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EXERCISE 7 CRANK NICHOLSON TIME STEPPING SCHEME

The instationary parabolic problem

∂tT (~x, t) = ∇ ·
{
a(~x) ∇T (~x, t)

}
~x ∈ Ω

T (~x, t) = 0 ~x ∈ ∂Ω

is known as the heat equation with homogeneous Dirichlet conditions. It describes conductive heat
transport for a thermal diffusivity a ([a] = m2

s ). Following a common approach we discretize time
and space separately. We therefore consider the equation to be an ordinary differential equation in
time and employ a time stepping scheme:

For a given T 0 ∈ C2(Ω) find T k ∈ C2(Ω) :

T k+1(~x)− T k(~x)

τ
= ∇ ·

{
a(~x) ∇

(
σ T k+1(~x) + (1− σ) T k(~x)

)}
k = 0 . . . N − 1

Depending on the value of σ ∈ [0, 1] we obtain

• the implicit Euler method (σ = 1),

• the explicit Euler method (σ = 0),

• the Crank Nicolson method (σ = 0.5).

The discretization in space is given by the cell centered finite volume scheme. Hence, in time step k
we require ∫

E

T k+1dV − τ
∫
∂E

σ a ~n∇T k+1dA =

∫
E

T kdV + τ

∫
∂E

(1− σ) a ~n ∇T kdA

to hold for each cell E of the grid resolving the domain. Furthermore, we require T k and a to be
piecewise constant on each cell and discretize the differential operators accordingly.

Implement a class HeatConductionAssemblerwhich assembles the system matrix of a single time
step as given above. Its public interface should contain at least the following functions:

• The constructor:

HeatConductionAssembler(
const Grid& grid,
const SpatialParameters& diffusivity,
const Sources& sources,
BoundaryConditions & boundary_conditions

)

We use the class SpatialParameters to obtain the thermal diffusivity coefficients.



• A method for assembling the system matrix:

void assemble(
Matrix& A,
Vector& b,
const Vector& x,
const double tau,
const double sigma

)

This function should assemble the system matrix A and right hand side b. The parameter sigma
determines the type of the time stepping scheme. The vector x should hold the solution of the
previous step and tau determines the size of the actual step.

Setup a one dimensional test problem for an initial temperature distribution T 0 ∈ C2([0, 1]) given by

T 0(x) =

{
1K if x ∈ [0.4, 0.6]m

0K otherwise

and simulate the spreading of the temperature for t = 0 s . . . 0.1 s in a medium with a diffusivity of
a = 1 m2

s .
You may employ the existing grid implementation for the realization of the one dimensional prob-

lem by choosing the y dimension of the domain equal to one and enforcing zero Neumann conditions
on the boundaries with normal vectors in y direction.

Solve the problem with the Crank Nicolson scheme and a grid resolution of h = 1
512 m and τ = h2.

Assume this solution to be the “true” solution and analyze the grid convergence of all three time
stepping schemes for the resolutions

h4 =
1

256
, h3 =

1

128
, h2 =

1

64
, h1 =

1

32
, h0 =

1

16

and choose
τ4 = 0.5 · h2

4 and τi = 2 · τi+1

in a first analysis and
τ4 = 128 · h2

4 and τi = 2 · τi+1

in a second analysis. In both cases compute the L2- and the L∞- error of all solutions and thus devise
the order of convergence for all three schemes. For a scalar function f ∈ L2(Ω) the L2- and L∞- error
of its approximation f̃ ∈ L2(Ω) are defined as

E2 :=

∫
Ω

(
f(x)− f̃(x)

)2
dx

 1
2

,

E∞ := sup
x∈Ω

∣∣∣f(x)− f̃(x)
∣∣∣ .
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