
1 Purpose of this Document

Please note that due to the large number of participants some rules for the submission of
exercise solutions are necessary. There are predefined structures for the repositories to
facilitate a speedy correction of submitted solutions, and there are guidelines you should
follow when coding. Both are listed below.

Not following the rules for repositories may result in your solution not being graded
(since it increases the workload). You will then have to reformat it and submit again.
Not following the style guidelines may result in point deduction, with the amount of
points depending on the impact your style could have on actual collaborative projects.

2 Your Repository on GitLab

2.1 Project Name

The name of your project is OOPFSC-Name1Name2Name3, where Name1 is the last name
of the first student, Name2 that of the second student, and so on. Further names should
be added in the same way, and names should be sorted alphabetically. If your lineup
changes for any reason during the course of the semester, please create a new project
that reflects this and inform your tutors.

2.2 Directory Structure

Your repository should consist of two levels of directories, one for the exercise sheets and
one for the individual exercises. This results in a tree structure like this:

1. sheet1

a) exercise1

i. main.cc

ii. solution.txt

iii. <header and source files>

b) exercise2

i. <files as above>

c) ...

2. sheet2

a) exercise1

b) exercise2

c) ...

3. ...

4. scratch

1



You are free to name and structure your C++ files in any way you like, but there
should always be a file named main.cc that is a sample application of your implemented
classes. Often the content is given in the exercise, if it isn’t you are free to choose sensible
test cases yourselves.

The file solution.txt is meant for the output of your main.cc and for answering
questions that appear in the exercises. If an exercise is of theoretical nature and doesn’t
include actual coding, this is the only file you have to submit.

The directory scratch is meant as an area where you can put temporary files, solution
attempts and other things that aren’t actual submissions. Any file put there will be
ignored by the tutors, and can neither increase nor decrease the number of points you
receive.

2.3 Access to the Repository

You need to give read access to the repository to all tutors, regardless of the group you
are in. This allows for flexible handling of unforeseen situations.

3 Style Guidelines

All programs you submit should follow basic programming rules like the following:

• Formatting

– Put each instruction on a separate line (two lines if it is very large)

– Use spaces to separate variable names, functions and operators

– Indent your lines to visually mark different lines belonging to different scopes

• Variable names

– The name should reflect the purpose of the variable

– Variable names start with a lowercase letter, types with an uppercase letter

– The rest of the name format for identifiers is up to you

– Simple counting ints and similar variables are exempt

• Comments

– Comments allow others to understand your intentions

– Tutors can only give you points if they understand what you were trying to
do

– Guideline: one comment per class, per function, per algorithm subtask, per
tricky or “exotic” source line

– Don’t comment to much either, this may drown the actual code visually or
diverge from what is actually coded (!)

– Leave out trivial comments (“This is the constructor”)

2



• Language constructs

– You may use any construct you want, even if it has not yet been introduced
in the lecture

– Avoid constructs that have been superseded by better alternatives in the
lecture

– Declare variables and references as const where it is possible

– Separate interface and implementation by correctly using public and private

– Use exceptions instead of aborts and smart pointers instead of raw pointers
once the lecture has introduced them

3


