jump velocity around its mean

e higher moments cancel out

This equation is analogue to the Convection-Dispersion equation if

0,C(Z,t) = P(Z1t) (56)
To(Z,t) = A) (57)
2D(Z,t) = B(Z) (58)

To get a formal equivallency with the FPKE (Equation8.4)) one has to rewrite the CDE:

cs (7, oL D z, o 2 _ o
W _ —3‘1 [(vw(m,t) + 3178(96”) chs(:c,t)} + ;aa;p? 2D(Z, 1)0ucs(7,1)]  (59)

and use A(Z) = T,(F, t) + %‘

While A(Z) and B(Z) are stationary @,,(Z,t¢) and D(Z,t) are time dependent. However it
has been shown in practise that the FPKE can still be used.

8.4.1 Numerical Implementation

We want to determine the position z at time ¢ of a particle that is initially at position Zy at
time to.
The algorithm is given by
t+7

F(t+71)=2(t)+ /ﬁ(f(t/))dt/—l—\/QD(x(t))T-Z (60)
t

where Z is a vector of d independent random numbers drawn from a normal deviate (with zero
mean and unit variance). This approximation is valid if the time step is not too large. Else
Especially the random jump for the dispersion can lead to strange results. It makes therefore
sense to obey a (local) step size restriction: Z(t + 7) — Z(t) < ¢ where ¢ usually is a fraction of
the grid size of the velocity field.
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Convective Term For the displacement by convection by a stationary flow field ¢(Z) we get
%—f = ¢(Z). We can separate the variables and obtain by integration:

xT

1
/g(f)d‘r =t—1p (61)

zo

For a constant flux this of course just yields AZ = ¥/r. For our interpolated flux field v =
axr +b
cy+d | we get e.g. for the x component:
ez+ f

xT

1 1 ar +b
dr = —1 = 2
/ax—l—bx a0g<a$0+b> ’ (62)

Zo

or x = (xg+ 2) exp(at) — g
(xo + S) exp(at) —
Z=| (yo+ %) exp(cr) —
(z0 + %) exp(er) —

(63)

o [0 19 |o~

If the particle crosses the boundary between two grid cells, the step has to be interrupted at
the boundary and continued with the new velocity coefficients.

Alternatively the velocity field can be integrated with a stable numerical integration formula
of matching order like the midpoint method:

" I S
Tpt1/2 = Tn+ 57'?}(.%”) (64)
Tyt = Tn+ 70(Tpy1)2) (65)
Diffusive Term The additional term %f’t) in the effective convection velocity is necessary

to avoid unphysical results. However, it can only be evaluated, if the variation in D(Z,t) is
smooth enough to calculate a first order derivative. This is for example given if the change in
the dispersivity is just due to small velocity changes.

If there are jumps in the dispersion coefficient due to changes in porosity or water content
other means are necessary. One possibility is to introduce a reflection principle. If a particle
reaches the interface between two materials, an additional random number is drawn. If the
random number is larger than a reflection coefficient, the particle crosses the interface else it
is reflected. [9] derive the condition Py = % for a particle to enter (or remain in)
material A and P, = 1 — P) to enter (or remain in) material 7. The same criterium is used for
particles common from either side of the interface.

An additional problem can arise if the porosity /water content in a grid cell is so low that
the entering of one particle would already lead to unrealistic concentrations. In this case the

particle should be always reflected at the interface.
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Timestep Control In the simplest form the same timestep is used for all particles. The size
of the timestep is then limited by the largest velocity to fulfill the CFL condition. This has
the advantage, that the positions of all particles are known after each timestep to calculate
e.g. the movement of the center of mass of the particle distribution or its spreading.
Alternatively the timestep can be choosen for each particle individually. The timestep is
then only very small if the velocity at the position where the particle is at the moment is high.
If for example we use the integration formula and have calculated the velocity ¥(7,1/2) we

can determine the timestep size as 7 < where ¢ is a constant smaller than one.

C
_ ] o 0@ 1/2)ll2” 77 o
However, if the convection velocity is very small, diffusion can be the dominating processes.

The timestep limit is then given by 7 < m. The total timestep condition would then
be

ch
max(||7(Z,,11/2)[2. 2| D(z(?))||2)

For diffusion dominated problems this limit can get rather severe.

T <

Calculation of Concentrations While the calculation of spatial moments of the solute is
possible without any spatial discretisation the particles have to be projected on a grid to
calculate concentrations:

N
eo(Xet) o0 > miWe(i(t) — Xo) (66)
=1

where Xc is the centroid of grid cell ¢, m; is the mass of the particles and W, is a projection
function selecting particles inside the grid cell ¢. This counting can be done for each particle
individually, which makes the method trivially parallel.

If a particle reaches an outflow boundary, a counter in a field of time intervals can be
increased yielding a breakthrough curve.

8.4.2 Initial and Boundary Conditions

For the initial condition particles are distributed randomly according to the solute concentra-
tion in regions where solutes are present.

No-flux boundary conditions are easy to realize by implementing a refleciton at the boundary.
Outflow boundaries are also easy. The tracking of a particle is terminated if it reaches an
outflow boundary. Dirichlet boundary conditions are more difficult to realize as the number of
particles increases then very rapidly.

8.4.3 Assets and Drawbacks
Pro

Particle tracking is nearly completly free of numerical dispersion for convection dominated
cases

No time and space discretisation necessary

e It can be easily parallelized

Implementation is straightforward
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e Linear sorption and decay can easily be integrated
e Easy to implement
Con
e Discrete concentrations = chemical reactions are hard to realize
e Time-dependent boundary conditions
e Diffusion dominated flow is very slow

e Random fluctuations in concentrations occur which are proportional to the square root
of the partical number = high accuracy is very expensive

e High quality random number generator necessary

8.5 Summary

e Hyperbolic equations of first orders allow (in contrast to elliptic and parabolic equations)
non-steady solutions if they are solved by the method of characteristics. This is of course
no classical solution.

e The method of lines can be used, but not in combination with finite differences in space
(central differential quotient). For first-order discretisations we obtain stable methods
with numerical diffusion. Up to now we don’t know a second-order method.

8.6 Finite-Volume method for hyperbolic equations

The following part is oriented on [10, Chap.. 4].
We discretise the equation

t

Ou  O0fw) _y 4 (0,1) x (0, 00) (67)

ot ox

with suitable initial and boundary conditions with a Cell-Centred Finite-Volume scheme.
For a purely convective equation we have the flux function f(u) =a-u with R — a > 0.
If we integrate the equation again over the grid cell g;;

ou af (u)
— dz + de =0
T /g T

gi; Ot O

i i
permutation (68)
d N

= < u(x,t) da:—l—f(u(xH%,t))—f(u(xH%,t)):0

Gij

The (classical) solution of fulfills for arbitrary intervals w (partial integration).
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For a fully discretised equation we also integrate over an interval in time (t*, t*+1):

1
h/ u(z, t*h) dz =

cell average at time

tk+1
k+1 k41
1 |1 [t 1/t
k
= — u(x,t”) de —— | — u(x, 1,t)) dt — — w(x,_1,t)) di 69
p vt e 2 Sty 0) a D [ (g 0) arl - @9)
cell average at average flow over the average flow over the
time t* boundary T in time boundary z, 1 in time
2 2
interval (tF ¢tF+1) interval (¢F, tF+1)
This equation describes the exact evolution of cell averages.
Finite-Volume methods use the cell averages
R 1 k
U =— [ wu(z,t¥) dz + error
h ),
as unknowns. The fluxes over the faces are the approximated quantities.
For an explicit scheme it is obvious to choose
1 tk+1

/ f(u(a:i+%,t)) dt = f(Uz‘k, Ui’il) + error (70)

T Jtk N————

=Fk
itd
et
k
Fho
Uk U?C‘Fl
tF . : 4
xX; xH% Li4+1

F is called numerical flow function.
The fully discretised method is obtained by neglect of the error terms. and yield:

T
Uf+1 = Uzk - E(f(Uzk7 Uz'k—l-l) - f(Uzka Uzk—l)) (71)

As in the explicit Finite-Difference method U™ does only depend on UF |, UF, U ko

7

Example Rearranging and the choice F(Q, Q') = a- Q (for a > 0) yields:

Uik—’—l — Uzk Uzk - Uzk—l
+a- W =0.
T

This is the explicit upwind-method. In this case the Finite-Difference and Finite-Volume
method are equivalent.
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Finite-Volume methods are globally conservative:

mass

total at time tFH1 =

2

h- Uk+1 Zh( (FUE UL - FUELLUD))
1=0

/ cell average!
over
all cells mass, envergy

in cell ¢

S S (—rF Uk Uk ) - FUE L U)
= 1 ]

N~ special fluxes defined by the
mass at time
I boundary conditions!

all internal fluxes cancel each

other.

Finite-Volume methods ezactly represent the conserved quantity. This is not true for Finite-
Difference methods in general (i.e. with non-equidistant grids, variable coefficients, non-
linearities).

8.6.1 Requirements for the flux function

The analysis of FD methods delivered the two important criteria consistency (local truncation
error, local approximation) and stability (error propagation). This is the same for FV methods.
To guarantee consistency two requirements for the flux function are necessary:

1.
F(Q,Q) = f(Q) if u constant in x and ¢, the flux evaluation should be
for each Q! constant.

2. steadiness of the flux function:

|F(Qs, Qiv1) — f(Q)] £ Lmax(|Q; — Q|, |Qi+1 — Q))-

The numerical flux should converge to the correct value if Q;, Q;41 — Q converge.

For the stability of explicit schemes the CFL-condition is a necessary prerequisite (but not
sufficient as the unconditionally instable method shows).

In hyperbolic equations information spreads with a finite velocity. This is shown by the
method of characteristics.
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t I:%(t—to)—‘rmo

(zo0,t0)

xz=a(t—to) + o

(o, 0) z ] ) oz
numerical sphere of influence in an

explicit scheme

Request: Characteristic has to be contained in the numerical sphere of influence, i.e.

h aT
la| < — = ’— <1
T h

V= ‘%‘ is called Courant number.

8.6.2 Unstable Flux Function

As
1 tk+l
FOSUED~ T [ fue ) d
T tk 2
application of the trapezoidal rule yields
1
FWFUR) = 5 [#0F) + £W05)]. (72)

F is consistent (fulfills 1) and [2| from above).
For f(u) = au we obtain the scheme

1 1
Ukt = yk - % (2 [an v ankH} -5 [an_l n anD
1
= Uzk: — aT % (Ui’z_l — U,Lk;_1>

central Difference

This method was found to be unconditionally unstable in .

8.6.3 Upwinding Method

Idea: Use knowledge about characteristics and information spreading in the numerical flux
function.
Let a > 0. The form of the characteristic
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suggests that F(UF, U]’Zrl) should only depend on U;. We set

(A
in our model problem
7
k k k k
F(U17UZ+1):f(Ul) = CLUvZ
and obtain the flux function for the scheme

T
UF = Uf — 2a (Uf - Uf_l) . (73)

In the context of a Finite-Volume method there is a graphic interpretation. As the values
Uf are cell averages we can also interpret them as piecewise constant functions (Figure @):

Uk, aT
—
k
Uiio
k
U; —
h ~1
k —a T
Uit
] ] ] ] ] ] ] ]
T T T T T T T T
Ti—1 X Titl  Tit2 Ti—1 X Tt Tit2
time t* time t*+t1 =% 4 7
(a) (Reconstruct) (b) (Evolve)

According to the method of characteristics this function is propagated in the time interval
7 by a- 7 to the right. Courant 4= <1 <= a-7 < h means that the travel distance has to be
smaller than one grid cell (Figure [b)).

The cell averages at time t*T1 are obtained as averages over this unsteady function in each
cell:

Ukt = S Tpk g %Uﬁ - C%Uf_l + (1 - C‘TT) Uk

convex combination, as 4T < 1!

= maximum principle

—Uk - %a (Uﬁ _ Uf_l)

This is identical to !
For a < 0 a similar method is obtained.
For an arbitrary a

f(Uika Ui]fkl) = max(a,, 0) ’ Uzk + min(av 0) : Ui]il
aUf a>0
B ank_l a<0
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8.6.4 Godunov Methods
The method described above can be generalised as REA method (Reconstruct, Evolve, Average):

1. Reconstruct a piecewise polynomial function from cell averages. In the simplest case a
piecewise constant function.

2. Solve the hyperbolic equation with this initial condition exactly to obtain a solution at
time t + .

3. Compute new cell averages from this solution.

This method can be generalised to more complicated equations and was first proposed by
Godunov in 1957 for the (non-linear) Euler equation of gas dynamics. It is also the starting
point for higher order schemes which reduce the phenomenon of numerical dispersion.

8.7 Higher order schemes with REA

In the framework of REA one can obtain second order precision if the reconstruction step is
improved: linear instead of constant reconstruction:

u(x)
evolve /7/
I
1
1
1
I 1I
1(J,
T
a7 h—a-T
x7_% l‘H_%
cell ¢

In cell i: Set

Attention:

1 x’H’% k
E' Uik+ai(:v—xi) dZL‘:Uik

i—

ol

the slope of does not influence the average thus the method is conservative.
The choice of g; is discussed below. Let us assume that we know o; already.
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la|T

For Courant 5~ <1 and a > 0 evolve and averaging yields:

~ a-T - h_a.T

h- UM :a-T-uf_1<<xi_1 —1——) —a-T> +(h—a-7’)uf<<xi+1 —7) —a~7’>

—— 2 2

area T
evolution
of the profile

evaluation point

f%:miflJr%(hfa-T)

1
=a-7- (Uf1+afl(%4+2(h—a‘r)—%4)>

+(h—a-¢)<Uf—a§<%— a% —%))

=a-7UF  +(h—a-1)UF + %(h —a-1)oj 4 — (h— a-T)%af
divide by h
| : :
— |UF =UF—ar (vF-vk,) -2 = (1- %) (oF —ks) (74)
upwind + correction depends on slopes
How do we choose o; 7?7 Three obvious possibilities are
Uk ., — Uk
central: ok = % (Fromm)
Uk — Uk
upwind: ok = ZTH (Beam-Warming!) oi-1 needs Ui—2! (75)
Uk . —UF
downwind: of = % (Lax-Wendroff)

It has been proofed that

Satz 8.2 (Godunov, 1959). All monotony preserving, linear methods are at most first order
accurate.
See [10] O

Monotony preserving = does not introduce new minima or maxima.
Godunov states: There is no linear method (i.e. U*! = My, ;U k), which is second order
accurate and monotony preserving.

8.7.1 Slope Limiter Methods

How can Godunov be circumvented? With non-linear methods! (though the problem itself is
linear)
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Idea: Choose UZ’-“ depending on the solution.
As af has to be constrained, this methods are called slope limiter.
One possibility to measure oscillation is the total variation TV:

TV (U’f) — i Uk — Uk |

here: infinite domain.
in the infinite case: the row converges, i. e. U; — const for ¢ — +1 necessary.

Definition 8.3. A method is called total variation non increasing (T'VNI), if for each step
V(UMY <TV(U").
O

Satz 8.4 (Harten 1983). A TVNI-Schema creates no new extrema in the solution. If U* is
monotone, U**1 is monotone as well.

Proof: Given U*, assume that UF < Ulﬁl (works also in the other direction). Obviously:

TV(Uk): Z ‘Ui_Ui—l} = Z Ui_Ui—IEUfo_UEoo
0

1=—00 >

1=—00
Telescope

If UF*! has a local minimum at Uf:

]

J 00
TV (Uk+1) -y ‘Ufﬂ - Uk_*ll‘ U1~ Ui+ > Ui~ Ui
. —_—————

1=—00 =742 J
<0 g1l .
_ 7kl k+1 k+1 k+1 k+1 k+1 ST (It
=U;" - UZ + U7 UL +US = U, i1

= Ukt - UF Uttt —us) <Tv(ut) 4 D

=TV (U*) >0 assumption

they can’t change in a single step! Courant!

Therefore it makes sense to search for methods which do not increase the total variation.

In REA methods the total variation is completely determined by the reconstruction. Evolve
and average do not increase the total variation (without proof).

A potential change for the slope is:

i =

Uk —uUk Uk —-yk
oF minmod< T =1

h ’ h
downwind upwind
slope slope
(LW-d) (BW)

with
a ifla] < |bland a-b >0
minmod(a,b) = ¢ b if |b| < |a| and a-b >0
0 ifa-b<0(i. e. different sign)
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Idea: Take the smaller slope (keep variation small) or 0, if there is a local extremum.

What happens at a discontinuity?

. . _ 1
Assumption: Cr = 3

Cr=

N[

slope 0 everywhere

regonstru¢tion
1
i 2
\w11h slope —2 — ...

N

Observation: the reconstructed slope could be a factor 2 larger without violating the monotony.
Actually there is the ,,Superbee® limiter which still has the TVNI property:

a if |a| > |b]
b it |b] > |af

5 —

ok = maxmod <0§1), 01(2)) , maxmod(a, b) = {

with

h ’ h
Ui]fi-l — Uzk Uzk — Uik—1>

Uk . — Uk Uk _yk
Ugl):minmod( AR L2 i1

7

(2) :
= d| 2
o minmo ( - , -

Remark: if the sign is different 051) = 01(2) =0= Uf =0
Example:

o = minmod(0.8,2 - 0.2) = 0.4

o? = minmod(2 - 0.8,0.2) = 0.2

0; = maxmod(0.2,0.4) = 0.4

if the slopes are very different the result is determined by the smaller one. If both slopes are

% the result remains %

e There are many different limiters

e The criteria for a TVNI limiter function are well known but are not covered in this script
(see [10] and the cited literature)
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8.7.2 Numerical Comparison

Again the model problem, a = 1, h = 1/200.

u(t)

Minmod with v =

u(t)

Superbee with v = 0.8.

12

0.8

0.6

0.4

0.2

1.2

Linearer Transport, expliziter Euler, upwind, minmod, gamma=0.8

' Anfangsbedinéung —_—
t=0.2 (50) -~
t=0.4 (100) ---------
0.2 0.4 0.6 0.8

Linearer Transport, expliziter Euler, upwind, Superbee, gamma=0.8

' Anfangsbedinéung —_—

t=0.2 ( 50)
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£=0.4 (100) -+
0.2 0.4 0.6 0.8
t




Linearer Transport, Vergleich verschiedener Verfahren, gamma=0.8, t=0.4

' EE upwind - ' T
1+  IE upwind (gamma=1)
minmod -+
superbee
0.8
0.6
5
04
0.2
0

Comparison of different methods with v = 0.8.

8.7.3 Summary

e The Satz of Godunov shows that all monotone linear methods are only first order accu-
rate.

e This results in slope-limiter methods, which switch between first and second order ac-
cording to the solution (and circumvent the Satz of Godunov due to the non-linearity).

9 Solution of non-linear Equations - Sorption

9.1 Sorption

Solutes can be bound (adsorbed) to the surface of the solid phase. The nature of this binding
varies for different solutes and solid phases.

Macroscopically sorption is described by sorption isotherms. They are relations between the
concentration in the liquid phase and the mass or amount of substance of adsorbed solute. The
easiest sorption isotherm is a linear relation. It assumes, that there is an unlimited amount of
sorption sites, where each binding has the same energy. Thus the amount of sorbed material
only depends on the concentration in the fluid phase and a material parameter characterising
the intensity of the binding. These assumptions are true for low concentrations.

Cssorb — KSCS (76)

where K is the sorption parameter [m® kg~!] The sorbed amount of substance is given by

nssorb = pbcssorb = pbKSCS (77)
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where py, is the bulk density of the soil [kg m™2], i.e. the mass of the solute phase per volume
of soil.

If the number of sorption sites is limited or the sorption sites have a different energy (which
is always true if the solute concentrations get high), the sorption isotherm gets non-linear.
Two popular models are

Freundlich Isotherm

— n
Cssorb - KF Cs

assumes that the energy of the sorption sites decreases logarithmically
Langmuir Isotherm
K1 cmaxCs
Cssorb =
1+ Kpcs

assumes that adsorption is in a monomolecluar layer, all sorption sites have the same
energy, there is no interaction between neighbouring sorption sites.

Convection-Dispersion Equation with Sorption
The Convection-Dispersion equation including sorption can be written as

9 [0uCs(T) + PbCos (C5(T))]
ot

— V- (D(&,00)Ves(7)) + V- <c5fw(f)> Y@ =0  (78)

For a linear sorption

K
Owes + PbCsgp, = Ouwes + ppKscs = (1 + ,09 S) Owcs

w

where the dimensionless term R =1 + ”Z—KS is called retardation factor. The solution of the

pure convection equation for linear sorptign thus is the same as without sorption but with a
time scale stretched by the factor R.
For non-linear sorption isotherms we get a non-linear partial differential equation.

Langmuir Isotherm
If the Langmuir isotherm is used it is still possible to implement a rather simple explicit
model. With n, = 0cs + pb[ffrcT"‘szC: have the equation

Ons (@) _ matt — s, _ F(#, )
ot T v

k

Y we can calculate

if we know ¢
k+1 _ k —_—
ng, - =mng, +TF(Z,t7)

k+1
s

To get ¢ we have to solve the equation

k+1
KLCmaXCS +

k+1 _ k+1
ng =05 +pp——7
’ ’ 1+ Kpckt!
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k+1

T and we as the concentration has to be positive we get

This is a quadratic equation for ¢

the result:
1 2
E—H =57 (KLnIsH_l - pbKLCmax - gw) + \/(pbKLCmax + 0y — KLn’;Jrl) + LLI(LHwTL’Sngl
2K10,

For the Freundlich Isotherm the equation
nlstrl _ esclstrl + pbKF(clstrl)n

is not directly invertible and it is necessary to solve the equation numerically.

9.2 Solving non-linear Equations

If we use the Freundlich sorption isotherm we have to solve the equation

P =ni™ = 0.l + pKp ()" =0

k+1

for ¢

each grid point. There are different methods to find the root of a non-linear equation.

9.2.1 Interval Bisection

The first method for the solution of non-linear equations we want to discuss is interval bisection.
Idea: Let us assume that an interval Iy = [ag, by] exists, where f(ag), f(by) have different
sign, i.e. f(ao) - f(bo) < 0. According to the intermediate value theorem (for non-steady
functions) f has at least one root in [ag, by).
This leads to the following algorithm:
Given: Iy = [ag, bo] with f(ap) - f(by) < 0 and tolerance ¢;
for (t=0,1,...) do
z; = 3(a; + by); {center of the interval}
if (f(xz¢) =0) then
break; {ready!}
end if
if (f(a)f(z¢) <0) then
ar+1 = ag; byp1 = xy; {root in [ay, x4]}
else
At41 = Tt bt+1 = by; {f(fl,‘t)f(bt) <0 as VZ(:Et) = VZ(at)'}
end if
if (b —a; < ¢) then
break; {error is acceptable}
end if

end for

In each step we have
at < app1 < b1 < by

and

1 41
|bi+1 — apy1 =§|bt—at\ = <2> |bo — ag].

Therefore the scheme has the following properties:
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o 1
e The convergence rate is 5 ber step.

e Bisection is numerically stable (insusceptible to cancellation errors) and therefore the
method of choice for monotone functions.

e Unfortunately the method can only be applied for real functions (not for e.g. complex
functions).

9.2.2 Fixpoint Iteration

Root finding can be reformulated to the search for a fixpoint.
For a given f : I — R we formulate the auxiliary function

g(x) =z +of(x) with 0 # 0 € R.

Obviously
g(x) == & z+of(z)=2x
& of(x)=0
& f(x)=0

The search for roots of f therefore is equivalent to the search for fixpoints

g(z) ==z

of g.
The search for fixpoints is analysed by the following Satz.

Satz 9.1 (Banachscherﬂ Fixpunktsatz). Let I C R be a non-empty, closed interval and g :
I—-1Ta ,,Lipschitzﬁ-steady“ transformation

l9(x) —gW) < dlz—yl wzyel
with ¢ < 1 (contraction). Then the sequence generated by
2D = g(z)

converges for arbitrary initial values to the unique fixpoint z € I.
An approximation for the error is given by:

t
2® — 2] < —L|2® — 2D < L) _ 4O,
1—g¢q 1—¢q

Proof: As g : I — I the sequence () = g(z=Y) = g(g(z®2))) = ... g* () is well defined.
Additionally we have:

°Stefan Banach, 1892-1945, polish mathematician.
SRudolf O. S. Lipschitz, 1832-1903, German mathematician.
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Now we show that the z®) is a Cauchy sequence. Let ¢ > 0 and m > 1 be given
|x(t+m) _ x(t)l < |$(t+m) _ m(t—&-m—l) + x(t+m—1) _ x(t+m—2) 4.+ .T(t+1) _ .”L'(t)|
< |1,(t+m) . :L,(t+m71)| + |x(t+mfl) . l,(t+m72)| o+ |£C(t+1) - $(t)|
< gtz = 2O 4 gt =212 O 1 4 g2 — 2O

< (qt+m71 + qt+m72 +ot qt)\x(l) _ x(0)|
1=q"

<
S

Iz — 20 < ¢ for t > t(e) large enough.

Due to the completeness axiom every Cauchy sequence converges to a limit z € R.
Because of g : I — I and I closed we have z € I.
Error estimate:

|2t — O] < |gtrm) g tm= 420D 4 2] (as above)
< gMz® — 20V 4 4 glz® — 2D
<(@"+...+ g2 -2

_9 @) -1
<
< e -2t

) converges to z for m — oo, the right side is independent of m, therefore

t
lz— 2@ < L 120 gD < L0 40
l—q l—q

Uniqueness: Let 2/ # z be an additional fixpoint then
2 =2=l9() =gz <qlz=2| & 1<q (2=2#0).
This is a contradiction to ¢ < 1 (Lipschitz). Therefore z = 2’. O

Remark 9.2. A sufficient condition for the Lipschitz steadiness of g |¢'(x)| < ¢ for all x € I.
From to the mean value theorem of differential calculus we conclude:

M?:Z@)Zd@%ﬁg@%wMDzdﬁﬁx—w
= |g(z) = g(y)| = |9 (E)lz — y]

and thus Lipschitz steadiness if ¢'(z) < ¢ for all x € I.
If additionally ¢ < 1 we get the contraction property. O

Remark 9.3. |¢/(z)| < ¢ is a sufficient condition for Lipschitz steadiness.
For the function |z|:
[z = [yl | < [z =yl
we get Lipschitz steadiness with the constant 1.

The advantage of Banachs Fixpunktsatz is that the iteration function g does not have to be
differentiable. (]
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Geometrical Interpretation of the fixpoint iteration

g9(71)

9(x2)
g(x3) 9(x)

9(o)

Zo Ty X3T2

Remark 9.4. Banachs’ Fixpunktsatz can be generalised to functions g : G — R", G C R".
Accordingly we demand again

lg(z) — gl < qllz -yl r,ye G

with ¢ < 1.
The iterative solution of Ax = b corresponds to the search for the root f(x) =b— Az = 0.
Relaxation methods could be written as

(k+1) _ ,.(k) -1/ (k)Y _ -1 (k) -1 (k)
x =2V 4+ M (b—Ax"W)=T-M "A)z"™ + M~ b= g(z'").
S c

Analysis of the Lipschitz Steadiness of g:

lg(x) =gl = [[Sz = Syl = [[S(z = y)| < ISz -yl

For ||S|| < 1 we get convergence independent of the initial value. O

9.2.3 Newton’s Method

The search for the root f(z) = 0 can be derived from a geometrical idea.
Replace the function f at point () by the tangent of f and calculate its root. This is the

new approximation z(tt1).

A
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Formally the equation for the tangent at point z(® is
T(z) = f'(z) (@ - 2) + f(=).
The root of the tangent is given by

T(z®) =0 & Fa®) (@D — 20y 4 fa®)y =0

(®
L _ 0 f@Y)
f(z®)

54

Obviously the precondition is f/(z®)) # 0, i. e. there is only a single root at point z.
The convergence properties of Newton’s method are given by the following Satz.

Satz 9.5. Let the function f € C?[a,b] have a root z in (a,b) and let

m := min |f(x)| >0, M := max |f"(z)|.

a<z<b a<x<b

If o > 0 is chosen to get

M
q:%g<1, Ky(z) ={z e R||z — 2| < 0} C[a,b].

Then the newton iterates () € K,(2) are defined for each initial value 2(9) € K,(z) and we
get the estimates

2 M
lz® — 2] < —mq@t) and |z — 2] < —|z® — 2D]2 respectively.
M 2m
Proof: See [11l, Satz 5.1]. O
Remark 9.6. e Newton’s method converges ,,quadratically*:
12 — 2| < Cl2®) — 2-D?, lz® — 2| < .

Bisection and fixpoint iteration only have ,linear“ convergence:

l2®) — 2| < Cla®) — 21, l2®) — 2] < C¢t.
t linear quadratic
1 1071 1071
ie. C=1,¢g=01: 2 1072 1072
3 1073 1074

4 107* 10-8

With linear convergence the number of valid digits is proportional to ¢, with quadratic
convergence it doubles in each step!

e The disadvantage of Newton’s method is the only local convergence, i.e. the initial value
has to be sufficiently close to the solution. O
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Example 9.7. We want to calculate the nth root of x, i.e. we solve

fley=2"—-a=0 for a > 0.

Newton’s method is given by

L) _ () _ fa®) L0 _ ()" —a
7'a®) (@)t
Converges for each () > 0 to the positive root as
M > z for (9 < 2 and the sequence is monotone
2 decreasing for z(*) > z.
O

For n =2 (i.e. 22 — a = 0) we get quadratic convergence if |z() — \/a| < 2\/a.

The so called damped Newton’s method is given by

f(a)
/()

L0+ — () @)

with A® € (0, 1].
Instead of adding the full correction it is first multiplied by a ,damping® factor A(®).

With a suitable choice of A() the , area of convergence® can be increased.
The derivative f/(z()) in Newton’s method can also be calculated by numerical differentia-

tion.

e still yields quadratic convergence

e susceptible to cancellation.

If f/(x) is not calculated exactly this is often called a Quasi-Newton’s method.

9.2.4 Newton’s Method in R"
Now we want to solve the n-dimensional problem

file,...,xn) =0 i=1,...,n

& f(&) =0 with & = (21,...,2,)" and f: R" — R™

A Taylor series in R" yields a generalisation of the tangent:

—

f(Z+ AZ) = f(Z) + J(Z)AT + remainder.

J (%) is the Jacobian at position &
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Determination of the root of the ,tangent* yields:

— !

F(@D) + J(@9) @D — g9y =0
& 20D =70 _ (@) f@®).

Each step of Newton’s method requires the solution of a linear equation system

J(EH Dy = f(z0).

This is again done with direct or iterative methods.
For inexact or Quasi-Newton methods the linear equation system is either

solved only approximately, or

the Jacobian is not assembled in each Newton step.

9.2.5 Summary

Non-linear algebraic equations can only be solved iteratively. Thus the convergence for
the presented methods is only guaranteed under certain conditions.

For monotone functions interval bisection is ideal.

Fixpoint iteration requires that the iteration function is a contraction. However, it con-
verges independent of the initial value.

Newton’s method requires the differentiability of the non-linear function and converges
only if the initial value is sufficiently close to the solution. On the other side it is very
fast due to the quadratic convergence.

Fixpoint iteration as well as Newton’s method can be generalised to systems.

10 Richards Equation

Water transport in soils at the interface between atmosphere and geosphere is of utmost im-
portance for the mankind. Soils supply crops with water, nutrients and footing. They also
act as a filter for drinking water as contaminated water has to pass the unsaturated zone to
reach the aquifers. Evaporation from bare soil and transpiration from plants is an important
climate control. Soils also store CO2 and can produce Greenhouse gases like methane and
nitrous oxide. Soils are the habitat of many microorganisms and animals.

10.1

Flux Law

Buckingham [12] proposed in 1907 an extension of Darcy’s law, which describes water flow in
unsaturated soils:

Aty

Jw - —Kw(ew)%

today this is called the Buckingham-Darcy law. In three dimensions we would of course get

-

Jw = —Kyu(0y, T)Vihy
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Yy = Um — pwgz is the total water potential, consisting of the matrix potential 1, and
the gravity potential p,gz (this is the form for constant density else the gravity potential is
fo pw(2)gdz). The matrix potential v, is defined as the energy to extract an infinitesimal
small quantity of water from the capillary bound state to free water. In civil engineering the
capillary pressure p. = —,, is used instead of the matrix potential. In soil physics it is very
common to use the pressure head h,, = wmg which is the length of an equivalent water column
hanging below the sample creating an underpressure.

The hydraulic conductivity K, (6,,) is a material property. It describes the decrease of the
water conductivity with water content. It is usually strongly non-linear with a steeper gradient
in the wet range.

10.2 Richards Equation

Together with mass conservation one obtains an equation proposed for the first time by
Richards[13].

96, .

ot Vedut =0 (79)
00, _

A (K (0w, ) Vb + 7w =0 (80)

In this form the equation contains two independent variables v, and 6,. An algebraic
relation between these variables is therefore necessary. In the form 6, = f(1y,) it is called
soil water retention curve, in the form 1, = g(6,,) soil-moisture characteristic curve and in
the form p. = g(0,) it is called capillary pressure saturation curve. The relation is often not
unique but may be hysteretic (see below).

10.3 Formulations

There are different formulations of Richards equation.

Potential Form If we use the chain rule % = %%—tm with the specific soil water capacity

Cuw(tm) = 8 11} (which is the derivative of the soil water characteristic) we get the potential
form of Richards equation:

(wm)% - : [R(wm) (v¢m - pgéz)] + 1w = 0

If we write the equation in terms of the pressure head we get

Ohp, -
Cu (h ) ot -V [ (hm)(thfez)] +7 =0
While the potential form allows to write Richards equation in terms of just one variable it
leads to non-mass conservative formulations if discretised with first order time discretisations

as the specific water capacity has to be evaluated either at the old or the new time step.
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Water Content Form If instead we use the chain rule Bg—x’” = %X’T;”% and call K (6,,)- %’/jﬁ =

Dy, (0,) the soil water diffusivity, we obtain Richards equation in the water content form:

00 _ .

a—tw -V [Dw(ew)vew — Kw(Hw)pwgez] + 71y =0
The water content form has advantages for the analysis of Richards equation. However, it can
only be used in unsaturated conditions as both the time and the space derivatives vanish if

the soil becomes saturated.

Mixed Form

00, (v - .
) G (R (00 () (Vi — puge)] + 70 = 0
The mixed form allows a mass conservative solution and can be used for saturated as well as
for unsaturated conditions as only the time derivative vanishes and not the space derivative
if we allow positive total water potentials (which are equivalent to the pressures in saturated
flow). However, it requires the solution of a non-linear equation system.

10.4 PDE Classification

At a first glance Richards equation looks like a typical parabolic equation. However this is not
true. If we look at the (one-dimensional) water content form:

00, 0 | = 00, B
ot 92 [Dw(gw)az — Kuy(0w)pwg| + 1w =0

and split the divergence

80, O 90, 0K oy (0u) D0

ot 9s [D“’(e“’)az} +Pw9W§+MJ:0

we see that we have a convection term caused by gravity with the velocity vy, (6) = pw g%f“’).

This is not the whole truth. By applying the chain rule to the first transport term we get

0 | = 00, _ 020, 0Dy(0,) 00y
— | Dy(0w)——| = Dyw(0 .
0z [ w () 82} w(0) 02 T oz 0z
the second part is again a convection term.
Therefore Richards equation can be written as a non-linear convection-dispersion equation:

20,

-+ Vip(00) VO — Dy (015) Abyy + 17 = 0

with the velocity Vw(ew) = pwg%f“’)é'z — VDy(0y).

Thus Richards equation is a degenerate parabolic equation and can get effectively hyperbolic
at steep fronts, when the gradient of the diffusivity is high (even in horizontal flow) and in
vertical flow near saturation, when gravity is the main driving force. The behaviour depends
strongly on the material functions.
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10.5 Hydraulic Functions

The two important functions characterising the hydraulic properties of a porous medium are the
soil water retention curve and the hydraulic conductivity function. Especially the unsaturated
hydraulic conductivity of a soil sample is very difficult to measure. Therefore it is common to
use parametrised functions which reduces the measurement problem to the determination of
suitable parameters for the sample.

10.5.1 Soil Water Retention Curve

The soil water retention curve depends mainly on the pore size distribution (which itself de-
pends on the shape and the size of the constituents) and the topography of the pores.
Both of the parametrisations shown here give a formula to calculate the effective saturation

ew - er
Seff (Ym) = =5

Brooks-Corey Brooks and Corey proposed in 1966 [14] the model

v \ 7
Seff(d}m) = { (M) |f wm < ¢m0
1 if Y > P

It has the two parameters ¢,,, and A\. The first parameter v,,, is called air entry value. It
specifies the potential at which the largest pores start to drain. Above this point the soil is
completely saturated. The second parameter A specifies the steepness of the soil water retention
curve. A very high X\ corresponds to pores which all have the same size and thus drain at the
same potential.

The disadvantage of the Brooks-Corey model is that its derivative is discontinuous at the
air entry point.

Dependency of Brooks-Corey model on )\
1

lambda=0.5 ——
lambda=2
lambda=5 ——

08 |

0.6 |

04

02F

Dependency of Brooks-Corey model on ,,,
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0.6 |

04 F

02}

Van Genuchten To circumvent the problem with the unsteadiness of the derivative van
Genuchten proposed in 1980 [I5] an alternative parametrisation.

Seff(wm) = [1 + (O‘W}mDn]_m

The parameter n is related to the steepness of the function (like the A in the Brooks-Corey
model). While the van Genuchten model does not have an air entry value and therefore in
principle can include pores of arbitrary parameter (up to a size of light years and more) the
model produces an effective air entry value if n > 2. The inverse of the parameter « is the
point of inflection of the soil water retention curve. Thus for high n’s (steep functions) «
is related to the position of the air entry value (and is often wrongly called so). Due to a
restriction coming from the application of the Mualem model (see below) m is usually not a
1

free parameter but is set tom =1 — .

Dependency of van Genuchten model on n
1

08 |

06 |

04 F

02 F

Dependency of van Genuchten model on «
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10.5.2 Hydraulic Conductivity Function

The models for the soil hydraulic function are derived based on the assumption that the pore
size distribution can be calculated from the derivative of the soil water retention curve.

Burdine Model If we assume that the conductivity of a pore can be calculated from its radius
with the law of Hagen-Poiseuille it scales with the square of its radius. If we know the pore
size distribution than we can calculate the hydraulic conductivity from

Seff 1
K(Seff) = Kiat foM
0 7248
The term SZ; should take the tortuosity of the pores into account. A is a dimensionless fitting
parameter.

The Burdine model is usually used together with the Brooks-Corey model. The resulting
function is:

K(Seff) = KsatS;—f}H—i_Z/)\

where usually 7 = 2 is used.

Dependency of Brooks-Corey Burdine model on )\
1

lambda=0.5 ——

lambda=2
lambda=5

0.8 |

06 |

04}

02}

0
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Mualem Model Mualem proposed [16] a slightly different model assuming that the length
of a pore is proportional to its radius and that the pores are randomly connected. He argued
that then the square could be taken out of the integral to obtain

Jyr 4as]’

K(Seff) = Ksat ;—ff [ fl ldS
0 h

For the Brooks-Corey model Mualem obtained
A
K(Seff) = KsatS;—f—f’—Q—i_z/

Mualem argued that one obtained for many soils good agreement with 7 = 0.5. Thus the
Brooks-Corey Mualem model yields an exponent of 2.5 4+ 2/X in contrast to 3 + 2/ obtained
by the Brooks-Corey Burdine model.

Comparison of Brooks-Corey Burdine and Mualem model

1 r r
burdine lambda=0.5 ——
burdine lambda=2
burdine lambda=5 ——

mualem lambda=0.5

08 |

mualem lambda=2 Y/
mualem lambda=5

06 |

04 F

02F

0

0 0.2 0.4 0.6 0.8 1

Van Genuchten showed [I5] that there are analytical solutions for his parametrisation if
m =1 —k/n where k € N. Usually the solution for k£ =1 is used:

e\ 1-1/n] 2
K (Sefr) = Ksat S [1 - (1 — St 1)) }

Due to the lack of an air entry value the van Genuchten/Mualem model produces non-physically
steep hydraulic conductivity functions close to saturation if n < 2 and should not be used.
There is an extension by Tom Vogel called the modified van Genuchten model, which introduces
an air entry value and avoids this problem (with the price that the derivative of the soil water
retention curve gets discontinuous again).

Dependency of van Genuchten Mualem model on n
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Dependency of van Genuchten Mualem model on 7
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10.6 Numerical Solution

The mixed form of Richards equation together with a suitable parametrisation forms a non-
linear partial differential equation. Steps to the solution arex

1. discretisation in space
2. discretisation in time
3. linearisation of the non-linear equation system
4. solution of the resulting linear equation system

Discretisation in space and time can be done by our usual cell-centred Finite-Volume scheme
and a one-step time discretisation (usually implicit Euler). If steep infiltration fronts can occur
an upwinding of the relative permeability might be necessary to avoid problems due to an
effective hyperbolicity of the equation.

Discretisations of the potential form have a mass balance problem, as the specific water
capacity has to be determined either at the old or the new time step. Thus we will only discuss
discretisations of the mixed form.
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A cell-centred Finite-Volume discretisation of Richards equation with an implicit Euler
scheme in time for a equidistant grid yields (one-dimensional):

0@ = 0w T {Kios@ 0l 0l + Kuvosl ' wlt]) -l
— [Kias ) + Kipos(d ™ udih] o

— hpwg [Ki+0.5(¢g+1,¢gi—11) — K054, %jﬂ)} - h%g“} =0

10.6.1 Solution of non-linear equations

The independent variable for the solution of Richards equation in the mixed form is the po-
tential. There are two non-linearities in the equation: the non-linear relation between water
content and potential and the non-linear relation between hydraulic conductivity and potential.
The two common linearisation methods are Piccard iteration and Newton iteration.

Piccard Iteration Piccard iteration is based on the idea of fixpoint iteration. In Piccard
iteration the values of the last iteration are used to calculate 6,,(¢n,) and K (6 (¢nm)). We
denote the values from the last iteration with the superscript k£ and the values of the new
iteration with the superscript k + 1 and write Kfjolf)k instead of Ki_0.5(wff11’k, wfﬂ’k).

i+0.5 i+1

~hpuwg (KL% = KIGE) = w2t ) =0

1k j JHLk jtLk+1 JHLk i1 k+1 41k GHLE] Lkl
O(p; ") —0()— 7 {Ki—O.S G + K; X - [Ki—0.5 +Ki+o.5} Y

To retain a dependency of the water content on the current iterate [I7] proposed to use
a first-order Taylor series development (¢ & (¢ Jrl’k) + Ay] +1’k+1Cf TLE Tt is then
convenient to write the equation in terms of the correction:

O(ITF) + ApTTIR IR ]y — LRI (R AgE
SRR (U AGEEP) < [KELE 4 KERE] - 4 A
~hpuwg (KL = K ) =02t =0

After rearranging we get

(O o [ + KEQE]) 8075 R A I v
= 0() = 07+ { KISl Kl = (K K| el
~hpug (KLE = KIGE) = w2l
The resulting linear equation system is symmetric and diagonally dominant. For the conver-
gence of the Piccard iteration it is necessary the it is a contraction, which is not guaranteed.

139



Newton Iteration We can also solve the non-linear equation systems with Newton’ method.
We define the non-linear equations

-,

fid) = 0@t —o@w!) -1 {Ki—o.s(ﬁfllv Il 4 Kivos(l T wlth ol
- [Ki—O.S( Ll +Ki+o.5(¢f“»¢fﬁ>} pl
— hpwg [Ki+o.5(¢g+1, wﬁiﬁ) — Ki_o‘5(¢{ff,w{“)} - hz"”gﬂ}

- -

and search for the root f(¢)) =0

T AP = F(gh).

The right side is easy to calculate as it is only the non-linear defect. The Jacobian is more
difficult. As it is hard to assemble analytically, it is much easier to assemble it by numerical
differentiation.

Given: 1/3% :

for (all elements 7) do

calculate f0= fi(Jk);

for (all involved nodes j) do
set t = wf;
set 0 = ewf + €
set wé? = wf +4;
calculate fp= f;(¢");
set Jij == (fp - fO)/é,
set wj’»“ =t

end for

end for

A typical value for € is the square root of floating point epsilon, e.g. € = 1077 for 14 digits
precision.

We can also write the assembling of the Jacobian a bit different. The derivative of the non-
20w ™)
oy 1

linear equation essentially consists of two parts. The derivative of the storage term

which only exists for +tlhe center no’(ielz and ends up on the diagonal, and the derivatives of the
flux terms e.g. Thaa‘g;ff and Th Zﬁ;ﬁf Due to the conservation of fluxes these derivatives are
added to the diagonall in line 7 for the derivative to 1; and the negative of it to the off-diagonal
entry in column ¢ in line 4 — 1. To save work it is enough to calculate the derivative of the flux
terms numerically and add them to the appropriate diagonal and off-diagonal element. Then
e.g. only the left, north and top side need to be treated (and the boundary faces).

However, as the two derivatives are usually not the same if the conductivity depends non-
linearly on the potential, the resulting Jacobian is not symmetric. In contrasts to Piccard

iteration the convergence of Newton’s method is quadratic close enough to the solution.

10.6.2 Solution of linear equations

The matrix from the Piccard iteration scheme is always symmetric and thus can be solved
with a preconditioned conjugated gradients scheme. As the Jacobian resulting from Newton’s
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method is generally non-symmetric solvers like GMRes or BiCGStab are necessary. Multigrid
schemes have proofed very useful.

At the beginning of the iteration far for the correct solution of the non-linear equation system
it is not necessary to solve the linear equations very precisely. It is enough to obtain a certain
minimal reduction e.g. 1073. Later the required defect reduction is set as the minimum of
this default reduction and the non-linear reduction in the last step for Piccard iteration or the
square of the non-linear reduction in the last step for Newton’s method. This methods are
then called inexact Newton’s method (or inexact Piccard iteration).

10.6.3 Convergence Test

The convergence of the non-linear iteration scheme can be tested by calculating the norm of
the non-linear residuum || f(¢*)||2 and as for linear equations demanding a sufficient reduction
of the initial defect. As there is no defect formulation as for linear equations the maximal
reduction is limited by the floating point precision. A convergence criterion based on the
maximal change in the target variables is - as in the linear case - not a good idea as it as well
my indicate poor convergence rates.

10.6.4 Line Search

Both linearisation schemes are only valid in a certain region around the current iterate if the
functions f are strongly non-linear. Therefore both methods are not globally convergent. To
increase the sphere of convergence, a line search can be performed, decreasing the fraction of the
correction successively until an improvement is obtained.

Given: % and AgF+l;

Set a = 1.0;

while (||£(6* + A 1)|| > [|£(%)]] and @ > 20mn) do

a=0.5x*q;

end while
For Newton’s method it has proofed advantageous to demand not only that there is a reduction,
but that the reduction of the defect in the current step is smaller smaller than 1. — 0.25 * a.

10.6.5 Time Step Adaptation

If there is still no convergence the time step can be reduced e.g. by a factor of two. It is
harder to determine when to increase the time step again. Typical criteria are a reduction of
the defect in the first iteration of Newton’s method by at least a certain fraction (e.g. 0.01)
or a convergence of the iteration scheme in a maximal number of steps (e.g. three). This are
of course purely empirical criteria. It is also possible to control the time step based on an
estimation of the time discretisation error (which is rarely done). A simple version of this is to
demand that the maximal change of the water content in an element is below a certain limit.

10.6.6 Mass Balance

A very valuable tool to check the correctness of the implementation is the calculation of a
global mass balance. As the scheme is locally mass conservative it should also be globally mass
conservative up to the precision of the calculations. To get a global mass balance it is necessary
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to sum the mass over all elements (which is easy for a cell-centred Finite-Volume scheme) and
subtract the initial mass and the cumulative flow over all boundaries of the domain.

10.7 Special Boundary Conditions

Of course the usual boundary conditions can be used (Dirichlet, Neumann). However, as long as
the soil remains unsaturated and does not get completely dry, it is possible to specify Neumann
boundary conditions on all boundaries, as the potential is fixed by the current potential and
the water content.

10.7.1 Limited Flux Boundary Condition

There is a special switching boundary condition which is often used either at the soil surface or
at the bottom of a lysimeter. It makes sure that the potential at the soil surface does not rise
over zero (i.e. the pressure is bounded by the atmospheric pressure). It consists of a Dirichlet
boundary condition with a potential of zero, a Neumann boundary condition and a set of two
switching conditions.

At the surface the flux is given by the rate of rainfall. At the bottom of a lysimeter the flux
is zero. The switching conditions are:

e switch from Newton to Dirichlet if the potential at the surface gets positive.

e switch from Dirichlet to Newton if the flux is larger then the specified flux.

At the surface this implies the assumption, that excess infiltration goes away as surface
run-off instantaniously. At the bottom it implies the assumption that there is no outflow until
saturation is reached.

The boundary condition can also written in a different way:

e calculate the flux using the specified potential in the Dirichlet boundary condition.

e use the minimum of the Neumann flux and the calculated flux as boundary flux.

10.7.2 Free Drainage Boundary Condition

This boundary condition is used at the lower boundary. It states that the gradient of the
potential at the boundary face is the same as the gradient at the opposite face. In homoge-
neous soils this implies that the flux through the element is constant (which is not true if the
permeability of the two lowest elements is different). However, this boundary condition is not
stable if the flux is reversed and changes into a flux into the element. It only works for outflow
areas of the boundary.

10.8 Multiphase Flow

To describe multiphase flow in porous media explicitly we use two mass balance equations.
Due to the correspondence of water potential per volume and water pressure it is nearby to
use the pressure of both phases independent variables

Pullms o) G [ (00, 0)) (T — pug)] + 70 = 0 B
W =V [K(0a(¥m, Pa) (VPa = page:)] +7a =0 (82)
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However, the pressure of a phase is not defined if the phase is absent. Another possibility is to
use the pressure of one phase (which is assumed not to vanish completely) and the saturation
of the second phase. The saturation is still defined if it is zero. The only problem is that
in contrast to the pressure the saturation can be discontinuous at material boundaries. The
Mualem model for the gas phase conductivity is different to the water phase conductivity as
the integration is not done filling the small pores first, but the big poresap, which results at a
higher relative conductivity at small phase saturations.

10.9 Sample Simulations

10.9.1 Heterogeneity - Ponding

The example simulations show two different scenarios in which ponding of water occurs in a
heterogeneous soil. Two materials are involved a loam and a sand (Figure .

The first situation is obvious. The saturated hydraulic conductivity is exceeded in the lower
loamy horizon leading to ponding in the overlying sand (Figure .
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Figure 27: Soil water characteristic (left) and hydraulic conductivity function (right) for the
sand and the loam.

The second situation is a bit less self-evident. The flux rate is far below the saturated
hydraulic conductivity in both materials. However, the unsaturated conductivity in the under-
lying sand is at the same potential below the conductivity of the loam, resulting in a ponding
of water until the potential is reached at which the unsaturated hydraulic conductivity is high

enough (Figure [29)).

10.9.2 Steep Fronts

As shown above Richards’ equation can get effectively hyperbolic at steep infiltration fronts.
This is illustrated by two examples.

The first example (Figure shows the development of water content and potential during
a constant rate infiltration in a homogeneous sand. The elements for which the sign condition
in the jacobian is violated is always directly at the infiltration front. While the minimal time
step without upwinding is 1.5 seconds, it is 60 seconds with upwinding.

The second example (Figure shows the same for a heterogeneous sand packing. The
infiltration front is much more complex. However, the elements with a violated sign condition
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Figure 28: Infiltration in a sand over a loam
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Figure 29: Infiltration in a loam over a sand
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still nicely ressemble the position of the front. The difference between the minimal time step
with and without upwinding is even larger (360 seconds compared to 4.3 seconds).

Figure 30: Horizontal infiltration in a homogeneous porous medium. Potential (upper), water
content (middle) and region where the sign condition is violated in the Jacobian (lower) for
t=300 s, 900 s and 1800 s.
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Figure 31: Horizontal infiltration in a heterogeneous porous medium. Potential (upper), water
content (middle) and region where the sign condition is violated in the Jacobian (lower) for
t=2000 s, 10000 s and 15000 s.
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