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C++11 and Dynamic Memory Management
Smart Pointer

C++11 offers a number of so-called smart pointers that can help manage
dynamic memory and in particular ensure the correct release of allocated memory.
There are three different types of smart pointers:

• std::unique_ptr<T>

• std::shared_ptr<T>

• std::weak_ptr<T>

The template argument T specifies the type of object the smart pointer points to.
The C++11 smart pointers are defined in the header file memory.
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unique_ptr

• In the case of unique_ptrs there is always exactly one smart pointer that owns
the allocated data. If this pointer is destroyed (e.g. because the function in
which it was defined exits or the destructor of the object to which it belongs
is called), then the virtual memory is freed.

• Smart pointers and normal pointers (raw pointers) should not be mixed to
avoid the risk of unauthorized access to already freed memory or double
release of memory. Therefore, the allocation of memory must be placed
directly in the constructor call of unique_ptr.

• An assignment of a normal pointer to a smart pointer is not possible (but a
transfer in the constructor is).
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Example for unique_ptr

#include <memory >

#include <iostream >

struct blub

{

void doSomething ()

{}

};

int main()

{

std::unique_ptr <int > test(new int);

test = new int; // not allowed: assignment from raw pointer

int a;

test = &a; // not allowed: assignment from raw pointer

std::unique_ptr <int > test5(&a); // allowed but dangerous

*test = 2; // normal memory access

std::unique_ptr <int > test2(test.release ()); // move to other

pointer

test = std::move(test2); // assignment only using move
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Example for unique_ptr

test.swap(test2); // exchange with other pointer

if (test == nullptr) // comparison

std::cout << "test is nullptr" << std::endl;

if (!test2) // test for existence

of object

std::cout << "test2 is nullptr" << std::endl;

std::unique_ptr <int[]> test3(new int [32]); // array

test3 [7] = 12; // access to array

if (test3) // access to raw pointer

std::cout << "test3 is " << test3.get() << std::endl;

test3.reset (); // release of memory

if (!test3)

std::cout << "test3 is nullptr" << std::endl;

std::unique_ptr <blub > test4(new blub); // allocate object

test4 ->doSomething (); // use method of object

std::unique_ptr <FILE , int (*)(FILE*)> filePtr(

fopen("blub.txt", "w"), fclose); // Create and close file

}
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shared_ptr

• shared_ptrs point to memory that is used concurrently.

• Several shared_ptrs can point to the same memory location. The number of
simultaneous shared_ptrs to the same resource is monitored with reference
counting. The allocated memory is freed when the last shared_ptr pointing to
it disappears.

• Apart from that the functionality of shared_ptr is the same as that of
unique_ptr.

• When the first shared_ptr to an object is created, a manager object is created
that manages both the allocated resources and a variable that counts how
many pointers point to the resources at any given moment.

• For each copy of a shared_ptr the counter is incremented, and it is lowered
each time a shared_ptr is deleted or modified to point to a different location.
If the counter reaches zero, the resources are released.
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weak_ptr

• If several objects have shared_ptrs pointing to each other, they can be kept
alive artificially after their scope ends, because each object has at least one
pointer in the circle pointing to it.

• In order to break such a circuit, the class weak_ptr has been created.

• A weak_ptr is not a real pointer. It can not be dereferenced and no methods
can be invoked on it.

• A weak_ptr only observes a dynamically allocated resource and can be used to
check if it still exists.

• If access to the resource is required, the method lock() of weak_ptr can be
used to generate a shared_ptr to the resource. This then ensures the existence
of the resource as long it is used.

• The manager object of a shared_ptr has another counter, the so-called weak
counter, which in turn counts the generated weak_ptrs. While the allocated
resource is released when no shared_ptr points on it, the manager object is
released when in addition no weak_ptr points to it.
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shared_ptr to this

• Sometimes a pointer pointing at this is needed. As one shouldn’t mix smart
pointers and raw pointers, a shared_ptr to this must be used.

• If this is realized by shared_ptr<T> blub(*this), then a new manager object
will be created and the memory of the object is either not released or released
to early.

• Instead, one derives the class from the template class
enable_shared_from_this<T>. A pointer to this is then created with the
method shared_from_this:

shared_ptr <T> blub = shared_from_this ();

• During the creation of such a derived object in the constructor of a
shared_ptr, a weak_ptr to the object itself is stored within the object. The
method shared_from_this generates a shared_ptr out of this stored weak_ptr.
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Example for shared_ptr

#include <memory >

#include <iostream >

class Base : public std:: enable_shared_from_this <Base >

{

void doSomething ()

{

std::shared_ptr <Base > myObj = shared_from_this ();

}

};

class Derived : public Base

{};

int main()

{

std::shared_ptr <int > testPtr(new int), testPtr2;

testPtr2 = testPtr; // increases shared count

std::cout << testPtr.use_count () << std::endl; // number of

shared_ptrs

testPtr.reset (); // decreases shared count , testPtr is

nullptr
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Example for shared_ptr

// weak pointer example

std::weak_ptr <int > weakPtr = testPtr2; // increases weak count

testPtr = weakPtr.lock();

if (testPtr)

std::cout << "Object still exists" << std::endl;

if (weakPtr.expired ())

std::cout << "Object doesn’t exist any more" << std::endl;

std::shared_ptr <int > testPtr3(weakPtr); // throws exception if

object has vanished

// Casting of shared pointers

std::shared_ptr <Base > basePtr(new Derived);

std::shared_ptr <Derived > derivedPtr;

derivedPtr = std:: static_pointer_cast <Derived >( basePtr); //

create cast smart pointer sharing ownership with original

pointer

}
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Constant Values

Constant Variables

• For constant variables the compiler ensures that the content is not changed
during program execution.

• Constant variables must be initialized when they are defined.

• They can not be changed later on.

const int numElements = 100; // initialization

numElements = 200; // not allowed , const

• Compared to the macros in C, constant variables are preferred, because they
allow the strict type checking of the compiler.
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Constant Values

Constant References

• References can be also defined as constant. The value pointed to by the
reference cannot be changed (using the reference).

• Constant variables only allow constant references (since otherwise they might
be changed using the reference).

int numNodes = 100; // variable

const int& nn = numNodes; // variable cannot be canged using

nn

// but can be using numNodes

const int numElements = 99; // initialization

int& ne = numElements; // not allowed , const -correctness

// wouldn ’t be guaranteed anymore

const int& numElem = numElements; // allowed

• Constant references are a great way to pass a variable to a function without
copying.

MatrixClass& operator +=( const MatrixClass& b);
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Constant Values

Constant Pointers

For pointers there are two different types of constness. For a pointer it may be
forbidden

• to change the contents of the variable to which it points. This is expressed by
writing const before the type of the pointer:

char s[17];

const char* pc = s; // pointer to constant

pc[3] = ’c’; // error , content is const

++pc; // allowed

• to change the address stored in the pointer (such a pointer effectively acts as
a reference). This is expressed by writing const between the type of the
pointer and the name of the pointer:

char* const cp = s; // const pointer

cp[3] = ’c’; // allowed

++cp; // error , pointer is const
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Constant Values

Constant Pointers

• Of course there is also the combination of both (which corresponds to a
constant reference):

const char* const cpc = s; // const pointer to constant

cpc [3] = ’c’; // error , content is const

++cpc; // error , pointer is const
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Constant Values

Constant Objects

• Objects can also be defined as constant.

• The user assumes that the content of a constant object doesn’t change. This
must be guaranteed by the implementation.

• Therefore, it isn’t allowed to call methods that could change the object.

• Functions which will not violate the constness are marked by the addition of
the keyword const after the argument list.

• The keyword is part of the name. There can be a const and a non-const
variant with the same argument list.

• Important: the const must also be added to the method definition outside of
the class.

• For constant objects only const methods can be called.
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Constant Values

#include <iostream >

class X

{

public:

int blub() const

{

return 3;

}

int blub()

{

return 2;

}

};

int main()

{

X a;

const X& b = a;

std::cout << a.blub() << " " << b.blub() << std::endl;

// produces the output "2 3"

}

Of course the behavior used here for illustrative purposes is misleading and should
not be used.
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Constant Values

Example: Matrix Class

double* MatrixClass :: operator []( int i)

{

if ((i<0)||(i>= numRows_))

{

std::cerr << "Illegal row index " << i;

std::cerr << " valid range is (0:" << numRows_ << ")";

std::cerr << std::endl;

exit(EXIT_FAILURE);

}

return a_[i];

}

const double* MatrixClass :: operator [](int i) const

{

if ((i<0)||(i>= numRows_))

{

std::cerr << "Illegal row index " << i;

std::cerr << " valid range is (0:" << numRows_ << ")";

std::cerr << std::endl;

exit(EXIT_FAILURE);

}

return a_[i];

}
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Constant Values

Using this we may write:

MatrixClass A(4,6,0.0);

for (int i=0;i<A.Rows();++i)

A[i][i] = 2.0;

const MatrixClass E(5 ,5 ,1.0);

for (int i=0;i<E.Rows();++i)

std::cout << E[i][i] << std::endl;

Returning a pointer to a constant will prevent the object being implicitly modified
by the return value:

A[2][3] = -1.0; // ok , no constant

E[1][1] = 0.0; // compiler error
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Constant Values

Physical and Logical Constness

When is a method const?

1 The object remains bitwise unchanged. That’s how the compiler sees it (that’s
all it can check) and what it tries to ensure e.g. by treating all data members
of a const object also as constants. This is also known as physical constness.

2 The object remains conceptually unchanged for the user of the class. This is
referred to as a logical constness. But the compiler is unable to check the
semantics.
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Constant Values

Physical Constness and Pointers

• In our matrix class example with dynamic memory management, we have
used a pointer of type double ** to store the matrix.

• Making this pointer constant we obtain a pointer of type double ** const.
This way it’s only forbidden to change the memory address which is stored in
the pointer but not the entries in the matrix.

• The compiler doesn’t complain about the definition:

double& MatrixClass :: operator ()(int i, int j) const;

This therefore allows changing a constant object:

const MatrixClass E(5 ,5 ,1.0);

E(1,1) =0.0;

• It is even allowed to change the entries within the class itself:

double& MatrixClass :: operator ()(int i,int j) const

{

a_ [0][0]=1.0;

return a_[i][j];

}
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Constant Values

Alternatives

• Using an STL container as in the first variant of the matrix class:

std::vector <std::vector <double > >

• In a const object this becomes a const std::vector<std::vector<double> >.

• Defining the access function

double& MatrixClass :: operator ()(int i, int j) const;

results in an error message from the compiler:

matrix.cc: In member function ’double& 

MatrixClass :: operator ()(int , int) const ’:

matrix.cc:63: error: invalid initialization of reference of

type ’double&’ from expression of type ’const double ’
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Constant Values

Alternatives (II)

• Returning entire vectors with:

std::vector <double >& MatrixClass :: operator [](int i) const;

fails as well:

matrix.cc: In member function ’std::vector <double , 

std::allocator <double > >& MatrixClass :: operator []( int) 

const’:

matrix.cc:87: error: invalid initialization of reference of

type ’std::vector <double , std::allocator <double > >&’ from

expression of type ’const std::vector <double , 

std::allocator <double > >’

Note: Using pointers it is easy to circumvent the compiler functionality for
monitoring physical constness. Therefore it is appropriate to exercise caution when
using const methods for objects that use dynamically allocated memory.
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Constant Values

Logical Constness and Caches

• Sometimes it is useful to store calculated values with high computational cost
in order to save computing time when they are needed several times.

• We add the private variables double norm_ and bool normIsValid_ to the matrix
class and make sure that normIsValid_ will always be initialized with false in
the constructor.
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Constant Values

Logical Constness and Caches

• Then it is possible to implement an infinity norm as follows:

double MatrixClass :: InfinityNorm ()

{

if (! normIsValid_)

{

norm_ = 0.;

for (int j = 0; j < numCols_; ++j)

{

double sum = 0.;

for (int i = 0; i < numRows_; ++i)

sum += fabs(a_[i][j]);

if (sum > norm_)

norm_=sum;

}

normIsValid_ = true;

}

return norm_;

}

• This function also makes sense for a constant matrix and doesn’t
semantically violate the constness.

• But the compiler doesn’t allow it.
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Constant Values

Solution

• One defines both variables as mutable.

mutable bool normIsValid_;

mutable double norm_;

• Members that are mutable can also be modified in const objects.

• This should only be applied when it’s absolutely necessary and doesn’t
change the logical constness of the object.
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Constant Values

Friend

In some cases it may be necessary for other classes or functions to access the
protected members of a class.

Example: Simply linked list

• Node contains the data.

• List should be able to change the data of Node.

• The data of Node should be private.

• List is friend of Node and may therefore access private data.
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Constant Values

Friend II

• Classes and free functions can be friend of another class.

• Such a friend may access the private data of the class.

Example friend class:

class List;

class Node

{

private:

Node* next;

public:

int value;

friend class List;

};
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Constant Values

Friend II

• Classes and free functions can be friend of another class.

• Such a friend may access the private data of the class.

Example friend function:

class MatrixClass

{

friend MatrixClass invert(const MatrixClass &);

// ...

};

...

MatrixClass A(10);

...

MatrixClass inv = invert(A);
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Constant Values

Friend III

• Almost everything that can be written as a class method can also be
programmed as a free friend function.

• All classes and functions which are friend logically belong to the class, as
they build on its internal structure.

• Avoid friend declarations. They open up encapsulation and raise the cost of
maintenance.
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Build Systems

Build Systems

• Complex projects consist of various programs and libraries.

• Each program / library consists of many files (header and source files).

• Build systems are created to make things easier when compiling.

Goal:

• A build system knows how to create the programs and libraries from the files.

• If a file is modified, the project should be updated.

• Typically not all files must be recompiled.

• Recompile as many files as necessary . . . and as few as possible.
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Build Systems

Choice of Build Systems

There are several different
systems with different ranges of
functionality:

• make

• mk

• SCons

• ant

• jam

• Rant

• built-ins or plugins of the
IDE

• . . .

Moreover, there are
meta-systems which generate
input files for other systems:

• automake/autoconf

• cmake

• qmake

• mkmf

• . . .
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Build Systems

Makefiles

• make is a program that allows to translate only the files that have changed
since the last compilation.

• A Makefile describes the files which belong to a project and how they are
compiled and linked.

• Makefile rules are written in a functional language.
• One describes targets, which depend on prerequisites.
• targets and prerequisites normally correspond to files.
• For individual targets one creates rules that define how they are generated

using the rerequisites.

• Makefile rules are of the form

target -name: prerequisites -list

build -rule

with the actual rule being indented with a TAB.
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Build Systems

Easy Makefile Example

all: test_rational farey

farey: farey.o rational.o

g++ farey.o rational.o -o farey

test_rational: rational_test.o rational.o

g++ rational_test.o rational.o -o test_rational

rational_test.o: rational_test.cc rational.h

g++ -c rational_test.cc

rational.o: rational.cc rational.h

g++ -c rational.cc

farey.o: farey.cc rational.h

g++ -c rational.cc
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Build Systems

Advanced Makefile Example
# the compiler we want to use
CXX=g++

# some more variables
CPPSRC=$(wildcard *.cc)
OBJS=$(CPPSRC :.cc=.o)
APPS=test_rational farey

### build all apps
all: $(APPS)

# how to build the apps
farey: farey.o rational.o
test_rational: rational_test.o rational.o
# how to compile apps
%: %.o

$(CXX) $? -o $@
# how to compile object files
%.o: %.cc

$(CXX) $(CXXFLAGS) -c -o $@ $<

• make supports variables.

• Rules can be formulated generically
for different targets,

• . . . using several automatic variables.

• GNU make has several special
extensions (e.g. wildcards).

• GNU make has several rules already
built in.

• make can also directly clean up the
created files

• and automatically check the
dependencies with the help of the
compiler.
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Build Systems

Alternative: IDEs

• Integrated Development Environments (IDEs) combine the properties of an
editor, a build system and a debugger

• e.g. Eclipse C/C++ Development Environment
(http://www.eclipse.org/cdt)

• Eclipse is powerful and open source, but also very complex
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Build Systems

Multiple Header Inclusion Prevention

• One can use macros to prevent the repeated inclusion of a header file.

• The content of the header file is put inside a conditional block:

#ifndef _MYSPECIALHEADERFILE_

#define _MYSPECIALHEADERFILE_

// content of header file

#endif

• The first inclusion of the header results in the definition of the macro and
parsing of the content of the header file.

• Subsequent inclusions skip the content, since the macro is already defined.
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