

Modellbildung und Simulation in den Neurowissenschaften Grundlagen Funktionelle Neuroanatomie und -physiologie

Stefan Lang

Interdisziplinäres Zentrum für wissenschaftliches Rechnen Universität Heidelberg

SS 2013

MRT-Aufnahmen des menschlichen Gehirns

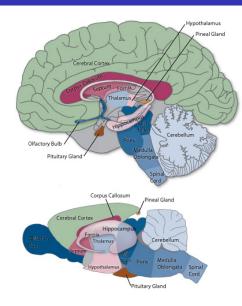
Magnetic Resonance Tomography (MRT)

Sagittalschnitt

Coronalschnitt

Graue und weiße Hirnsubstanz (grey/white matter) differenzieren Gebiete mit Nervenzellkörpern und Leitungsbahnen

Das Gehirn: Mensch vs. Ratte


re. li. Hemisphäre Kleinhirn Großhirn Menschliches Gehirn mit Hirnhaut

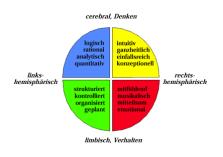
Gehirn der Ratte

Hirnstamm

Anatomischer Aufbau des Wirbeltiergehirns

Das weitgehend bilateralsymmetrische Zentralnervensystem besteht aus sieben Hauptteilen

- Großhirn (Telencephalon)
- Zwischenhirn (Diencephalon)
- Mittelhirn (Mesencephalon)
- Kleinhirn (Cerebellum)
- Brücke (Pons)
- verlängertes Rückenmark (Medulla Oblongata)
- Rückenmark (Spinal Cord)


Funktionelle Grobgliederung

Charakterisierung der 4 Hauptteile:

- Großhirn: 2 Hemisphären durch corpus callosum verbunden, stark gefaltet oder gefurcht, 2-4 mm dick, $2 \cdot 10^{10}$ Neuronen. Rindenfelder: primäre Felder verarbeiten Wahrnehmungen, Assoziationsfelder stimmen Funktionen aufeinander ab. Bestimmte Bereiche sind auf verschiedene Aufgaben spezialisiert, Organisationsprinzip: Parallelverarbeitung (Redundanz).
- Kleinhirn: 2 Hemisphären, Gleichgewicht, Bewegungskoordination, Lernvorgänge, bei Tieren oft stärker entwickelt.
- Zwischenhirn: Steuerungsaufgaben.
 - Thalamus: Mittler sensibler und motorischer Signale.
 - Hypothalamus: körperliche und psychische Lebensvorgänge.
 - Subthalamus: Grobmotorik.
 - Epithalamus: Tag-Nacht und jahreszeitliche Rhythmen.
- Hirnstamm: Pons, (verlängertes) Rückenmark, Verschaltung von Sensorik und Motorik, elementare und reflexartige Steuermechanismen.

Funktionelle Gliederung der Großhirnrinde

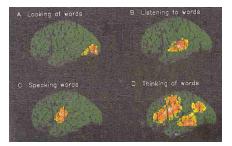
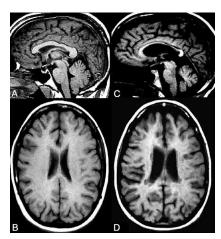

Zuordnung der Fähigkeiten zu Hemisphären

Abbildung der Körperteile auf die Großhirnrinde

Lokalisation von Fähigkeiten

- Direkte funktionelle Zuordnung nicht möglich.
- Verhalten (kognitive Leistungen) wird durch das Zusammenspiel von meist mehreren Zentren gebildet.
- Diese Zuordnung ist wandelbar, das Gehirn ist kein statisches Organ, sondern besitzt eine ausgeprägte Fähigkeit zur Reorganisation.
- Beispiel: Worte hören, lesen, sprechen, vorstellen

Cathy Price, HaSm Hosp., London


PET-Technik zur Bestimmung von auditorischen Zentren

Pathologische Veränderungen des Gehirns

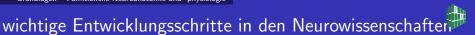
Neurodegenerative Krankheitsbilder:

- Parkinson
- Multiplesklerose
- Alzheimer
- Epilepsie

Degeneration von Hirnstrukturen bei einem Multiplesklerose Patient

Neuropathologische Gehirnveränderungen/Symptomatik

- Parkinson-Krankheit (Morbus Parkinson):
 langsam fortschreitende neurologische Erkrankung. Der Morbus Parkinson ist gekennzeichnet durch das vornehmliche Absterben von Nervenzellen in einer Struktur im Mittelhirn, mit Zuständigkeit für Botenstoff Dopamin. Der Dopaminmangel führt letztlich zu einer Verminderung der Großhirnaktivierung. Die Hauptsymptome: Muskelstarre, verlangsamte Bewegungen bis zur Bewegungslosigkeit, Muskelzittern sowie posturale Instabilität (Haltungsinstabilität).
- Multiple Sklerose (MS): chronisch-entzündliche Entmarkungserkrankung des zentralen Nervensystems (ZNS), ursächlich trotz großer Forschungsanstrengungen ungeklärt. Neben Epilepsie eine der häufigsten neurologischen Erkrankungen im jungen Erwachsenenalter und von erheblicher sozialmedizinischer Bedeutung. In der weißen Substanz von Gehirn und Rückenmark treten verstreut multiple entzündliche Entmarkungsherde auf, die vermutlich durch den Angriff körpereigener Abwehrzellen auf die Myelinscheiden der Nervenzellfortsätze verursacht werden. Entmarkungsherde im gesamten ZNS möglich, dadurch kann MS fast jedes neurologische Symptom verursachen. Symptome: Sehstörungen, Bewegungsstörungen.



Neuropathologische Gehirnveränderungen/Symptomatik

Alzheimer-Krankheit (AK):
 neurodegenerative Erkrankung, die in ihrer häufigsten Form bei Personen über dem 65.
 Lebensjahr auftritt und für ungefähr 60 Prozent der weltweit etwa 24 Millionen
 Demenzerkrankungen verantwortlich ist. Charakteristisch ist eine zunehmende
 Verschlechterung der kognitiven Leistungsfähigkeit, die in der Regel mit einer Abnahme
 der täglichen Aktivitäten, mit Verhaltensauffälligkeiten und neuropsychologischen
 Symptomen einhergeht. Bereits viele Jahre, bevor erste klinische Symptome sichtbar
 werden, bilden sich im Gehirn des Betroffenen Plagues.

Epilepsie:

"der Anfall, der Übergriff" seit dem 16. Jahrhundert nachweisbar; ein Krankheitsbild mit mindestens einem spontan auftretenden Krampfanfall, der nicht durch eine vorausgehende erkennbare Ursache (beispielsweise eine akute Entzündung, einen Stromschlag oder eine Vergiftung) hervorgerufen wurde. Ein solcher epileptischer Krampfanfall ist Folge synchroner Entladungen von Neuronengruppen im Gehirn, die zu plötzlichen unwillkürlichen stereotypen Verhaltens- oder Befindensstörungen führen.

Anatomie:

Golgi: Färbung von Hirngewebe mit Silbernitrat

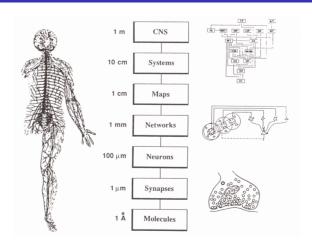
→ Gehirn ist kein Kontinuum

Ramon y Cajal: Rekonstruktion erster Nervenzellmorphologien

ightarrow Nervenzellen sind die funktionellen Einheiten des Gehirns

Elektrophysiologie:

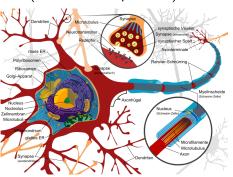
Galvani: Erste Messung der elektrischen Aktivität am Froschmuskel


→ Funktionelle Grundlagen der Reizverarbeitung

Hodgkin und Huxley: Untersuchung des Axons am Riesentintenfisch

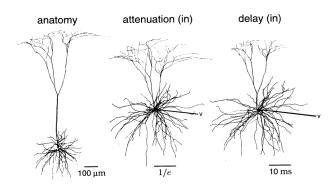
→ Anfang von biophysikalisch detailierter Modellierung

Das Nervensystem: Ein Mehrskalensystem mit hierarchischer Struktur

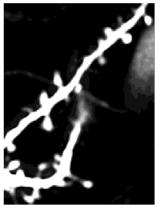


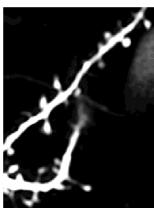
nach Sejnowski

Aufbau der Nervenzelle

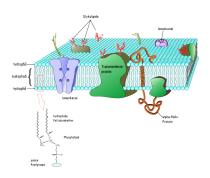

 Dendriten: Die Dendritenbäume empfangen die Eingangssignale der Zelle (Synapse, Gap junctions) und verarbeiten diese (Dendritic computation).

- Zellkörper (Soma) mit Organellen.
- Axonhügel: Generierung der Zellantwort (Aktionspotential).
- Das Axon (Neurit):
 Weiterleitung des Signals,
 Aufteilung in Kollateralen,
 Übertragung des Signals auf
 andere Zellen mit sogen.
 Endköpfchen an der Synapse.
- Axoplasmatischer Transport zwischen Soma und Dendriten/Axon durch Neurotubuli.


Morphologie von Nervenzellen: Funktionelle Aspekte



Pyramidenzelle des Cortex der Ratte

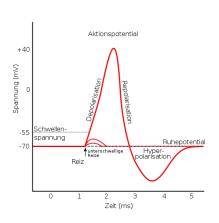

Dendritische Substrukturen: Spines

Die Zellmembran

 Durchgehende Lipid-Doppelschicht umhüllt die Nervenzelle und separiert den intrazellulären, mit Cytoplasma gefüllten, Raum der Zelle und extrazellulären Raum mit interstitiller Flüssigkeit.

- Phospholipid-Molekül besitzen polaren Kopf und je zwei unpolare Schwänze.
- Dicke der Zellmembran beträgt 6-8 nm
- In die Zellmembran integrierte Proteine ermöglichen den Transport von Molekülen und anorganischen Ionen durch die Bilipid-Schicht.
- Die Membran ist selektiv permeabel für verschiedene Ionen und ist für die essentielle Funktionalität der Zelle zuständig.

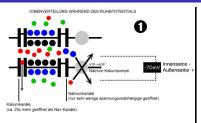
Das Ruhemembranpotential

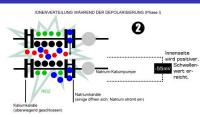

Intra- und Extrazelluläre Ionenkonzentrationen

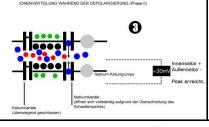
	Plasma (mmol/l)		Zelle (mmol/l)
Na⁺	142	(130-155)	10
K ⁺	4	(3,2-5,5)	155
Ca ²⁺	2,5	(2,1-2,9)	<0,001
Mg ²⁺	0,9	(0,7-1,5)	15
Cl ⁻	102	(96-110)	8
HCO ₃	25	(23-28)	10
HPO ₄ ²⁻	1	(0,7-1,6)	65
SO ₄ ²	0,5	(0,3-0,9)	10
Organische Säuren	4		2
Proteine	2		6

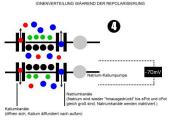
Ruhemembranpotential basiert auf Konzentrationsunterschieden

Das Aktionspotential I: Phasen

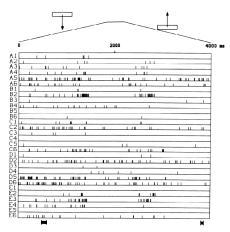



Phasen des Aktionspotentials (ca. 1 ms)


- Initiation: Ausgehend vom Ruhepotential (ca. -70 mV) beginnt durch Reizung eine Positivierung des Membranpotentials bis zum Schwellenpotential.
- Depolarisation: Steiler Anstieg der Spannung bis in den positiven Bereich (Potentialumkehr).
- Repolarisation (RP): Anschliessender Abfall in Richtung Ruhepotential.
- Hyperpolarisation: Spannung unterschreitet Ruhepotential.
- Refraktärphase: In der RP ist die Membran nicht erregbar (absolut refraktär, 0.5 ms) bzw. kaum erregbar (relative refraktär, 3.5 ms).



Das Aktionspotential II: Ionenverschiebungen


PHÄNOMEN DER HYPERPOLARISIERUNG:
Die Natriumkanäle schließen sich sehr schnell, die Kaliu

PRIAMOMEN DER FIFERFULVKRISIERUNG.
Die Natriumkanäle schließen sich sehr schnell, die Kaliumkanäle bleiben jedoch länger geöffnet (sie sind träge). Daher strömen mehr Kaliumionen nach außen, als Natriumionen nach innen gelangen können. Die Spannung fällt noch weiter auf bis zu -90mV.

WIEDERHERSTELLUNG DES RUHEPOTENTIALS:
Die Kalium-Natrium-Pumpe f\u00f6rdert (wie in 1 abgebi\u00e4det) unter Energieverlust
(ATP>-ADP) K\u00e4lium wieder nach innen und das Natrium nach au\u00dfen. Die
messbare Spannung erreicht wieder die -\u00d7\u00fcVdes Ruhepotentals.

Spike Train Histogramm

Bewegungsrichtungsabhängige Antwort verschiedener Neuronen

Der neuronale Code

- sensorische Neuronen reagieren mit Aktivitätsänderung (APs) auf externe Stimuli in Form von Licht, Geräusch, Geschmack, Geruch and Berührung
- Aktionspotential sind identische stereotype Ereignisse mit geringer Änderung von Dauer, Amplitude und Form
- Länge des Interspikeintervalls (ISI) zwischen zwei Spikes eines Spiketrains variiert oft zufällig
- Neural encoding/decoding: Abbildung von Stimulus zu Antwort/ von Antwort zu Stimulus
- Es gibt verschiedene Kodierungsschemata
 - AP Rate: mittlere Feuerrate über die gesamte Versuchsdauer
 - Zeitabhängige Feuerrate: APs innerhalb eines kleineren Zeitintervalls
 - Zeitkodierung: Korrelationen, temporale Muster, Oszillatoren
 - Populationskodierung: Positionsabhängig, räumliche Muster

Die neurale Antwortfunktion

Für n Spikes $i = 1 \dots n$ zu den Zeitpunkten t_i in einem Zeitintervall [0, T] kann die AP Sequenz als Summe idealisierter Spikes dargestellt werden

$$\rho(t) = \sum_{i=1}^{n} \delta(t - t_i).$$

 $\rho(t)$ ist die neurale Antwortfunktion.

Die neuronale Antwortfunktion kann man darstellen als

$$\sum_{i=1}^{n} h(t-t_i) = \int_{-\inf}^{\inf} d\tau h(\tau) \rho(t-\tau)$$

Die Gleichheit folgt aus der Definition der δ Funktion

$$\int d\tau \delta(t-\tau)h(\tau) = h(t)$$

AP-Rate aus Spikeanzahl

Sequenz der APs, welche bei einem gegebenen Stimulus generiert werden, variiert von Versuch zu Versuch. Das einfachste Maß erhält man durch Zählen der AP Anzahl eines Versuchs über die Dauer \mathcal{T}

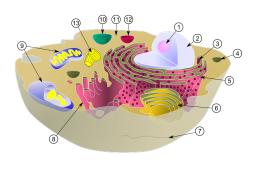
$$r = \frac{n}{T} = 1/T \int_0^T d\tau \rho(\tau)$$

 $\mathsf{mit}\,\int d\tau \rho(\tau) = n$

- bestimmbar mit einzigem Versuch
- temporale Auflösung geht verloren
- keine Darstellung der zeitlichen Variation

Gemittelte Feuerrate

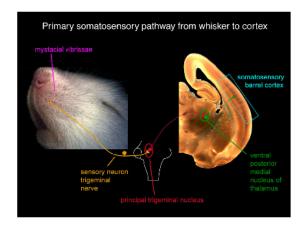
Mittelung über mehrere Versuche und kleinere Zeitintervalle ermöglicht das bestimmen der Feuerrate r(t)


$$r(t) = rac{1}{\Delta t} \int_t^{t+\Delta t} d au <
ho(au) >$$

Mittelt man die AP-Anzahl Rate über mehrere Versuche ergibt sich die mittlere Feuerrate < r >

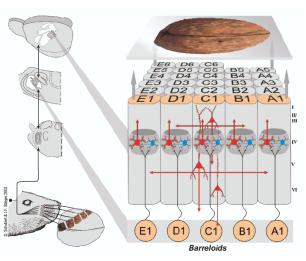
$$< r > = {< n > \over T} = {1 \over T} \int_0^T d\tau < \rho(\tau) > = {1 \over T} \int_0^T dt \quad r(t)$$

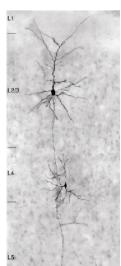
Ein Blick in den Zellkörper: Die Zellorganellen



Wichtige Organellen

- 1 Kernkörper (Nucleus)
- 2 Zellkern: Membran mit Kernporen, enthält Chromatingerüst (DNA), messenger Ribonukelinsäure (mRMA)
- 5 Rauhes Endoplasmatisches Retikulum (ER): Proteinsynthese
- 6 Golgi Apparat: Abschnürung, Sekretion
- 8 Glattes ER: Lipidsynthese
- 9 Mitochondrien: Energiegewinnung




Das System Tasthaar - Barrel Cortex der Ratte

Das System Tasthaar - Barrel Cortex II

