Numerical Simulation of Transport Processes in Porous Media WS 13/14
Dr. Olaf Ippisch, Ole Klein IWR, Universitdt Heidelberg

Exercise Sheet No.10 Deadline: 21. January 2014

EXERCISE 10 PARTICLE TRACKING

An alternative approach to solving the Convection-Dispersion equation

Oe+V-(=DVe+ed) = 0 ieQ
R c = f Z e ddp
ii-(—=DVe+ced) = Jy i€ 00y

numerically is particle tracking;:
For a given set of particles P = {po, ..., pn } located within the computational domain resolved by a
grid, we define a piecewise constant concentration on a grid cell £. Let Pr C P be the subset of all
particles contained in E, then we define the concentration cg in E as

Cp = 60@.

1P|

Here ¢y corresponds to the maximum concentration reached when all particles are within the same
element.

For a velocity field #(#) and an effective dispersion D(Z) which are constant in time, the movement
of a particle which is initially at position Z(¢) at time ¢ is computed via discrete time steps of size 7:

t+1

Z(t+71) :f(t)—i-/ﬁ(f(t/))dt/—l—\/QD(f(t))T-Z.

t

To represent the stochastic nature of dispersion we employ a random vector Z with unit length and
a mean value of zero. The integral, that approximates the convective movement in each step, is
calculated by applying the midpoint rule:

t+1
/U@wmwzmaw+aﬁm*

t

T

57

It is advantageous to choose the time step individually for each particle based on a constant spatial
step length Az. Then - in addition to its position - the current time of each particle must be computed
and stored in memory.

The individual time step of particle p at time ¢, and position Z,(¢,) is given by:

Tp = min i ()
p= U(@p(tp) " 2D(5(ty)))

To compute the concentration at a given time # all particle positions have to be known at this time.
Therefore, if 7, + t, > { we choose 7, := t — t,, instead.

The particle tracking algorithm is realized by a class Part icleTracker with the following pub-
lic interface:

e The constructor:

ParticleTracker (
const Grid & _grid,
const ConvectionField & _convection_field,
const DispersionField & _dispersion_field,
std::vector<Particle> & _particles

The constructor receives the grid and objects representing the convection and dispersion field.
Furthermore it receives the array of particles represented by objects of type Particle (see
below)

e Implement a method
size_t step(const double step_dx, const double target_time)
that propagates particles with time steps based on the constant spatial step step_dx. All parti-
cles are propagated to a time ¢, < target_t ime. The return value gives the number of the still

moving particles that have not reached the target time yet.

The class Particle used to store particle information is given by:

class Particle

{
public:
Vector position;
double time;

Particle()

: position(Grid::dimensions, 0),
time (0)

{}

}i

Both the classes DispersionField and ConvectionField provide an operator
double operator () (Vector position) const
to access field values at given global coordinates in the domain.

Apply the particle tracker to the contamination example of exercise 8. To avoid dealing with ugly
particle tracking boundary conditions, a uniform initial contribution of particles within the area

I:{<$> ‘Omgxg?)m, 3m§y§6,m}.
Y

is chosen. A simulation length of twenty days will be sufficient.
If particles leave the domain, you are free to let them go or otherwise let them stick to the point of
collision with the boundary.

Start with a small number of particles (~ 100) and increase their number (. /solutionl0 n, where
n is the number of particles) until the solution does not change significantly anymore.

5 Points

