
IWR, Heidelberg University Summer Semester 2015

Exercise Sheet 1 14. 04. 2015

Exercises for the Lecture Series

“Object-Oriented Programming for Scientific Computing”
Ole Klein

ole.klein@iwr.uni-heidelberg.de

To be handed in on 28. 04. 2015 before the lecture

Due to the unforeseen large audience of the lecture the first exercise sheet is due two weeks after re-
lease, not one week as usual. This is meant as an opportunity to accustom yourself with the exercises
and potentially find exercise partners. Due to the large number of participants we will most likely
allow group work, details will follow. There will only be a short meeting on 16.4. and no exercise
group, because things are still being set up, but you are welcome to attend if you have questions
about the lecture or exercises or something else to discuss.

EXERCISE 1 RATIONAL NUMBERS

Write a class for rational numbers. The number should always be represented as a fully reduced
fraction of the form

numerator
denominator

with denominator > 0.

1. What is an appropriate data structure for rational numbers?

2. Start by writing a function int gcd(int,int) (greatest common divisor), you will need it to
reduce fractions.

• You can use the Euclidean algorithm to determine the greatest common divisor.

• For an algorithm see http://en.wikipedia.org/wiki/Greatest_common_divisor

• Implement this scheme as a recursive function.

3. Write a class Rational, which represents a rational number. The constructor should have the
numerator and the denominator as arguments. Be sure to check for valid input. In addition, the
class has two functions numerator () and denominator () that return the values of the
numerator and denominator. The class should have three constructors:

• a default constructor that initializes the fraction with 1,

• a constructor that initializes the fraction with a given numerator and denominator and

• a constructor that initializes the fraction with a given whole number.

4. Supplement the class with operators for *= += -= /= and ==.

5. Use the newly implemented methods to implement free operators * + - /.

6. Check your implementation using various test cases. Initialize three fractions

f1 = −
3

12
, f2 =

4

3
, f3 =

0

1
.

Test the operators with the following examples:

f3 = f1 + f2, f3 = f1 · f2, f3 = 4 + f2, f3 = f2 + 5, f3 = 12 · f1, f3 = f1 · 6, f3 =
f1
f2

.

Print the result after each operation. The corresponding solutions are:

13

12
, −1

3
,

16

3
,

19

3
, −3

1
, −3

2
, − 3

16
.

10 Points

EXERCISE 2 FAREY SEQUENCES

A Farey sequence FN of degree N (Farey fractions of degree N) is an ordered set of reduced fractions
pi
qi

with pi ≤ qi ≤ N and 0 ≤ i < |FN |

and
pi
qi

<
pj
qj

∀ 0 ≤ i < j < |FN |.

Use the class Rational from the first exercise to write a function

void Farey(int N)

which calculates the Farey fractions up to degree N and prints the resulting Farey sequences up to
degree N on the screen.

Algorithm: The sequences can be computed recursively. The first sequence is given by

F1 =
(
0
1 ,

1
1

)
For a known sequence FN one can get FN+1 by inserting an additional fraction pi+pi+1

qi+qi+1
between two

consecutive entries pi
qi

and pi+1

qi+1
if qi + qi+1 = N + 1 holds for the sum of denominators.

Example: Determining F7 from F6 results in the following construction:

F6 =
(

0
1 ,

1
6︸︷︷︸

1
7

, 15 ,
1
4 ,

1
3︸︷︷︸

2
7

, 2
5 ,

1
2 ,

3
5︸ ︷︷ ︸

3
7
and 4

7

, 2
3 ,

3
4︸︷︷︸

5
7

, 45 ,
5
6 ,

1
1︸︷︷︸

6
7

)

The new elements are:
0+1
1+6 = 1

7 ; 1+1
4+3 = 2

7 ; 2+1
5+2 = 3

7 ; 1+3
2+5 = 4

7 ; 2+3
3+4 = 5

7 ; 5+1
6+1 = 6

7

The sorted sequence then is:

F7 =
(
0
1 ,

1
7
, 16 ,

1
5 ,

1
4 ,

2
7
, 13 ,

2
5 ,

3
7
, 12 ,

4
7
, 35 ,

2
3 ,

5
7

3
4 ,

4
5 ,

5
6 ,

6
7
, 11

)
For checking:
The Farey sequences up to degree 6

F1 =
(
0
1 ,

1
1

)
F2 =

(
0
1 ,

1
2 ,

1
1

)
F3 =

(
0
1 ,

1
3 ,

1
2 ,

2
3 ,

1
1

)
F4 =

(
0
1 ,

1
4 ,

1
3 ,

1
2 ,

2
3 ,

3
4 ,

1
1

)
F5 =

(
0
1 ,

1
5 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

4
5 ,

1
1

)
F6 =

(
0
1 ,

1
6 ,

1
5 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

4
5 ,

5
6 ,

1
1

)
.

There is a beautiful illustration of these fractions,
the Ford circles a:

asee http://en.wikipedia.org/wiki/Ford_circle

10 Points

