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Exercise 1 Gravitational N-Body Problem (GNBP)

Make yourself familiar with the program nbody vanilla.c. It computes the movement of a number of bodies
in empty space acting on each other through gravitation. Read the description below. Read the code, compile
the code, run the code, look at the output files with paraview. Twiddle with the code (for instance by using
different initial conditions) and observe how the output changes. Look at the MFLOPS rate and note how it
changes (or does not change) with the number of bodies.

For a more in-depth treatment of the problem see “The Art of Computational Science – How to build a
computational lab” (www.artcompsci.org).

1 The Problem

Consider two bodies floating in empty space:

·

·

·
d

0

x1

x2

x1 + d = x2

⇒ d = x2 − x1

This is the 2-body case. Newton’s law gives us an expression for the force acting on body 1 due to body 2:

F12(t) = γ
m1m2

‖x2 − x1‖3
(x2 − x1) (1)

With more than two bodies (N -body case) the total force acting on body i is the sum of all the forces exerted
by the other bodies:

Fi(t) =
N−1∑
j=0
j 6=i

γ
mimj

‖xj − xi‖3
(xj − xi) ∀i = 0, . . . , N − 1 (2)

Newton’s second law relates the acceleration of one body with the force acting on it

Fi(t) = miai(t) ∀i = 0, . . . , N − 1. (3)

With the definition of the acceleration

ai(t) =
dvi(t)
dt

, vi(t) =
dxi(t)
dt

∀i = 0, . . . , N − 1 (4)

we arrive at the following system of linear ordinary differential equations (ODEs):

dxi(t)
dt

= vi(t)

dvi(t)
dt

=
N−1∑
j=0
j 6=i

γ
mj

‖xj − xi‖3
(xj − xi)

 ∀i = 0, . . . , N − 1 (5)
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In the following we place the unknowns xi(t) in a vector x(t) in the following way:

x(t) =

 x0(t)
...

xN−1(t)

 =


(x0(t))0
(x0(t))1
(x0(t))2
(x1(t))0

...

 (6)

Similar for a, v and m.

2 Centre-of-Gravity Correction

The position of the centre of gravity and its velocity are

R(t) =
1
M

N−1∑
i=0

mixi V (t) =
1
M

N−1∑
i=0

mivi where M =
N−1∑
i=0

mi. (7)

The velocity V (t) is constant, since there are no external forces acting on the system, and the centre of gravity
moves in a straight line. Thus, without loss of generality, we can fix the centre of gravity at the origin:

x̃i(0) = xi(0)−R(0)
ṽi(0) = vi(0)− V (0)

}
∀i = 0, . . . , N − 1 (8)

This correction is done once at the beginning. The ˜ is omitted in the following and it is assumed that
R(t) = V (t) = 0.

3 Softening

When two bodies collide xj → xi the force exerted by one particle on the other becomes infinite: Fij → ∞.
Especially in computing infinity is highly undesired. To avoid this, we modify the denominator in the acceleration
such that it never becomes never becomes zero:

aij =
γmi

(‖xj − xi‖2 + ε2)3/2
(rj − ri) (9)

The corresponding force may be derived from the potential

Φ(xi, xj , ε) = − γmimj

(‖xj − xi‖2 + ε2)1/2
. (10)

The physical interpretation is that the original force equation holds for a point-like body, while the new equation
holds for a body with non-zero spatial extend and a variable density distribution of

ρ(r) ∝ 1
(r2 + ε2)5/2

. (11)

4 Numerics

A single-step discretization scheme For the time discretization a single step scheme with the following
iteration rule is used:

xk+1 = xk + vk ·∆t+ ak (∆t)2

2
(12)

vk+1 = vk + (ak + ak+1) · ∆t
2

(13)

This scheme has the advantages, that

• it requires only one evaluation of a per step (as long as ak and ak+1 are stored),

• ∆t may vary per step (energy conservation is lost in that case, however), and
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• it is a second order scheme.

The second order accuracy can be shown by doing the Taylor expansion of x(t) and v(t). For x(t) we have:

x(t+ ∆t) = x(t) + ∆t
dx(t)
dt

+
∆t2

2
d2v(t)
dt2

+O(∆t3) (14)

= x(t) + ∆tv(t) +
∆t2

2
a(t) +O(∆t3) (15)

; xk+1 = xk + vk ·∆t+ ak (∆t)2

2
(16)

And similarly for v(t):

v(t+ ∆t) = v(t) + ∆t
dv(t)
dt

+
∆t2

2
d2v(t)
dt2

+O(∆t3) (17)

= v(t) + ∆ta(t) +
∆t2

2
da(t)
dt

+O(∆t3) (18)

The remaining time derivative da(t)
dt can be handled by the Taylor expansion of a(t):

da(t)
dt

=
a(t+ ∆t)− a(t)

∆t
+O(∆t), (19)

which leads to

v(t+ ∆t) = v(t) +
∆t
2
a(t) +

∆t
2
a(t+ ∆t) +O(∆t3) (20)

; vk+1 = vk ∆t
2
ak +

∆t
2
ak+1 (21)

Thus for local truncation error holds the order of consistency of 2.

5 Implementation

Structure of the Data We have to store xk, vk, ak, ak+1 and m. There are the following options to store
these

1. field of struct { double x[3], v[3], a[3], anew[3], m; },

2. double x[N][3], v[N][3], a[N][3], anew[N][3], m[N],

3. double x[3][N], v[3][N], a[3][N], anew[3][N], m[N].

The current implementation uses option 2.

Initial Conditions To generate initial conditions, there are two functions in generate vanilla.h:

plummer() All bodies have equal mass 1
N , corresponding to a macroscopic density leading to the “Plummer

potential”

Φ(r) = −GM 1
(r2 + a2)1/2

. (22)

and velocity accordingly. The system is in equilibrium. Centre-of-mass correction is applied. For more on
the Plummer model see http://www.artcompsci.org/kali/vol/plummer/title.html

cube() All bodies randomly in a cube with zero velocity. Mass is random in m±∆m. Centre-of-mass correction
is applied.

File I/O Data is stored in “VTK” format (Visualisation Toolkit, www.vtk.org). These files can be examined
with paraview (www.paraview.org). The functions to read and write such files are read vtk file double()
and write vtk file double() from io vanilla.h. This can be used to restart if the program has to be
aborted, or to use pregenerated initial condition.
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Time Measurement The function double get time() from stopwatch.h returns some time in seconds.
“Some time” means that the “time” that get time() measures has t = 0 at some unspecified point time, so it
only makes sense to use differences of the values returned by get time(). It does measure the “wall time” and
not the CPU time of the process: the CPU time of a process is the sum of the time slices that the operating
system has given to a thread of that process. So a process with two threads on a two-CPU system can use two
seconds of CPU time while the wall time advances only by one second.

Main Program

main() The main() function reads the program arguments, allocates the variables and initialises them to the
initial conditions. It then does the loop over the time steps, calling leapfrog() for each step and writing
the output file and some statistics every mod time steps.

leapfrog() This function does exactly one time step. The name “leapfrog” is a little inaccurate: There is a
time discretization by the name “Leapfrog”, and the one step scheme is related to it, but it is not exactly
the same.

Input parameters: the number of bodies n, the time step size dt and the vectors of old positions x, of
old velocities v, of masses m, and of old accelerations a.

Output parameters: the vectors of new positions x, of new velocities v and of new accelerations a.

There is an additional parameter aold which is used by the leapfrog() as temporary storage for the old
acceleration vectors, but its values on input and output should not be considered meaningful.

acceleration() This function is used by main() to calculate the initial values for the acceleration from the
initial values for the positions. Similarly used by leapfrog() to calculate the new vector of accelerations
after the new vector of positions has been computed.

Input parameters: the vectors of positions x and of masses m.

Output parameters: the vector of accelerations a. This functions accumulates the acceleration in this
vector, which means the vector must be zero-initialised on entry to this function.

The effect of body i on the acceleration of body j is exactly the opposite of the effect of body j on the
acceleration of body i: aij = −aji. The vanilla implementation of the acceleration() function exploits
this symmetry to save halve the computational effort.

Exercise 2 GNBP with OpenMP

Parallelise nbody openmp.c with OpenMP by inserting the appropriate #pragma omp lines for loop parallelisa-
tion and critical sections. nbody openmp.c is a copy of nbody vanilla.c with some added code to read the num-
ber of threads from the command line. Don’t bother with the parallelisation of anything but acceleration(),
since that needs a number of operations proportional to N2 while everything else needs number of operations
proportional to N .

How does the parallel program perform in comparison to the sequential program, for different numbers of
bodies?

Hint: Since the parallel and the sequential versions of the program do the computation in a different order,
they may produce slightly different results because of the finite precision of doubles. So you cannot directly
compare a .vtk file produced by the sequential program with one produced by the parallel program. There is
however a script fuzzy diff that can compare to files ignoring differences in numerical values below a certain
threshold ε. It can be used like this:

./ fuzzy_diff sequential.vtk parallel.vtk 1e-10

This will compare sequential.vtk with parallel.vtk, ignoring any differences in numerical values smaller
than ε = 10−10.

Exercise 3 GNBP with tiling

nbody vanilla.c does not use the CPU cache efficiently. Each time the acceleration() function computes
the acceleration of body i, it has to iterate over all the bodies j ∈ [i + 1, . . . , N − 1] and load their positions
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x[j] and masses m[j], compute the acceleration aij = −aji and accumulate it in a[i] and a[j]. If the CPU
cache cannot hold all that data, spatial locality is lost and the cache becomes ineffective. This depends very
much on the size of the problem: for small enough N you should have observed an increase in the MFLOP rate
with nbody vanilla.c.

To make better use of the cache even for bigger problems one can employ a technique known as “tiling”. Below,
the left figure shows the order in which nbody vanilla.c computes the accelerations. The figure to the right
shows the order in which accelerations are computed when tiling is done. This example uses a tile size of B = 2.

a00 a01 a02 a03 a04 a05 a06 a07

a10 a11 a12 a13 a14 a15 a16 a17

a20 a21 a22 a23 a24 a25 a26 a27

a30 a31 a32 a33 a34 a35 a36 a37

a40 a41 a42 a43 a44 a45 a46 a47

a50 a51 a52 a53 a54 a55 a56 a57

a60 a61 a62 a63 a64 a65 a66 a67

a70 a71 a72 a73 a74 a75 a76 a77

a00 a01 a02 a03 a04 a05 a06 a07

a10 a11 a12 a13 a14 a15 a16 a17

a20 a21 a22 a23 a24 a25 a26 a27

a30 a31 a32 a33 a34 a35 a36 a37

a40 a41 a42 a43 a44 a45 a46 a47

a50 a51 a52 a53 a54 a55 a56 a57

a60 a61 a62 a63 a64 a65 a66 a67

a70 a71 a72 a73 a74 a75 a76 a77

If the cache is big enough to hold masses for B bodies and the positions and accelerations for 2B bodies, then
the cache will not overflow while the program is working on one tile. Thus, when working on the second line
of a tile the mass and position information will already be in the cache and there is no need to refetch it from
main memory.

nbody tiled.c is a copy of nbody vanilla.c. Change the acceleration() function to make better use of the
cache by tiling. Split the loop over i and j into outer loops which loop over the tiles and inner loops which
loop within the tile, like this:

1 for(I = 0; I < N; I += B)
for(J = I; J < N; J += B)

3 for(i = I; i < MIN(N, I+B); ++i)
for(j = MAX(i+1,J); j < MIN(N, J+B); ++j) {

5 /* code goes here */
}

Can you gain performance over nbody vanilla.c? Is there an optimal tile size?

If you cannot gain performance for any value of N and B up to 214 = 16384, one possible problem is that the
CPU cache is not fully associative. This can lead to aliasing: For a 2-way associative cache and one particle
i the position x[i], the mass m[i] and the acceleration a[i] are all loaded into the same set of cache lines.
Since for a 2-way associative cache there are two cache lines per set, the different variables force each other out
of the cache in turn.

One way around this is to make local copies of the data for each tile, work on that, and add the acceleration
back to the global data.

Exercise 4 GNBP with tiling and OpenMP

Please write a version of the program that combines tiling with OpenMP. You can start from nbody tiled openmp.c,
which is a copy of nbody tiled.c from the sample solution.
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