
Numerical Simulation of Transport Processes in Porous Media WS 13/14
Dr. Olaf Ippisch, Ole Klein IWR, Universität Heidelberg

Exercise Sheet No.4 Deadline: 19. November 2013

EXERCISE 4A (SPARSE MATRICES)

Sparse matrices often appear in numerical schemes for the discretisation of PDEs. Storing a sparse
matrix as a two-dimensional array is memory consuming. One storage scheme which takes advan-
tage of the sparse structure of the matrix is the Compressed Row Storage (CRS) scheme presented in the
lecture. The idea of the CRS scheme is illustrated by the example matrix A:

A =

3.5 0 0 2.5 1.4
0 2.4 1.4 0 0
1.7 0 2.8 0 0
0 0 0 5.6 0
0 2.4 0 0 3.1

CRS:

• val = {3.5, 2.5, 1.4, 2.4, 1.4, 1.7, 2.8, 5.6, 2.4, 3.1}:
Stores the non-zero elements of A.

• col ind = {0, 3, 4, 1, 2, 0, 2, 3, 1, 4}:
Stores for each element of val its corresponding column index in A.

• row ind = {0, 3, 5, 7, 8, 10}:
Stores those index counters of the index vector col ind which correspond to the first element of
each row of the matrix A. The last element in row ind is the total number of non-zero elements
in A.

An improved scheme stores the diagonal elements always as first entry for each row. The column
index for this element is then no longer needed and contains instead the number of non-zero elements
in this row. The above matrix yields then:

• val = {3.5, 2.5, 1.4, 2.4, 1.4, 2.8, 1.7, 5.6, 3.1, 2.4}:
Stores the non-zero elements of A (with diagonal elements first).

• col ind = {3, 3, 4, 2, 2, 2, 0, 1, 2, 1}:
Stores for each element of val its corresponding column index in A. However, the entries corre-
sponding to the diagonal element (now stored first for each row) hold the number of non-zeros
in this row.

• row ind = {0, 3, 5, 7, 8, 10}:
Same as above.

There are different ways to set up a CRS matrix - some more cumbersome than others. To keep it
simple, we require a priori knowledge about the maximum number of non-zero entries in each line
when constructing the matrix object. Based on this information the memory is allocated. Afterwards
the matrix is filled using the non constant access operator operator() (See description below).

In this exercise you will implement a class CRSMatrix for the storage of a sparse matrix. Consider
the following header file suggestion:

class CRSMatrix
{

public:
/ / Construct matrix of dimension N
CRSMatrix(size_t N, size_t non_zeros_per_line);

/ / Matrix desctructor
˜CRSMatrix();

/ / returns the matrix element at postion (i,j)
double operator()(size_t i, size_t j) const;

/ / returns a reference to the matrix element at postion (i,j)
double &operator()(size_t i, size_t j);

/ / multiplication result of A with a vector x
Vector operator*(const std::vector<double> &x) const;

/ / multiplication of A with a vector x stored in vector y
void multiply(Vector &y, const double & c, const Vector & x) const;

private:
size_t rows_; / / Number of rows
size_t cols_; / / Number of columns
Vector val_; / / Non-zero values
std::vector<size_t> col_ind_; / / Column indices
std::vector<size_t> row_ind_; / / Row indices

};

Implement the class CRSMatrix with a similar interfaces as DenseMatrix:

• Implement a constructor
CRSMatrix(size_t N, size_t nonZerosPerLine)

allocating memory for N*non_zeros_per_line matrix entries. The number of non zero en-
tries stored in the col_ind_ entries corresponding to the diagonal elements is set to 1 (for the
diagonal element which is always assumed to exist).

• Implement a method
double operator()(int i, int j) const
(by operator overloading) that returns the matrix element at postion (i,j) or terminates with an
error messages if the element is not found (for constant matrices).

• Implement a method
double &operator()(int i, int j)

(by operator overloading) that returns a reference to the matrix element at postion (i,j). If the
element does not exist it should be inserted in the matrix. If there is no more space in a line of
the matrix the program should terminate with an error message.

• Implement a method
Vector operator*(const Vector &x) const
which returns the multiplication result of A with a vector x.

• Implement a method
void multiply(Vector &y, const double & c, const Vector &x) const
which computes y+=c*A*x.

You can also add other members. Write a small main program in which you first store the matrix A
in an instance of CRSMatrix. To test your implementation compute the operation y = A × x using
x = (2 1 0 3 1)T and print the result on screen. 2 Points

EXERCISE 4B (SOR METHOD)

The method of successive over-relaxation (SOR) is a variant of the Gauss-Seidel method for solving
the linear system A · ~x = ~b. The iteration is defined as:

x
(k+1)
i = (1 − ω)x

(k)
i +

ω

aii

(
bi −

∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j

)
(1)

To avoid cancelation the defect formulation of SOR should be used:

v
(k)
i =

ω

aii

d
(k)
i −

∑
j<i

aijv
(k)
j

 (2)

x
(k+1)
i = x

(k)
i + v

(k)
i (3)

d
(k+1)
i = d

(k)
i −

N∑
j=1

aijv
(k)
j (4)

In this exercise, you will implement a method
bool CRSMatrix::sor_solve(Vector &x, Vector &b)

to solve the linear system given by A and the right hand side b using SOR in defect formulation. Add
the two members omega and epsilon to the CRSMatrix-class (and functions to set them).

Write a main program in which the following linear equation system is solved:
2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

 · ~x =

5
−4
4
−4
5

The exact solution of the linear equation system is x = {3, 1, 3, 1, 3}T . For solving it with SOR as-
sume ω = 1.5 and x0 = {1, 1, 1, 1, 1}. Use a sufficient reduction of the norm of the defect ||d(k)||2 =√∑

i
d
(k)
i · d

(k)
i as terminating condition: ||d(k)||2 < ε · ||d(0)||2. E.g. ε = 10−10.

Note: For a given initial guess ~x, matrix A and the right side~b we had the following example code
in the lecture:

~d = ~b−A~x;

d0 = ||~d||;
dn = d0;

while (dn ≥ ε · d0)
{

Solve M · ~v = ~d

~x = ~x+ ~v;
~d = ~d−A~v;

dn = ||~d||;
}

2 Points

