
Numerical Simulation of Transport Processes in Porous Media WS 13/14
Dr. Olaf Ippisch, Ole Klein IWR, Universität Heidelberg

Exercise Sheet No.2 Deadline: 05. November 2013, 2:00 pm

To install the libconfig library and the files mentioned in the exercise you can use the script ’installer.sh’ pro-
vided on the homepage. Simply place the two archives in the same location. libconfig will be installed into a
folder ’Software’ in your home directory. If you want to change this adapt the file, e.g. by removing the install
instruction or changing the destination. Please note that you then have to change the path in the Makefile as
well. Build the provided project files by typing “make”.
Please send your solutions to ole.klein@iwr.uni-heidelberg.de before the deadline.

EXERCISE 2 EFFICIENCY VERSUS SOFTWARE DESIGN

In this exercise you will write an efficient two dimensional convolution and compare its perfor-
mance to a highly modular and object oriented implementation. The latter uses an iterator based
grid implementation of a structured rectangular grid which frequently occur in finite element soft-
ware packages. Our implementation was optimized for cell centered finite volume methods and
consists of the classes Grid, ElementIterator, Element, FaceIterator and Face. A detailed
description of the Grid interface is appended.

In real-life partial differential equations problems we usually have to deal with spatially varying
parameters. A very comfortable implementation of a parameter class which allows the input of image
(greyscale TIFF or native CImg) files in two and three dimensions is given by the SpatialParameters
class provided on the lecture homepage. Additionally, it allows a mapping from the TIFF byte
values to double values (even double vectors of arbitrary size). A detailed description of the
SpatialParameters interface is appended. The implementation of this class depends on the open-
source libraries libconfig and CImg.

In this exercise you will implement a two dimensional convolution of a function f(~x) by a kernel
k(~x) with

k(~x) = −σ3π∆G(~x) (1)

where ∆ denotes the laplace operator and G(~x) denotes the normalized Gaussian in two dimensions

G(~x) =
1

2πσ
exp

{
− ||x||

2

2σ2

}
. (2)

Hence, we compute

Cf(~x) =

∫
Ω
f(~z) k(~x− ~z) d2z. (3)

For the convolution of an image, we assume that f(~x) is piecewise constant (on each pixel). On each
pixel i, we denote the constant value with fi and the subdomain related to the pixel with Pi ⊂ Ω.
Using Gauss’ divergence theorem (in 2d), we may write

Cf(~x) =
∑
i

∫
Pi

fi k(~x− ~z) d2z (4)

=
∑
i

∫
∂Pi

fi ~n · ~∇(−σ3πG(~x− ~z)) ds(~z).

An implementation of the convolution as given by (4) is provided on the homepage in the file
convolution.cc together with an example image startimage.tif and a mapping for the TIFF
byte values in image.cfg.

1.) Study the implementation to learn the correct usage of the Grid and SpatialParameters
class. (You may also take a look at the source code, but you do not have to study it in detail). Notice

the extensive use of local iterator objects.

2.) Write a more efficient implementation of (4) without refering to the Grid class (You can use
fast draft.cc as template). Compare its runtime for the test image with the other given imple-
mentation.

To obtain a fair comparison you should compile like

g++ convolution.cc -o convolution -O2 -DNDEBUG -Wall -lconfig++ -lX11

as the implementation uses assert macros which should be deactivated by -DNDEBUG and opti-
mization is mandatory when checking performance.

Appendix A - The Grid Interface

Cell centered finite volume discretizations are usually based on a partition of the spatial domain
given by a structured rectangular grid. An implementation of such a grid was realized using four
different classes. The idea is as follows:

We declare a grid class Grid which provides iterators of type ElementIterator to access its
elements. The iterators may be dereferenced to objects of an element class Element which provides
iterators of type FaceIterator to access its faces. Those may be dereferenced to objects of a face
class Face.

The element and face objects are encapsulated in the corresponding iterators which are therefore
declared as friend (see listing at the end). The geometric information provided by the element
and face objects (e.g. volume and area) should be precomputed when the corresponding iterator is
incremented (or created) such that they may be accessed repeatedly at little computational cost.

The interface defines the following public member functions:

For the grid:

• Extent of grid
const Vector & Grid::extent() const:
Returns a reference to a vector holding the width, height (and length) of the grid.

• Number of cells
const std::vector<size t> & Grid::cells() const:
Returns the number of grid cells in each of the dimensions.

• Constructor
Grid::Grid(const Vector extent, const std::vector<size t> cells):
Constructor which sets the extent of the grid and the number of cells in each grid dimension.

• Start iterator
ElementIterator Grid::begin() const:
Returns an iterator to the first grid element.

• End iterator
ElementIterator Grid::end() const:
Returns an invalid iterator reached by incrementing an iterator to the last grid element.

For the element iterator:

• Increment (in-place) operator
ElementIterator & ElementIterator::operator++():
Increments the iterator and triggers the computation of the return values of
Element::barycenter(), Element::extent(), and Element::volume() for the en-
capsulated element object.

• Reset iterator
ElementIterator & ElementIterator::reset():
Resets the iterator to the first grid element and triggers the computation of the return values
of Element::barycenter(), Element::extent() and Element::volume() for the en-
capsulated element object.

• Dereference operator
Element & ElementIterator::operator*():
Returns a reference to the encapsulated object.

• Negative Comparison
bool ElementIterator::operator!=(const ElementIterator & it) const:
Checks whether two iterators point to different grid elements.

• Element index
const size t & ElementIterator::id() const:
Returns a unique consecutive index for the current grid element beginning with zero for the
first element.

For the element:

• Position of barycenter
const Vector & Element::barycenter() const:
Returns the position of the element’s barycenter.

• Extent
const Vector & Element::extent() const:
Returns the width, height (and length) of the element.

• Volume
const double & Element::volume() const:
Returns the volume of the element

• Start iterator
FaceIterator Element::begin() const:
Returns an iterator to the first element face.

• End iterator
FaceIterator Element::end() const:
Returns an invalid iterator reached by incrementing an iterator to the last element face.

For the face iterator:

• Increment (in-place) operator
FaceIterator & FaceIterator::operator++():
Increments the iterator and triggers the computation of the return values of Face::area(),
Face::dist to barycenter(), Face::normal component(),
Face::normal direction() and Face::is boundary() for the encapsulated face object.

• Reset iterator
FaceIterator & FaceIterator::reset():
Resets the iterator to the first element face and triggers the computation of the return values of
Face::area(), Face::dist to barycenter(), Face::normal component(),
Face::normal direction() and Face::is boundary() for the encapsulated face object.

• Dereference operator
Face & FaceIterator::operator*():
Returns a reference to the encapsulated object.

• Negative Comparison
bool FaceIterator::operator!=(const FaceIterator & it) const:
Checks whether two iterators point to different element faces.

• Element index
const size t & FaceIterator::in id() const:
Returns a unique consecutive index for the element on the inner side of this face (the element
which provided this iterator).

• Element index
const size t & FaceIterator::out id() const:
Returns a unique consecutive index for the element on the outer side of this face.

For the face:

• Area of the face
const double & Face::area() const:
Returns the area of the face.

• Distance to next barycenter
const double &Face::dist to barycenter() const:
Returns the distance to the barycenter of the element on the outer side of the face.

• Boundary flag
const bool & Face::is boundary() const:
Returns true, when this face is on the domain boundary.

• Normal component
unsigned int Face::normal component() const:
Returns the dimension index of the non-zero component of the face’s normal vector. The nor-
mal vector points to the element on the outer side of this face.

• Normal direction
int Face::normal direction() const:
Returns the sign of the non-zero component of the face’s normal vector. The normal vector
points to the element on the outer side of this face.

As the grid was implemented for both the two and three dimensional case, we require the pre-
compiler macro DIMENSIONS to be set. Notice, that a branching like if(Grid::dimensions ==
3) will be resolved at compile time without introducing additional computational cost at run time.

Appendix B - The SpatialParameter Class Interface

The class SpatialParameters provides the following public interface:

• Constructor
const SpatialParameters::
SpatialParameters(string filename, Grid & grid, string map file = string(""),
string map name = string("")):
This should read the parameters from a file. It should accept both standard grayscale .tiff
files as well as CImg’s native file format with the .cimg extension. The grid cell size is allowed
to vary from the image pixel size by an integer multiple and an appropriate transformation
from image pixels to grid cells will be performed automatically. A mapping of the TIFF byte
values to floating point values may be provided in a configuration file map file. As multiple
mappings may be declared in the same file, the name of the mapping should be provided in
map name. See the example files given on the lecture homepage to get the syntax right. If the
TIFF byte value in the mapping list is followed by more than one floating point value, the value
is mapped to the corresponding multi dimensional vector.

• Parameter value at coordinate
const double & SpatialParameters::
operator()(const Vector & position,
const int p = 0) const:
Returns the value at the coordinates given by position (Values on element faces are unde-
fined). If the mapping range is multi dimensional, p denotes the component to evaluate.

• Parameter value at cell id
const double & SpatialParameters::operator()(const size t & id,
const int p = 0) const:
Returns the value for the cell with the global index id within the grid provided by
ElementIterator::id(). If the mapping range is multi dimensional, p denotes the compo-
nent to evaluate.

• Parameter value at cell id (for modification)
double & SpatialParameters::operator()(const size t & id,
const int p = 0) :
Returns the value for the cell with the global index id within the grid provided by
ElementIterator::id(). If the mapping range is multi dimensional, p denotes the com-
ponent to evaluate. This method is not constant and should allow a lasting modification of the
value in each grid cell (e.g. in a preprocessing step).

• Dimension of Mapping Range
int SpatialParameters::parameters() :
Returns the dimension of the mapping range.

• ASCII Output
void SpatialParameters::debug ascii output(int p = 0,
usigned int z = 0) :
Draws an ASCII image of the parameter field of the range dimension p. If the parameter field
is three dimensional, then z needs to hold the corresponding grid index indicating the two
dimensional x-y slice to be drawn.

• Image Output
void SpatialParameters::save as image(const std::string filename,
int p = 0) :
Save the parameter field of range dimension p to a file. The file extension should indicate which
image format to use. The format must be supported by the CImg library and in case of three
dimensions the resulting file may not be processed by standard image viewer applications.

5 Points

