
Object-Oriented Programming
for Scientific Computing

STL Containers and Iterators

Ole Klein

Interdisciplinary Center for Scientific Computing
Heidelberg University

ole.klein@iwr.uni-heidelberg.de

9. Juni 2015

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 1 / 31



Evaluation

What is the purpose?

• Anonymous questionnaire from the university administration, used for quality
assurance and collection of feedback.

• Chance for you to mention things that were better than in other lectures and
should be kept / suggested to others / might be of interest.

• Chance for you to mention things that didn’t work out as planned or might
be organized in a better way, and give constructive suggestions to make the
lecture better.

• Questions as inspiration for the free form fields:
• Why did you decide to attend this course?
• Did the content up to now match what you expected?
• Or did the lectures surprise you (in a good or in a bad way)?
• How did the unexpected number of participants and the resulting rather

spontaneous restructuring work out for you?

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 2 / 31



Evaluation

Rules for your feedback:

• Time for completing the questionnaire: 15 minutes (at least).

• Use a blue or black ball-point pen if possible, since the sheets will be scanned
automatically.

• Please only write into boxes, and use uppercase letters, since otherwise your
comments may be lost.

• Common tutorial: not specified, since we don’t have one.

• I need a student that collects the sheets for me and accompanies me when I
hand the envelope in, since I’m not allowed to see the questionnaires after
they have been filled out.

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 3 / 31



Points and Exam

• I have entered your points for the first five exercise sheets in MUESLI. Please
check the entries and make sure they are right, since these are the only
numbers relevant for admission to the exam.

• If you are missing points, please talk to your tutor to correct your records. Be
prepared that you will have to provide the commit that bears your name, the
mail where you are mentioned or some other argumentation why you should
have a claim.

• As a reminder, the exam will take place on 21.7. during lecture time.
Everybody who has the necessary points automatically takes part in the exam
unless he or she states otherwise at least a day before.

• If necessary there will be a second exam for those that failed the first or have
a good excuse why they couldn’t take part (“Attest”). I don’t have a date yet.

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 4 / 31



The Standard Template Library(STL)

Set/Multiset

• The containers set and multiset are sorted sets of elements.

• While in a set every element may only appear once, a multiset may contain
elements several times.

• In a set, it is particularly important to be able to quickly determine whether
an element is in the set or not (and in a multiset, how often).

• The search for an element is of optimal complexity O(log(N)).

• set and multiset have three template parameters: the type of objects, a
comparison operator and an allocator. For the last two, there are default
values (less and the standard allocator).

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 5 / 31



The Standard Template Library(STL)

Map/Multimap

• The containers map and multimap consist of sorted pairs of two variables, a key
and a value. The entries in the map are sorted by the key.

• While each key can only appear once in a map, it may exist several times in a
multimap (independent of the associated value).

• A map can be quickly searched for a key and then gives access to the
appropriate value.

• The search for a key is of optimal complexity O(log(N)).

• map and multimap have four template parameters: the type of the keys, the
type of the values, a comparison operator and an allocator. For the last two,
there are again default values (less and new/delete).

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 6 / 31



The Standard Template Library(STL)

Container Concepts

• The properties of STL containers are divided into specific categories.

• They are, for example, Assignable, EqualityComparable, Comparable,
DefaultConstructible...

• The objects of a class that are to be stored in a container must be Assignable

(there is an assignment operator), Copyable (there is a copy constructor) ,
Destroyable (there is a public destructor), EqualityComparable (there is an
operator==) and Comparable (there is an operator<).

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 7 / 31



The Standard Template Library(STL)

Container

• A Container itself is Assignable (there is an assignment operator),
EqualityComparable (there is an operator==) and Comparable (there is an
operator<).

• Associated types:

value_type The type of object stored. Needs to be Assignable, but not
DefaultConstructible.

iterator The type of the iterator. Must be an InputIterator and a conversion
to const_iterator must exist.

const_iterator An iterator through which the elements may be read but not changed.
reference The type of a reference to the value_type of the container.
const_reference As above, but constant reference.
pointer As above, but pointer.
const_pointer As above, but pointer to constant.
difference_type A type suitable for storage of the difference between two iterators.
size_type An unsigned integer type that can store the distance between two

elements.

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 8 / 31



The Standard Template Library(STL)

Container

In addition to the methods of Assignable, EqualityComparable and Comparable, a
container alway has the following methods:

begin() Returns an iterator to the first element. If the container is const

this is a const_iterator.
end() As begin(), but points to the location after the last element.
size() Returns the size of the container, i.e. the number of elements,

return type size_type.
max_size() Returns the maximum size allowed at the moment, return type

size_type.
empty() True if the container is empty.
swap(b) Swaps elements with container b.

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 9 / 31



The Standard Template Library(STL)

Specializations of the Container Concept

Assignable EqualityComparable Comparable

Container

ForwardContainer

ReversibleContainer

RandomAccessContainer

Abbildung: Container concepts

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 10 / 31



The Standard Template Library(STL)

ForwardContainer

• Specialization of the Container concept.

• There is an iterator with which one can pass through the container in the
forward direction (ForwardIterator).

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 11 / 31



The Standard Template Library(STL)

ReversibleContainer

• There is an iterator which allows passing back and forth through the
container (BidirectionalIterator).

• Additional associated types:
reverse_iterator Iterator in which the operator++ moves to the

previous item instead of the next item.
const_reverse_iterator As above, but const version.

• Additional methods:
rbegin() Returns an iterator to the first element of a reverse pass

(last element of the container).
rend() As rbegin(), but points to the location before the first

element.

Implementations
• std::list

• std::set

• std::map

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 12 / 31



The Standard Template Library(STL)

RandomAccessContainer

• Is a specialization of ReversibleContainer.

• There is an iterator with which one can gain access to arbitrary elements of
the container (RandomAccessIterator, uses an index).

• Additional methods: operator[](size_type) (and const version), access
operators for random access.

Implementations
• std::vector

• std::deque

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 13 / 31



The Standard Template Library(STL)

Sequence

ForwardContainer DefaultConstructible

Sequence

BackInsertionSequenceFrontInsertionSequence

Abbildung: Sequence concepts

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 14 / 31



The Standard Template Library(STL)

Sequence Methods

A Sequence is a specialization of the concept of ForwardContainer (so one can at
least in one direction iterate over the container) and is DefaultConstructible (there
is a constructor without argument / an empty container).

X(n,t) Generates a sequence with n ≥ 0 elements initialized with t.
X(n) As above, but initialized with the default constructor.
X(i,j) Generates a sequence which is a copy of the range [i,j) . Here i and j

are InputIterators.
insert(p, t) Inserts the element t in front of the one the iterator p points to, and

returns an iterator that points to the inserted element.
insert(p, i, j) As above, but for the range [i,j).
insert(p, n, t) As above, but inserts n copies of t and returns an iterator to the last of

them.
erase(p) Invokes the destructor for the element to which the iterator p points and

deletes it from the container.
erase(p,q) As above, but for the range [p,q).
erase() Deletes all elements.
resize(n,t) Shrinks or enlarges the container to size n and initializes new elements

with t.
resize(n) The same as resize(n, T()).

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 15 / 31



The Standard Template Library(STL)

Complexity Guarantees for Sequences

• The constructors X(n,t) X(n) and X(i,j) have linear complexity.

• Inserting elements insert(p, t), insert(p, i, j) and deleting them with
erase(p,q) has linear complexity.

• The complexity of inserting and removing single elements depends on the
sequence implementation.

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 16 / 31



The Standard Template Library(STL)

BackInsertionSequence

Methods in addition to those from the Sequence concept:
back() Returns a reference to the last element.
push_back(t) Inserts a copy of t after the last element.
pop_back() Deletes the last element of the sequence.

Complexity Guarantees

back, push_back, and pop_back have amortized constant complexity, i.e. in individual
cases it may take longer but the average time is independent of the number of
elements.

Implementations
• std::vector

• std::list

• std::deque

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 17 / 31



The Standard Template Library(STL)

FrontInsertionSequence

Methods in addition to those from the Sequence concept:
front() Returns a reference to the first element.
push_front(t) Inserts a copy of t before the first element.
pop_front() Removes the first element of the sequence.

Complexity Guarantees

front(), push_front(), and pop_front() have amortized constant complexity.

Implementations
• std::list

• std::deque

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 18 / 31



The Standard Template Library(STL)

STL Sequence Containers

BackInsertionSequence RandomAccessContainer

std::vector

T:typename

Alloc:typename

BackInsertionSequence

FrontInsertionSequence ReversibleContainer

std::list

T:typename

Alloc:typename

BackInsertionSequence

FrontInsertionSequence RandomAccessContainer

std::deque

T:typename

Alloc:typename

Abbildung: STL sequence containers

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 19 / 31



The Standard Template Library(STL)

Associative Containers

AssociativeContainer

ForwardContainerDefaultConstructible

SimpleAssociativeContainer

PairAssociativeContainer

SortedAssociativeContainer

ReversibleContainer

MultipleAssociativeContainer

UniqueAssociativeContainer

UniqueSortedAssociativeContainer

MultipleSortedAssociativeContainer

Abbildung: Associative container concepts

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 20 / 31



The Standard Template Library(STL)

AssociativeContainer

• Is a spezialisation of ForwardContainer and DefaultConstructible.

• Additional associated type: key_type is the type of a key.

• Additional Methods:
erase(k) Deletes all entries with the key k.
erase(p) Deletes the element that the iterator p points to.
erase(p,q) As above, but for the range [p,q).
clear() Deletes all elements.
find(k) Returns an iterator pointing at the item (or one of the

items) with the key k or end() if the key does not exist.
count(k) Returns the number of elements with the key k.
equal_range(k) Returns a pair p of iterators so that [p.first,p.second) con-

sists of all elements have the key k.

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 21 / 31



The Standard Template Library(STL)

AssociativeContainer

• Assurances:

Continuous memory : all elements with the same key directly follow one
another.

Immutability of the key : The key of each element of an associative container
is unchangeable.

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 22 / 31



The Standard Template Library(STL)

Complexity Guarantees

erase(k) Average complexity at most O(log(size() + count(k))
erase(p) Average complexity constant
erase(p,q) Average complexity at most O(log(size() + N))
count(k) Average complexity at most O(log(size() + count(k))
find(k) Average complexity at most logarithmic
equal_range(k) Average complexity at most logarithmic

These are just average complexities, and the worst case can be significantly more
expensive!

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 23 / 31



The Standard Template Library(STL)

SimpleAssociativeContainer and
PairAssociativeContainer

These are specializations of the AssociativeContainer.

SimpleAssociativeContainer

has the following restrictions:

• key_type and value_type must be the same.

• iterator and const_iterator must have the same type.

PairAssociativeContainer

• introduces the associated data type mapped_type. The container maps key_type

to mapped_type.

• The value_type is std::pair<key_type,mapped_type>.

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 24 / 31



The Standard Template Library(STL)

SortedAssociativeContainer

This specialization uses a sorting criterion for the key. Two keys are equivalent if
none is smaller than the other.

Additional associated types

key_compare The type implementing StrictWeakOrdering to compare two keys.
value_compare The type implementing StrictWeakOrdering to compare two values.

Compares two objects of type value_type by handing their keys over
to key_compare.

Additional Methods

key_compare() Returns the key comparison object.
value_compare() Returns the value comparison object.
lower_bound(k) Returns an iterator to the first element whose key is not less than k,

or end() if there is no such element.
upper_bound(k) Returns an iterator to the first element whose key is greater than k, or

end() if there is no such element.

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 25 / 31



The Standard Template Library(STL)

SortedAssociativeContainer

Complexity Guarantees

• key_comp, value_comp and erase(p) have constant complexity.

• erase(k) is O(log(size()) + count(k))

• erase(p,q) is O(log(size() + N))

• find is logarithmic.

• count(k) is O(log(size() + count(k))

• lower_bound, upper_bound, and equal_range are logarithmic.

Assurances
value compare: if t1 and t2 have the associated keys k1 and k2, then

value_compare()(t1,t2)==key_compare(k1,k2) is guaranteed to be
true.

Increasing order of the elements is guaranteed.

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 26 / 31



The Standard Template Library(STL)

UniqueAssociativeContainer and
MultipleAssociativeContainer

A UniqueAssociativeContainer is an AssociativeContainer with the
additional property that each key occurs at most once.
A MultipleAssociativeContainer is an AssociativeContainer in which
each key can appear several times.

Additional Methods

X(i,j) Creates an associative container from the items in the range [i,j).
insert(t) Inserts the value_type t and returns a std:pair containing an ite-

rator to the copy of t and a bool (true if the copy has just been
inserted)

insert(i,j) Inserts all elements in the range [i,j) .

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 27 / 31



The Standard Template Library(STL)

UniqueAssociativeContainer and
MultipleAssociativeContainer

Complexity Guarantees

• The average complexity of insert(t) is at most logarithmic.

• The average complexity of insert(i,j) is at most O(N ∗ log(size()) + N),
where N=j-i

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 28 / 31



The Standard Template Library(STL)

Associative Container Classes

SimpleAssociativeContainer UniqueSortedAssociativeContainer

std::set

Key:typename

Compare:typename

Alloc:typename

PairAssociativeContainer UniqueSortedAssociativeContainer

std::map

Key:typename

HashFcn:typename

EqualKey:typename

Alloc:typename

SimpleAssociativeContainer MultipleSortedAssociativeContainer

std::multiset

Key:typename

Compare:typename

Alloc:typename

PairAssociativeContainer MultipleSortedAssociativeContainer

std::multimap

Key:typename

Mapped:typename

Compare:typename

Alloc:typename

Abbildung: Associative container classes

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 29 / 31



The Standard Template Library(STL)

Properties of the Different Container Classes

vector deque list set map

Typical internal
data structure

Dynamic
array

Array of ar-
rays

Doubly lin-
ked list

Binary tree Binary tree

Elements values values values values keys/values

Search slow slow very slow fast fast (key)

Insert/delete
fast

end beginning
and end

everywhere — —

Frees memory
of removed
elements

never sometimes always always always

Allows prealloca-
tion

yes no — — —

Tabelle: Properties of the different container classes

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 30 / 31



The Standard Template Library(STL)

Which Container Should Be Used?

• If there is no reason to use a specific container, then vector should be used,
because it is the simplest data structure and allows random access.

• If elements often have to be inserted/removed at the beginning or at the end,
then a deque should be used. This container will shrink again when items are
removed.

• If elements have to be inserted/removed/moved at arbitrary locations, then a
list is the container of choice. Even moving all elements from one list into
another can be done in constant time. But there is no random access.

• If it should be possible to repeatedly search for items in a fast way, one
should use a set or multiset.

• If it is necessary to manage pairs of keys and values (as in a dictionary or
phone book) then one uses a map or multimap.

Ole Klein (IWR) Object-Oriented Programming 9. Juni 2015 31 / 31


	The Standard Template Library(STL)

