
Numerical Simulation of Transport Processes in Porous Media WS 13/14
Dr. Olaf Ippisch, Ole Klein IWR, Universität Heidelberg

Exercise Sheet No.3 Deadline: 12. November 2013

EXERCISE 3 STATIONARY GROUNDWATER FLOW PROBLEM

The steady-state groundwater flow equation presented in the lecture is an elliptic partial equation
given by the following PDE:

−∇ · {K(~x) · (∇pW − ρW g~ez)}+ rW (~x) = 0

Here K is the spatially variable conductivity, pW the pressure distribution in the groundwater (so-
lution of the PDE), ρW the density of water, g the acceleration due to gravity and rW a source
term for infiltration or drainage of water. In this exercise, you will have to implement the mem-
ber function assemble() of the class GroundwaterAssembler which you can find in the file
gw assembler.hh. It should assemble the system-matrix and right hand side of a discretised ver-
sion of the PDE. As a discretisation scheme, we choose the cell-centered finite volume method based
on the grid tested in exercise 2.
The class GroundwaterAssembler provides the following public interface:

• The constructor:

GroundwaterAssembler(const Grid& grid,
const SpatialParameters& conductivity,
const Sources& sources,
const BoundaryConditions& bc)

The constructor takes a reference to objects representing the grid (from exercise 2), the conduc-
tivity field, the boundary conditions and sources (provided below).

• The method for assembling:
void assemble(Matrix& A, Vector& b)
This method should assemble the system-matrix A and the right hand side vector b for unini-
tialized A and b. Use the vector and matrix implementations from exercise 1.

Furthermore, the class GroundwaterAssembler exports the type
GroundwaterAssembler::Matrix in the following way

#define MATRIXTYPE DenseMatrix
class GroundwaterAssembler{
public:
typedef MATRIXTYPE Matrix;
...
}

to make it possible for you to switch easily between different types of matrices later.

The boundary conditions are provided by the class BoundaryConditions
in the file gw bc.hh. It has the following public interface:

• The constructor:
BoundaryConditions(const Grid& grid, const std::string filename)
The constructor takes a constant reference to the grid and the name of a file which provides
information about the boundary conditions. Both Dirichlet and Neumann boundary conditions
should be available.

• Type of condition:
bool isDirichlet(const Vector& position, double* value=0)
This method returns true if the boundary condition at the face barycenter is a Dirichlet condi-
tion. The corresponding Dirichlet value is stored in *value if it was set.

• Retrieve Neumann condition:
double getNeumann(const Vector& position)
Returns the face integrated normal flow out of the domain for the face with barycenter position.

• Retrieve Dirichlet condition:
double getDirichlet(const Vector& position)
Returns the Dirichlet (pressure) value at the face with barycenter position.

Notice that the coordinates given by position are floating point numbers and direct comparison
with the == operator may not necessarily yield the desired results. To check whether a face is within
the plane x = 0, implement a check like

const double epsilon = 1e-12;
if(position[0] < epsilon)
{...}

The class BoundaryConditions makes use of the libconfig library which you have come to
know from exercise 2. Here is an example:

boundary_conditions:
{
Define conditions depending on spatial range
Spatial = (

{ type = "Neumann";
xrange = "0..1";
yrange = "1";
zrange = "0..1";
value = "-0.1";

},
{ type = "Dirichlet";

xrange = "0..1";
yrange = "0";
zrange = "0..1";
value = "0";

}
);
Default conditions
Default = (
{ type = "Neumann";

value = "0";
}

);
};

A dummy implementation of the class Sources is also provided in the file
gw bc.hh. It implements a single virtual method

double operator()(const double& position)

In this exercise we will not use source terms. Hence, the method always returns zero. In future
applications, we will inherit from this class.

Test your implementation on the following example.
Therefore, solve the linear system with the direct Gauss solver of the DenseMatrix class. We as-
sume the domain to span 100m× 100m. For the picture test05.tif,

Figure 1: An artificial example of a heterogeneous ground

this corresponds to a grid resolution of h = 20m. Use the conductivity values from gw parameters.cfg:

Ksand = 2 · 10−5m

s
, Kclay = 2 · 10−7m

s

No-flux Neumann boundary conditions ∫
∂Ω

~n · ~Jwds = 0

are applied on the upper and lower boundary and Dirichlet conditions

pleft = 10m, pright = 0m

on the left and right boundary.
Write the assemble() method to solve the problem for the resolutions

h0 = 20m, h1 = 10m, h2 = 5m

and check your results using the greyscale output of the CImg library introduced in the exercise 2.
An example for these calls is given in gw problem.cc. 7 Points

