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Parallel Computing Introduction

Parallel Computing

This set of lectures gives a basic introduction to the subject.
At the end you should have acquired:

• A basic understanding of different parallel computer architectures.

• Know how to write programs using OpenMP.

• Know how to write programs using message passing.

• Know how to write parallel programs using the CUDA environment.

• Know how to evaluate the quality of a parallel algorithm and its
implementation.
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Parallel Computing Introduction

Parallel Computing is Ubiquitous

• Multi-Tasking
• Several independent computations (“threads of control”) can be run

quasi-simultaneously on a single processor (time slicing).
• Developed since 1960s to increase throughput.
• Interactive applications require “to do many things in parallel”.
• All relevant coordination problems are already present (That is why we can

“simulate” parallel programming on a single PC”.
• “Hyperthreading” does the simulation in hardware.
• Most processors today offer execution in parallel (“multi-core”).

• Distributed Computing
• Computation is inherently distributed because the information is distributed.
• Example: Running a world-wide company or a bank.
• Issues are: Communication across platforms, portability and security.
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Parallel Computing Introduction

Parallel Computing is Ubiquitous

• High-Performance Computing
• HPC is the driving force behind the development of computers.
• All techniques implemented in today’s desktop machines have been developed

in supercomputers many years ago.
• Applications run on supercomputers are mostly numerical simulations.
• Grand Challenges: Cosmology, protein folding, prediction of earth-quakes,

climate and ocean flows, . . .
• but also: nuclear weapon simulation
• ASCI (Advanced Simulation and Computing) Program funding: $ 300 million

in 2004.
• Earth simulator (largest computer in the world from 2002 to 2004) cost about

$ 500 million.
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Parallel Computing Introduction

What is a Supercomputer?

• A computer that costs more than $ 10 million

Computer Year $ MHz MBytes MFLOP/s
CDC 6600 1964 7M $ 10 0.5 3.3
Cray 1A 1976 8M $ 80 8 20
Cray X-MP/48 1986 15M $ 118 64 220
C90 1996 250 2048 5000
ASCI Red 1997 220 1.2·106 2.4·106

Pentium 4 2002 1500 2400 1000 4800
Intel QX 9770 2008 1200 3200 >4000 106

• Speed is measured in floating point operations per second (FLOP/s).

• Current supercomputers are large collections of microprocessors

• Today’s desktop PC is yesterdays supercomputer.

• www.top500.org compiles list of supercomputers every six months.
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Parallel Computing Introduction

Development of Microprocessors

Microprocessors outperform conventional supercomputers in the mid 90s (from
Culler et al.).
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Parallel Computing Introduction

Development of Multiprocessors

Massively parallel machines outperform vector parallel machines in the early 90s
(from Culler et al.).
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Parallel Computing Introduction

TOP 500 November 2007

3. BlueGene/P “JUGENE” at FZ Jülich: 294912 processors(cores), 825.5 TFLOP/s
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Parallel Computing Introduction

Terascale Simulation Facility

BlueGene/L prototype at Lawrence Livermore National Laboratory outperforms
Earth Simulator in late 2004: 65536 processors, 136 TFLOP/s,

Final version at LLNL in 2006: 212992 processors, 478 TFLOP/s
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Parallel Computing Introduction

Efficient Algorithms are Important!

• Computation time for solving (certain) systems of linear equations on a
computer with 1 GFLOP/s.

N Gauss ( 2
3 N3) Multigrid (100N)

1.000 0.66 s 10−4 s
10.000 660 s 10−3 s

100.000 7.6 d 10−2 s
1 · 106 21 y 0.1 s
1 · 107 21.000 y 1 s

• Parallelisation does not help an inefficient algorithm.

• We must parallelise algorithms with good sequential complexity.
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Parallel Computing Single Processor Architecture

Von Neumann Computer

instructions

Memory

CPU

controls
IU

PC

Registers

ALU

data

IU: Instruction unit

PC: Program counter

ALU: Arithmetic logic
unit

CPU: Central processing
unit

Single cycle architecture
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Parallel Computing Single Processor Architecture

Pipelining: General Principle
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• Task T can be subdivided into m
subtasks T1, . . . ,Tm.

• Every subtask can be processed in
the same time τ .

• All subtasks are independent.

• Time for processing N tasks:
TS (N) = Nmτ
TP (N) = (m + N − 1)τ .

• Speedup

S(N) = TS (N)
TP (N) = m N

m+N−1 .
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Parallel Computing Single Processor Architecture

Arithmetic Pipelining

• Apply pipelining principle to floating point operations.

• Especially suited for “vector operations” like s = x · y or x = y + z because
of independence property.

• Hence the name “vector processor”.

• Allows at most m = 10 . . . 20.

• Vector processors typically have a very high memory bandwith.

• This is achieved with interleaved memory, which is pipelining applied to the
memory subsystem.
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Parallel Computing Single Processor Architecture

Instruction Pipelining

• Apply pipelining principle to the processing of machine instructions.

• Aim: Process one instruction per cycle.

• Typical subtasks are (m=5):
• Instruction fetch.
• Instruction decode.
• Instruction execute.
• Memory access.
• Write back results to register file.

• Reduced instruction set computer (RISC): Use simple and homogeneous set
of instructions to enable pipelining (e. g. load/store architecture).

• Conditional jumps pose problems and require some effort such as branch
prediction units.

• Optimising compilers are also essential (instruction reordering, loop unrolling,
etc.).
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Parallel Computing Single Processor Architecture

Superscalar Architecture

• Consider the statements

(1) a = b+c;
(2) d = e*f;
(3) g = a-d;
(4) h = i*j;

• Statements 1, 2 and 4 can be
executed in parallel because they are
independent.

• This requires
• Ability to issue several

instructions in one cycle.
• Multiple functional units.
• Out of order execution.
• Speculative execution.

• A processor executing more than
one instruction per cycle is called
superscalar.

• Multiple issue is possible through:
• A wide memory access reading

two instructions.
• Very long instruction words.

• Multiple functional units with out of
order execution were implemented
in the CDC 6600 in 1964.

• A degree of parallelism of 3. . . 5 can
be achieved.
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Parallel Computing Single Processor Architecture

Caches I

While the processing power increases with parallisation, the memory bandwidth
usually does not

• Reading a 64-bit word from DRAM
memory can cost up to 50 cycles.

• Building fast memory is possible but
too expensive per bit for large
memories.

• Hierarchical cache: Check if data is
in the level l cache, if not ask the
next higher level.

• Repeat until main memory is asked.

• Data is transferred in cache lines of
32 . . . 128 bytes (4 to 16 words).
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Parallel Computing Single Processor Architecture

Caches II

• Caches rely on spatial and temporal locality.

• There are four issues to be discussed in cache design:
• Placement: Where does a block from main memory go in the cache? Direct

mapped cache, associative cache.
• Identification: How to find out if a block is already in cache?
• Replacement: Which block is removed from a full cache?
• Write strategy : How is write access handled? Write-through and write-back

caches.

• Caches require to make code cache-aware. This is usually non-trivial and not
done automatically.

• Caches can lead to a slow-down if data is accessed randomly and not reused.
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Parallel Computing Single Processor Architecture

Cache Use in Matrix Multiplication

• Compute product of two matrices C = AB, i.e. Cij =
∑N

k=1 Aik Bkj

• Assume cache lines containing four numbers. C layout:

A B

A0,0

A15,0

A0,15
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Parallel Computing Single Processor Architecture

Matrix Multiplication Performance
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Parallel Computing Single Processor Architecture

BLAS1 Performance
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Parallel Computing Single Processor Architecture

Laplace Performance
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Parallel Computing Parallel Architectures

Flynn’s Classification (1972)

Single data stream Multiple data streams
(One ALU) (Several ALUs)

Single instruction SISD SIMD
stream, (One IU)

Multiple instruction — MIMD
streams (Several IUs)

• SIMD machines allow the synchronous execution of one instruction on
multiple ALUs. Important machines: ILLIAC IV, CM-2, MasPar. And now
CUDA!

• MIMD is the leading concept since the early 90s. All current supercomputers
are of this type.
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Parallel Computing Parallel Architectures

Classification by Memory Access

• Flynn’s classification does not state how the individual components exchange
data.

• There are only two basic concepts.

• Communication via shared memory. This means that all processors share
a global address space. These machines are also called multiprocessors.

• Communication via message exchange. In this model every processor has
its own local address space. These machines are also called
multicomputers.
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Parallel Computing Parallel Architectures

Uniform Memory Access Architecture

PPP

CCC

Connection network

Memory

• UMA: Access to every memory
location from every processor takes
the same amount of time.

• This is achieved through a dynamic
network.

• Simplest “network”: bus.

• Caches serve two reasons: Provide
fast memory access (migration) and
remove traffic from network
(replication).

• Cache coherence problem: Suppose
one memory block is in two or more
caches and is written by a
processor. What to do now?
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Parallel Computing Parallel Architectures

Bus Snooping, MESI-Protocol

remote
read
miss

hit
read

read hit
remote read miss

I

M S

E

read
miss

invalidate
write hit

read miss

invalidate

write hit

hit
read/write

write
miss

invalidate
(write back)

remote read miss (write back)

• Assume that network is a bus.

• All caches listen on the bus whether
one of their blocks is affected.

• MESI-Protocol : Every block in a
cache is in one of four states:
Modified, exclusive, shared, invalid.

• Write-invalidate, write-back
protocol.

• State transition diagram is given on
the left.

• Used e.g. in the Pentium.
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Parallel Computing Parallel Architectures

Nonuniform Memory Access Architecture

PP CC

Connection network

MemoryMemory

• Memories are associated with
processors but address space is
global.

• Access to local memory is fast.

• Access to remote memories is via
the network and slow.

• Including caches there are at least
three different access times.

• Solving the cache-coherence
problem requires expensive hardware
(ccNUMA).

• Machines up to 1024 processors
have been built.
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Parallel Computing Parallel Architectures

AMD Hammer Architecture
Generation 8, introduced 2001
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Parallel Computing Parallel Architectures

Barcelona
QuadCore, Generation 10h, 2007
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Parallel Computing Parallel Architectures

Barcelona Core
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Parallel Computing Parallel Architectures

Barcelona Details

• L1 Cache
• 64K instructions, 64K data.
• Cache line 64 Bytes.
• 2 way associative, write-allocate, writeback, least-recently-used.
• MOESI (MESI extended by “owned”).

• L2 Cache
• Victim cache: contains only blocks moved out of L1.
• Size implementation dependent.

• L3 Cache
• non-inclusive: data either in L1 or L3.
• Victim Cache for L2 blocks.
• Heuristics for determining blocks shared by some cores.

• Superscalarity
• Instruction decode, Integer units, FP units, address generation 3-fold (3 OPS

per cycle).
• Out of order execution, branch prediction.

• Pipelining: 12 stages integer, 17 stages floating-point (Hammer).
• Integrated memory controller, 128 bit wide.
• HyperTransport: coherent access to remote memory.
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Parallel Computing Parallel Architectures

Private Memory Architecture

PP CC

Connection network

MemoryMemory

• Processors can only access their
local memory.

• Processors, caches and main
memory are standard
components: Cheap, Moore’s
law can be fully utilised.

• Network can be anything from
fast ethernet to specialised
networks.

• Most scalable architecture.
Current supercomputers already
have more than 105 processors.
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Parallel Computing Parallel Architectures

Network Topologies

e) binary tree

d) Hypercube, 3D-array
c) 2D-array, 2D-torus

b) 1D-array, ring

a) fully connected

• There are many different types of
topologies used for packet-switched
networks.

• 1-,2-,3-D arrays and tori.

• Fully connected graph.

• Binary tree.

• Hypercube: HC of dimension d ≥ 0 has
2d nodes. Nodes x , y are connected if
their bit-wise representations differs in
one bit.

• k-dimensional arrays can be embedded
in hypercubes.

• Topologies are useful in algorithms as
well.
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Parallel Computing Parallel Architectures

Comparison of Architectures by Example

• Given vectors x , y ∈ RN , compute scalar product s =
∑N−1

i=0 xi yi :

(1) Subdivide index set into P pieces.

(2) Compute sp =
P(p+1)N/P−1

i=pN/P xi yi in parallel.

(3) Compute s =
PP−1

i=0 si . This is treated later.

• Uniform memory access architecture: Store vectors as in sequential program:

x y M

• Nonuniform memory access architecture: Distribute data to the local
memories:

x1 y1 M1 x2 y2 M2 xP yP MP

• Message passing architecture: Same as for NUMA!

• Distributing data structures is hard and not automatic in general.

• Parallelisation effort for NUMA and MP is almost the same.
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Parallel Computing Things to Remember

What you should remember

• Modern microprocessors combine all the features of yesterdays
supercomputers.

• Today parallel machines have arrived on the desktop.

• MIMD is the dominant design.

• There are UMA, NUMA and MP architectures.

• Only machines with local memory are scalable.

• Algorithms have to be designed carefully with respect to the memory
hierarchy.
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Parallel Computing Further Reading

For Further Reading

ASC (former ASCI) program website.
http://www.sandia.gov/NNSA/ASC/

Achievements of Seymour Cray.
http://research.microsoft.com/users/gbell/craytalk/

TOP 500 Supercomputer Sites.
http://www.top500.org/

D. E. Culler, J. P. Singh and A. Gupta (1999).
Parallel Computer Architecture.
Morgan Kaufmann.
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Parallel Programming A Simple Notation for Parallel Programs

Communicating Sequential Processes

Sequential Program

Sequence of statements. Statements are processed one after another.

(Sequential) Process

A sequential program in execution. The state of a process consists of the values of
all variables and the next statement to be executed.

Parallel Computation

A set of interacting sequential processes. Processes can be executed on a single
processor (time slicing) or on a separate processor each.

Parallel Program

Specifies a parallel computation.
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Parallel Programming A Simple Notation for Parallel Programs

A Simple Parallel Language

parallel <program name> {
const int P = 8; // define a global constant
int flag[P] = {1[P]}; // global array with initialization

// The next line defines a process
process <process name 1> [<copy arguments>]
{

// put (pseudo-) code here
}
...
process <process name n> [<copy arguments>]
{ . . . }

}
• First all global variables are initialized, then processes are started.

• Computation ends when all processes terminated.

• Processes share global address space (also called threads).

Peter Bastian and Olaf Ippisch (IWR) Parallel Computing November 9, 2009 37 / 180



Parallel Programming First Parallel Programm

Example: Scalar Product with Two Processes

• We neglect
input/output of the
vectors.

• Local variables are
private to each process.

• Decomposition of the
computation is on the
for-loop.

parallel two-process-scalar-product {
const int N=8; // problem size
double x [N], y [N], s=0; // vectors, result
process Π1

{
int i ; double ss=0;
for (i = 0; i < N/2; i++) ss += x [i ]*y [i ];
s=s+ss; // danger!

}
process Π2

{
int i ; double ss=0;
for (i = N/2; i < N; i++) ss += x [i ]*y [i ];
s=s+ss; // danger!

}
}
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Parallel Programming First Parallel Programm

Critical Section

• Statement s=s+ss is not atomic:

process Π1 process Π2

1 load s in R1 3 load s in R1
load ss in R2 load ss in R2
add R1, R2, store in R3 add R1, R2, store in R3

2 store R3 in s 4 store R3 in s

• The order of execution of statements of different processes relative to each
other is not specified

• This results in an exponentially growing number of possible orders of
execution.
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Parallel Programming First Parallel Programm

Possible Execution Orders
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Result of computation

s = ssΠ1 + ssΠ2

s = ssΠ2

s = ssΠ1

s = ssΠ2

s = ssΠ1

s = ssΠ1 + ssΠ2

Only some orders yield the correct result!
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Parallel Programming First Parallel Programm

First Obervations

• Work has to be distributed to processes

• Often Synchronisation of processes necessary
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Parallel Programming Mutual Exclusion

Mutual Exclusion

• Additional synchronisation is needed to exclude possible execution orders that
do not give the correct result.

• Critical sections have to be processed under mutual exclusion.

• Mutual exclusion requires:
• At most one process enters a critical section.
• No deadlocks.
• No process waits for a free critical section.
• If a process wants to enter, it will finally succeed.

• By [s = s + ss] we denote that all statements between “[” and “]” are
executed only by one process at a time. If two processes attempt to execute
“[” at the same time, one of them is delayed.
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Parallel Programming Mutual Exclusion

Machine Instructions for Mutual Exclusion

• In practice mutual exclusion is implemented with special machine instructions
to avoid problems with consistency and performance.

• Atomic-swap: Exchange contents of a register and a memory location
atomically.

• Test-and-set: Check if contents of a memory location is 0, if yes, set it to 1
atomically.

• Fetch-and-increment: Load memory location to register and increment the
contents of the memory location by one atomically.

• Load-locked/store-conditional : Load-locked loads a memory location to a
register, store-conditional writes a register to a memory location only if this
memory location has not been written since the preceeding load-locked. This
requires interaction with the cache hardware.

• The first three operations consist of an atomic read-modify-write.

• The last one is more flexible and suited for load/store architectures.
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Parallel Programming Mutual Exclusion

Improved Spin Lock

• Idea: Use atomic − swap only if it has been found true:

parallel improved–spin–lock {
const int P = 8; // number of processes
int lock=0; // the lock variable

process Π [int p ∈ {0, ...,P − 1}] {
. . .
while (1) {

if (lock==0)
if (atomic − swap(& lock,1)==0 )

break;
}
. . . // critical section
lock = 0;
. . .

}
}

• Getting P processors through the lock requires O(P2) time.
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Parallel Programming Single Program Multiple Data

Parametrisation of Processes

• We want to write programs for a variable number of processes:

parallel many-process-scalar-product {
const int N; // problem size
const int P; // number of processors
double x [N], y [N]; // vectors
double s = 0; // result
process Π [int p ∈ {0, ...,P − 1}]
{

int i ; double ss = 0;
for (i = N ∗ p/P; i < N ∗ (p + 1)/P; i++)

ss += x [i ]*y [i ];
[s = s + ss]; // sequential execution

}
}

• Single Program Multiple Data: Every process has the same code but works
on different data depending on p.
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Parallel Programming Single Program Multiple Data

Scalar Product on NUMA Architecture

• Every process stores part of the vector as local variables.

• Indices are renumbered from 0 in each process.

parallel local-data-scalar-product {
const int P,N;
double s = 0;

process Π [ int p ∈ {0, . . . ,P − 1}]
{

double x [N/P + 1], y [N/P + 1];
// local part of the vectors

int i ; double ss=0;

for (i = 0,i < (p + 1) ∗ N/P − p ∗ N/P;i++) ss = ss + x [i ] ∗ y [i ];
[s = s + ss; ]

}
}
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Parallel Programming Condition Synchronisation

Parallelisation of the Sum

• Computation of the global sum of the local scalar products with [s = s + ss]
is not parallel.

• It can be done in parallel as follows (P = 8):

s = s0 + s1︸ ︷︷ ︸
s01

+ s2 + s3︸ ︷︷ ︸
s23︸ ︷︷ ︸

s0123

+ s4 + s5︸ ︷︷ ︸
s45

+ s6 + s7︸ ︷︷ ︸
s67︸ ︷︷ ︸

s4567︸ ︷︷ ︸
s

• This reduces the execution time from O(P) to O(log2 P).
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Parallel Programming Condition Synchronisation

Tree Combine

Using a binary representation of process numbers, the communication structure
forms a binary tree:
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Parallel Programming Condition Synchronisation

Implementation of Tree Combine

parallel parallel-sum-scalar-product {
const int N = 100; // problem size
const int d = 4, P = 2d ; // number of processes
double x [N], y [N]; // vectors
double s[P] = {0[P]}; // results are global now
int flag [P] = {0[P]}; // flags, must be initialized!

process Π [int p ∈ {0, ...,P − 1}] {
int i , m, k;
for (i = 0; i < d ; i++) {

m = 2i ; // bit i is 1
if (p&m) {flag [m]=1; break;} // I am ready
while (!flag [p|m]); // condition synchronisation
s[p] = s[p] + s[p|m];

}
}

}
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Parallel Programming Condition Synchronisation

Condition Synchronisation

• A process waits for a condition (boolean expression) to become true. The
condition is made true by another process.

• Here some processes wait for the flags to become true.

• Correct initialization of the flag variables is important.

• We implemented this synchronisation using busy wait.

• This might not be a good idea in multiprocessing.

• The flags are also called condition variables.

• When condition variables are used repeatedly (e.g. when computing several
sums in a row) the following rules should be obeyed:

• A process that waits on a condition variable also resets it.
• A condition variable may only be set to true again if it is sure that it has been

reset before.
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Parallel Programming Barriers

Barriers

• At a barrier a process stops until all processes have reached the barrier.

• This is necessary, if e.g. all processes need the result of a parallel
computation to go on.

• Sometimes it is called global synchronisation.

• A barrier is typically executed repeatedly as in the following code fragment:

while (1) {
compute something;
Barrier();

}
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Parallel Programming Barriers

Barrier for Two Processes

• First we consider two processes Πi and Πj only:

Πi : Πj :
while (arrived [i ]) ; while (arrived [j ]) ;
arrived [i ]=1; arrived [j ]=1;
while (¬arrived [j ]) ; while (¬arrived [i ]) ;
arrived [j ]=0; arrived [i ]=0;

• arrived [i] that is true if process Πi has arrived.

• Line 3 is the actual busy wait for the other process.

• A process immediately resets the flag it has waited for (lines 2,4).

• Lines 1,2 ensure that the flag has been reset before a process waits on it.
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Parallel Programming Barriers

Barrier with Recursive Doubling II

parallel recursive-doubling-barrier {
const int d = 4; const int P = 2d ;
int arrived [d ][P]={0[P · d ]}; // flag variables

process Π [int p ∈ {0, ...,P − 1}] {
int i , q;

while (1) {
Computation;
for (i = 0; i < d ; i++) { // all stages

q = p ⊕ 2i ; // flip bit i
while (arrived [i ][p]) ;
arrived [i ][p]=1;
while (¬arrived [i ][q]) ;
arrived [i ][q]=0;

}
}

}
}
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Parallel Programming Barriers

What you should remember

• A parallel computation consists of a set of interacting sequential processes.

• Apart from the distribution of the work the synchronisation of the processes
is also important

• Typical synchronisation mechanisms are: Mutual exclusion, condition
synchronisation and barriers.
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OpenMP

• OpenMP is a special implementation of multithreading

• current version 3.0 released in May 2008

• available for Fortran and C/C++

• works for different operating systems (e.g. Linux, Windows, Solaris)

• integrated in various compilers (e.g. Intel icc > 8.0, gcc > 4.2, Visual Studio
>= 2005, Sun Studio, . . . )
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OpenMP

Thread Model of OpenMP

figure from Wikipedia: “OpenMP”
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OpenMP

OpenMP directives

OpenMP directives

• are an extension of the language

• are created by writting special pre-processor commands into the source code,
which are interpreted by a suitable compiler

• start with
#pragma omp
followed by a keyword and optionally some arguments
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OpenMP Constructs

figure from Wikipedia: “OpenMP”
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Scalar Product with OpenMP

#ifdef _OPENMP

2 #include <omp.h>

#endif

4

double ScalarProduct(std::vector <double > a,

6 std::vector <double > b)

{

8 const int N=a.size();

int i;

10 double sum = 0.0;

#pragma omp parallel for

12 for (i=0;i<N;++i)

sum += a[i] * b[i];

14 return(sum);

}
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OpenMP

Thread Initialisation

parallel starts a block which is run in parallel

for the iterations are distributed among the threads (often combined
with parallel to one line \#pragma omp parallel for.

sections inside a sections block there are several independent section
blocks which can be executed independently.

if if an if is introduced in the thread initialisation command, the
block is only executed in parallel if the condition after if is true.
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OpenMP

Synchronisation

critical mutual exclusion: the block is only executed by one thread at a
time.

atomic same as critical but tries to use hardware instructions

single the part inside the single block is only executed by one thread.
The other threads are waiting at the end of the block.

master the part inside the master block is only executed by the master
thread. It is skipped by all other threads.

barrier each thread waits till all threads have reached the barrier

nowait usually threads wait at the end of a block. If nowait is used they
continue immediately
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OpenMP

Accessibility of Variables

shared All threads are accessing the same (shared) data.

private Each thread has its own copy of the data.

default is used to specify what’s the default behaviour for variables. Can
be shared, private or none.

reduction If reduction(operator,variable ) is specified, each thread uses
a local copy of variable but all local copies are combined with
the operator operator at the end. Possible operators are
+ * - / & ^ |
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Scheduling of Parallel For-Loops

The distribution of the total number of iterations to the individual threads can be
influenced by the argument schedule of the pragma for. schedule is followed
in brackets by one of five parameters and optionally after a comma the chunk size.
The chunk size has to be an integer value known at compile time. The default
schedule is implementation dependent.

static chunks are distributed at the beginning of the loop to the different
threads.

dynamic each time a thread finishes its chunk it gets a new chunk.

guided the chunk size is proportional to the number of unassigned
iterations divided by the number threads (i.e. chunk size is getting
smaller with time).

runtime scheduling is controlled by the runtime variable OMP_SCHEDULE. It
is illegal to specify a chunk size.

auto scheduling is done by the compiler and/or runtime environment.

#define CHUNK_SIZE 10

2 #pragma omp parallel for schedule(dynamic ,CHUNK_SIZE)
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OpenMP

Better Scalar Product with OpenMP

#ifdef _OPENMP

2 #include <omp.h>

#endif

4

double ScalarProduct(std::vector <double > a,

6 std::vector <double > b)

{

8 const int N=a.size();

int i;

10 double sum = 0.0, temp;

#pragma omp parallel for shared(a,b,sum) private(temp)

12 for (i=0;i<N;++i)

{

14 temp = a[i] * b[i];

#pragma omp atomic

16 sum += temp;

}

18 return(sum);

}
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OpenMP

Improved Scalar Product with OpenMP

1 #ifdef _OPENMP

#include <omp.h>

3 #endif

5 double ScalarProduct(std::vector <double > a,

std::vector <double > b)

7 {

const int N=a.size();

9 int i;

double sum = 0.0;

11 #pragma omp parallel for shared(a,b) reduction (+:sum)

for (i=0;i<N;++i)

13 sum += a[i] * b[i];

return(sum);

15 }
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OpenMP

Parallel Execution of different Functions

1 #pragma omp parallel sections

{

3 #pragma omp section

{

5 A();

B();

7 }

#pragma omp section

9 {

C();

11 D();

}

13 #pragma omp section

{

15 E();

F();

17 }

}
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Special OpenMP Functions

There is a number of special functions which are defined in omp.h, e.g.

• int omp_get_num_procs();
returns number of available processors

• int omp_get_num_threads();
returns number of started threads

• int omp_get_thread_num();
returns number of this thread

• void omp_set_num_threads(int i);
set the number of threads to be used
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OpenMP

#ifdef _OPENMP
2 #ifdef _OPENMP

#include <omp.h>
4 #endif

#include <iostream >
6 const int CHUNK_SIZE =3;

8 int main(void)
{

10 int id;
std::cout << "This computer has " << omp_get_num_procs () << " processors"

<< std::endl;
12 std::cout << "Allowing two threads per processor" << std::endl;

omp_set_num_threads (2* omp_get_num_procs ());
14

#pragma omp parallel default(shared) private(id)
16 {

#pragma omp for schedule(static ,CHUNK_SIZE)
18 for (int i = 0; i < 7; ++i)

{
20 id = omp_get_thread_num ();

std::cout << "Hello World from thread " << id << std::endl;
22 }

#pragma omp master
24 std::cout << "There are " << omp_get_num_threads () << " threads" <<

std::endl;
}

26 std::cout << "There are " << omp_get_num_threads () << " threads" <<
std::endl;

28 return 0;
}
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OpenMP

Output

1 This computer has 2 processors

Allowing two threads per processor

3 Hello World from thread 1

Hello World from thread Hello World from thread 0

5 Hello World from thread 0

Hello World from thread 0

7 2Hello World from thread

1

9 Hello World from thread 1

There are 4 threads

11 There are 1 threads
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Compiling and Environment Variables

OpenMP is activated with special compiler options. If they are not used, the
#pragma statements are ignored and a sequential program is created. For icc the
option is -openmp, for gcc it is -fopenmp

The environment variable OMP_NUM_THREADS specifies the maximal number of
threads. The call of the function omp_set_num_threads in the program has
precedence over the environment variable.

Example (with gcc and bash under linux):

gcc -O2 -fopenmp -o scalar_product scalarproduct.cc

2 export OMP_NUM_THREADS =3

./ scalar_product
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For Further Reading

OpenMP Specification
http://openmp.org/wp/openmp-specifications/

OpenMP Tutorial in four parts
http://www.embedded.com/design/multicore/201803777 (this is part four
with links to part one to three)

Very complete OpenMP Tutorial/Reference
https://computing.llnl.gov/tutorials/openMP

Intel Compiler (free for non-commercial use)
http://www.intel.com/cd/software/products/asmo-na/eng/340679.htm
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Basics of Parallel Algorithms

Basic Approach to Parallelisation

We want to have a look at three steps of the design of a parallel algorithm:

Decomposition of the problem into independent subtasks to identify maximal
possible parallelism.

Control of Granularity to balance the expense for computation and
communication.

Mapping of Processes to Processors to get an optimal adjustment of logical
communication structure and hardware.
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Basics of Parallel Algorithms Data Decomposition

Data Decomposition

Algorithms are often tied to a special data structure. Certain operations have to
be done for each data object.
Example: Matrix addition C = A + B, Triangulation

aij

j

i

Matrix

tj

Triangulation
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Basics of Parallel Algorithms Data Decomposition

Data Interdependence

Often the operations for all data objects can’t be done simultaneously.

Example: Gauß-Seidel/SOR-Iteration with lexicographic numbering.

Calculations are done on a grid, where the calculation at grid point (i , j) depends on the
gridpoints (i − 1, j) and (i , j − 1). Grid point (0, 0) can be calculated without
prerequisites. Only grid points on the diagonal i + j = const can be calculated
simultaneously.

Data interdependence complicates the data decomposition considerably.
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Basics of Parallel Algorithms Data Decomposition

Increasing possible Parallelism

Sometimes the algorithm can be modified to allow for a higher data Independence.

With a different numbering of the unknowns the possible degree of parallelism for
the Gauß-Seidel/SOR-iteration scheme can be increased:

Every point in the domain gets a colour
such that two neighbours never have the
same colour. For structured grids two
colours are enough (usually red and
black are used). The unknowns of the
same colour are numbered first, then the
next colour . . . .
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Basics of Parallel Algorithms Data Decomposition

Red-Black-Ordering

The equations for all unknowns with the same
colour are then independent of each other. For
structured grids we get a matrix of the form

A =

(
DR F
E DB

)
However, while such a matrix transformation
does not affect the convergence of solvers like
Steepest-Descent or CG (as they only depend on
the matrix condition) it can affect the
convergence rate of relaxation methods.
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Basics of Parallel Algorithms Data Decomposition

Functional Decomposition

Functional decomposition can be done, if different operations have to be done on
the same data set.

Example: Compiler

A compiler consists of

• lexical analysis

• parser

• code generation

• optimisation

• assembling

Each of these steps can be assigned to a separate process. The data can run
through this steps in portions. This is also called “Macro pipelining”.
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Basics of Parallel Algorithms Data Decomposition

Irregular Problems

For some problems the decomposition cannot be determined a priory.

Example: Adaptive Quadrature of a function f (x)

The choice of the intervals depends on the function f and results from an
evaluation of error predictors during the calculation.

f(x)
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Basics of Parallel Algorithms Agglomeration

Agglomeration and Granularity

The decomposition yields the maximal degree of parallelism, but it does not
always make sense to really use this (e.g. one data object for each process) as the
communication overhead can get too large.

Several subtasks are therefore assigned to each process and the communication
necessary for each subtask is combined in as few messages as possible. This is
called “agglomeration”. This reduces the number of messages.

The granularity of a parallel algorithm is given by the ratio

granularity =
number of messages

computation time

Agglomeration reduces the granularity.

Peter Bastian and Olaf Ippisch (IWR) Parallel Computing November 9, 2009 79 / 180



Basics of Parallel Algorithms Agglomeration

Example: Gridbased Calculations

Each process is assigned a number of grid points. In iterative calculations usually the

value at each node and it’s neighbours is needed. If there is no interdependence all

calculations can be done in parallel. A process with N grid points has to do O(N)

operations. With the partition it only needs to communicate 4
√

N boundary nodes. The

ratio of communication to computation costs is therefore O(N−1/2) and can be made

arbitrarily small by increasing N. This is called surface-to-volume-effect.

Process Π
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Basics of Parallel Algorithms Mapping of Processes to Processors

Optimal Mapping of Processes to Processors

The set of all process Π forms a undirected graph GΠ = (Π,K ). Two processes
are connected if they communicate.

The set of processors P together with the communication network (e.g.
hypercube, field, . . . ) also forms a graph GP = (P,N).

If we assume |Π| = |P|, we have to choose which process is executed on which
processor. In general we want to find a mapping, such that processes which
communicate are mapped to proximate processors. This optimisation problem is a
variant of the graph partitioning problem and is unfortunately NP-complete.

As the transmission time in cut-through networks of state-of-the-art parallel
computers is nearly independent of the distance, the problem of optimal process
to processor mapping has lost a bit of it’s importance. If many processes have to
communicate simultaneously (which is often the case!), a good positioning of
processes is still relevant.
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Basics of Parallel Algorithms Load Balancing

Load Balancing: Static Distribution

Bin Packing At beginning all processors are empty. Nodes are successively
packed to the processor with the least work. This also works
dynamically.

Recursive Bisection We make the additional assumption, that the nodes have a
position in space. The domain is split into parts with an equal
amount of work. This is repeated recursively on the subspaces.

same
amount

of work
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Basics of Parallel Algorithms Data Decomposition of Vectors and Matrices

Decomposition of Vectors

A vector x ∈ RN is a ordered list of numbers where each index i ∈ I = {0, . . . ,N − 1} is
associated with a real number xi .
Data decomposition is equivalent with a segmentation of the index set i in

I =
[
p∈P

Ip, with p 6= q ⇒ Ip ∩ Iq = ∅,

where P denotes the set of processes. For a good load balancing the subsets Ip, p ∈ P
should contain equal amounts of elements.
To get a coherent index set Ĩp = {0, . . . , |Ip| − 1} we define the mappings

p : I → P and

µ : I → N

which reversibly associate each index i ∈ I with a process p(i) ∈ P and a local index
µ(i) ∈ Ĩp(i): I 3 i 7→ (p(i), µ(i)).

The inverse mapping µ−1(p, i) provides a global index to each local index i ∈ Ĩp and

process p ∈ P i.e. p(µ−1(p, i)) = p and µ(µ−1(p, i)) = i .
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Basics of Parallel Algorithms Data Decomposition of Vectors and Matrices

Common Decompositions: Cyclic

p(i) = i % P

µ(i) = i ÷P

÷ denotes an integer division and % the modulo function.

I : 0 1 2 3 4 5 6 7 8 9 10 11 12
p(i) : 0 1 2 3 0 1 2 3 0 1 2 3 0
µ(i) : 0 0 0 0 1 1 1 1 2 2 2 2 3

e.g. I1 = {1, 5, 9},
Ĩ1 = {0, 1, 2}.
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Basics of Parallel Algorithms Data Decomposition of Vectors and Matrices

Common Decompositions: Blockwise

p(i) =

{
i ÷(B + 1) if i < R(B + 1)
R + (i − R(B + 1))÷B else

µ(i) =

{
i %(B + 1) if i < R(B + 1)
(i − R(B + 1)) % B else

with B = N ÷P and R = N % P

I : 0 1 2 3 4 5 6 7 8 9 10 11 12
p(i) : 0 0 0 0 1 1 1 2 2 2 3 3 3
µ(i) : 0 1 2 3 0 1 2 0 1 2 0 1 2

e.g. I1 = {4, 5, 6},
Ĩ1 = {0, 1, 2}.
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Basics of Parallel Algorithms Data Decomposition of Vectors and Matrices

Decomposition of Matrices I

With a matrix A ∈ RN×M a real number aij is associated with each tupel
(i , j) ∈ I × J, with I = {0, . . . ,N − 1} and J = {0, . . . ,M − 1}.
To be able to represent the decomposed data on each processor again as a matrix,
we limit the decomposition to the one-dimensional index sets I and J.

We assume processes are organised as a two-dimensional field:

(p, q) ∈ {0, . . . ,P − 1} × {0, . . . ,Q − 1}.

The index sets I , J are decomposed to

I =
P−1⋃
p=0

Ip and J =
Q−1⋃
q=0

Jq
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Basics of Parallel Algorithms Data Decomposition of Vectors and Matrices

Decomposition of Matrices II

Each process (p, q) is responsible for the indices Ip × Jq and stores it’s elements

locally as R(Ĩp × J̃q)-matrix.

Formally the decompositions of I and J are described as mappings p and µ plus q
and ν:

Ip = {i ∈ I | p(i) = p}, Ĩp = {n ∈ N | ∃i ∈ I : p(i) = p ∧ µ(i) = n}
Jq = {j ∈ J | q(j) = q}, J̃q = {m ∈ N | ∃j ∈ J : q(j) = q ∧ ν(j) = m}
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Basics of Parallel Algorithms Data Decomposition of Vectors and Matrices

Decomposition of a 6× 9 Matrix to 4 Processors I

P = 1, Q = 4 (columns), J: cyclic:

0 1 2 3 4 5 6 7 8 J
0 1 2 3 0 1 2 3 0 q
0 0 0 0 1 1 1 1 2 ν

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

P = 4,Q = 1 (rows), I : blockwise:

0 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 0 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 2 0 . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 3 0 . . . . . . . . . . . . . . . . . . . . . . . . . . .
I p µ
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Basics of Parallel Algorithms Data Decomposition of Vectors and Matrices

Decomposition of a 6× 9 Matrix to 4 Processors II

P = 2, Q = 2 (field), I : cyclic, J: blockwise:

0 1 2 3 4 5 6 7 8 J
0 0 0 0 0 1 1 1 1 q
0 1 2 3 4 0 1 2 3 ν

0 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 0 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 0 2 . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 1 2 . . . . . . . . . . . . . . . . . . . . . . . . . . .
I p µ

Peter Bastian and Olaf Ippisch (IWR) Parallel Computing November 9, 2009 89 / 180



Basics of Parallel Algorithms Data Decomposition of Vectors and Matrices

Optimal Decomposition

There is no overall best solution for the decomposition of matrices and vectors!

• In general a good load balancing is achieved if the subsets of the matrix are
more or less quadratic.

• A good coordination with the algorithm used is usually more important. For
example cyclic decomposition is a good solution for LU-decomposition, but
not for the solution of the resulting triangular systems.

• Furthermore linear algebra is rarely a goal in it’s own, but used in a more
general context, like the solution of partial differential equations. The
decomposition is then often given by the discretisation and the algorithm has
to be flexible enough to deal with it.
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Basics of Parallel Algorithms Matrix-Vector Multiplication

Matrix-Vector Multiplication (fully-occupied matrix)

Aim: Calculate the product y = Ax of a
matrix A ∈ RN×M and a vector x ∈ RM .

Example: Matrix A distributed blockwise
in a field, input vector x also blockwise
as well as the result vector y .

The vector segment xq is needed in each
processor column.

Then each processor can calculate the
local product yp,q = Ap,qxq.

Finally the complete result yp =
∑

q yp,q

is collected in the diagonal processor
(p, p) with an all-to-one communication.

x0

y0 A0,0

x1

y0 A0,1

x2

y0 A0,2

x3

y0 A0,3

x0

y1 A1,0

x1

y1 A1,1

x2

y1 A1,2

x3

y1 A1,3

x0

y2 A2,0

x1

y2 A2,1

x2

y2 A2,2

x3

y2 A2,3

x0

y3 A3,0

x1

y3 A3,1

x2

y3 A3,2

x3

y3 A3,3
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Basics of Parallel Algorithms Matrix-Vector Multiplication

Matrix-Vector Multiplication: Parallel Runtime

Parallel runtime for a N × N-matrix and
√

P ×√P processors with a cut-through
communication network:

TP (N,P) =

(
ts + th + tw

vector︷︸︸︷
N√
P

)
ld
√

P︸ ︷︷ ︸
Distribution of x

to column

+

(
N√
P

)2

2tf︸ ︷︷ ︸
local matrix-
vector-mult.

+

(
ts + th + tw

N√
P

)
ld
√

P︸ ︷︷ ︸
reduction
(tf � tw )

=

= ld
√

P(ts + th)2 +
N√
P

ld
√

P2tw +
N2

P
2tf

The contribution of the communication gets arbitrarily small if P and N →∞.
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Basics of Parallel Algorithms Matrix-Vector Multiplication

What you should remember

• The design of a parallel algorithm starts with decomposition of the task into
parts which can be executed in parallel.

• Agglomerations is used to reduce the granularity and thus the communication
overhead.

• Data decomposition is often important but can be done in different ways.

• There is no best solution for the decomposition of matrices and vectors. A
good coordination with the algorithm is necessary.
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Introduction Message Passing

Message Passing

• Developed in the 60s

• Aim: Better structuring of parallel programs (networks didn’t exist yet)

• Idea: Data which is needed by other processors is send as messages over the
network

• Various powerful solutions available. Differences in elegance.
Examples:

• PVM (Parallel Virtual Machine) developed since 1989
• MPI (Message Parsing Interface) developed since 1994
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Introduction Message Passing

Message Passing I

• Users view: Copy (contiguous) memory block from one address space to the
other.

• Message is subdivided into individual packets.

• Network is packet-switched.

• A packet consists of an envelope and the data:
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trailer payload header

direction →
• Header: Destination, size and kind of data.

• Payload: Size ranges from some bytes to kilobytes.

• Trailer: E.g. checksum for error detection.
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Introduction Message Passing

Message Passing II

• Communication protocol: Flow-control, error detection and correction.

• Time to send n bytes can be modelled as

tmess(n) = ts + n ∗ tb,

ts : latency, tb: time per byte, t−1
b : bandwidth.

• Latency is mostly software overhead, not hardware, and depends on the
communication protocol.

• TCP/IP is an expensive wide-area network protocol with ts ≈ 100µs (in
Linux).

• Specialised networks with low-overhead protocols have ts ≈ 3 . . . 5µs.
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Introduction Message Passing

Cut-through Routing

1 03 2

123

23

3

1

2

0

0

3

1

2

3

0

01

1

1

2 0

023

Src Dest

Routing

Routing

Routing

Time

• Pipelining on word level.

• Time to send n bytes: tCT (n,N, d) = ts + thd + tbn.

• Time is essentially independent of distance since th � ts .
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Introduction Message Passing Synchronous Communication

Send/Receive

The instructions for synchronous point-to-point communication are:

• send(dest − process,expr 1,. . . ,expr n) Sends a message to the process
dest − process containing the expressions expr 1 to expr n.

• recv(src − process, var 1,. . . , var n) Receives a message from the process
src − process and stores the results of the expressions in the variables var 1 to
var n. The variables have to be of maching type.
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Introduction Message Passing Synchronous Communication

Blocking

Both send and recv are blocking, i.e. they are only finished, after the end of the
communication. This synchronises the involved processes. Both sending and
receiving process have to execute a matching pair of send and recv to avoid a
deadlock.

idle

Πs Πr

(a)

send

recv
t

Time

Π1:

Π2:

Π3:

(b)

recv(Π3,i)
send(Π2,i)

recv(Π1,i)
send(Π3,i)

recv(Π2,i)
send(Π1,i)

Figure: (a) Synchronisation of two processes by a send/recv pair. (b) Example of a
deadlock.
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Introduction Message Passing Synchronous Communication

Guards

Blocking communication is not sufficient for all possible tasks.
Sometimes a process does not know which of several partner processes is ready for
data exchange.
Possible Solution: Non-blocking functions for detection if a partner process is
ready for data reception or sending:

• int sprobe(dest − process)

• int rprobe(src − process).

sprobe returns 1 (true), if the specified process is ready for a recv-operation, i.e.
a send-command would not block the sender.
rprobe tests, if a recv-command would lead to a blockade. To avoid blocking of
processes a communication instruction would be written as

• if (sprobe(Πd )) send(Πd ,. . . );

The instructions sprobe and rprobe are also called ”guards“.
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Introduction Message Passing Synchronous Communication

Implementation of rprobe and sprobe

Implementation of rprobe is easy. A send-instruction sends a message (or a part
of it) to the receiver, where it is stored. The receiving process only needs to look
up locally if a corresponding message (or part of it) has arrived.

Implementation of sprobe is more complicated, as usually the receiving process
does not return any information to the sender. As one of the two instructions
sprobe/rprobe is sufficient (at least in principle) only rprobe is used in practise.
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Introduction Message Passing Synchronous Communication

Receive Any

• recv any(who,var 1,. . . ,var n)

similar effect as rprobe

allows reception of a message from any process

sender is stored in the variable who
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Introduction Message Passing Asynchronous Communication

Asynchronous Communication

• asend(dest − process,expr 1,. . . ,expr n)

• arecv(src − process,var 1,. . . ,var n)

have the same semantic as send/recv, but are non-blocking.
In principle a process can execute any amount of asend instructions without delay.
The involved processes are not synchronised implicitly.
Beginning and end of the communication channel can be visualised as a waiting
line, buffering all messages until they are accepted by the receiving process.
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Introduction Message Passing Asynchronous Communication

Check for Success

In practise buffer storage is limited. If the buffer is full, no further asend
instruction can be executed. Therefore it is necessary to test if a former
communication instruction has been completed.

asend/arecv are returning a unique identifier

• msgid asend(. . . )

• msgid arecv(. . . )

With this identifier the function

• int success(msgid m)

returns the state of the communication.
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Introduction Message Passing Asynchronous Communication

Mixing of Synchronous and Asynchronous Communication

We are going to allow mixing of the functions for asynchronous and synchronous
communication. For example the combination of asynchronous sending and
synchronous receiving can make sense.
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Debugging of Parallel Programs

Parallel Debugging

Debugging parallel programs is a complicate task. Possible tools are:

• Using printf or std::cout

• Writting to log files

• Using gdb

• Using specialised debuggers for parallel programs
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Debugging of Parallel Programs

Using printf or std::cout

std::cout << omp_get_thread_num () << ": a = " << a << std::endl;

• Output should be prefixed with the rank (number) of the process

• Output of different processes is mixed and written by the root process.

• The order of output from different processes must not be chronological

• If job terminates some output may never be written
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Debugging of Parallel Programs

Writing to log-files

template <class T>

2 void DebugOut(const std:: string message , T i) const

{

4 std:: ostringstream buffer;

buffer << "debugout" << myRank_;

6 std:: ofstream outfile(buffer.str().c_str(),std::ios::app);

outfile << message << " " << i<< std::endl;

8 }

• Output from each processor goes to a separate file

• Output is complete for each processor (as file is always immediately closed
afterwards)

• File is allways appended not erased ⇒ output of several runs can be mixed
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Debugging of Parallel Programs

Using gdb (with Message Passing)

Several instances of gdb can be started each attaching to one of the parallel
processes using

gdb <program name > <PID >

To make sure that all processes are still at the beginning you can add an infinite
loop

1 bool debugStop=true;

while (debugStop);

After gdb has attached the loop can be exited by using the gdb-command

set debugStop=true;

You may have to compile with

1 mpicxx -o <program name > -g -O0 <program source >

as the compiler may optimise the variable away if the option -O0 is absent.
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Debugging of Parallel Programs

Parallel Debuggers

• Parallel debuggers are providing a graphical user interface for the process
describe before

• Commercial parallel debuggers are e.g. Totalview and DDT

• There is also a eclipse plugin available: PTP
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The Message Passing Interface

The Message Passing Interface (MPI)

• Portable Library with functions for message exchange between processes

• Developed 1993-94 by a international board

• Available on nearly all computer platforms

• Free Implementations also for LINUX Clusters:MPICH1 and OpenMPI2

(former LAM)

• Properties of MPI:
• library with C-, C++ and Fortran bindings (no language extension)
• large variety of point-to-point communication functions
• global communication
• data conversion for heterogeneous systems
• subset formation and topologies possible

MPI-1 consits of more than 125 functions, defined in the standard on 200 pages.
We therefore only treat a small selection of it’s functionality.

1
http://www-unix.mcs.anl.gov/mpi/mpich

2
http://www.open-mpi.org/
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The Message Passing Interface Simple Example

Simple Example in C (I)

#include <stdio.h>
2 #include <string.h>

#include <mpi.h> // provides MPI macros and functions
4

6 int main (int argc , char *argv [])
{

8 int my_rank;
int P;

10 int dest;
int source;

12 int tag =50;
char message [100];

14 MPI_Status status;

16 MPI_Init (&argc ,&argv); // begin of every MPI program

18 MPI_Comm_size(MPI_COMM_WORLD ,&P); // number of
// involved processes

20 MPI_Comm_rank(MPI_COMM_WORLD ,& my_rank);
// number of current process always between 0 and P-1
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The Message Passing Interface Simple Example

Simple Example in C (II)

22 sprintf(message ,"I am process %d of %d\n",my_rank ,P);
if (my_rank !=0)

24 {
dest = 0;

26 MPI_Send(message ,strlen(message)+1,MPI_CHAR , // Send data
dest ,tag ,MPI_COMM_WORLD); // (blocking)

28 }
else

30 {
puts(message);

32 for (source =1; source <P; source ++)
{

34 MPI_Recv(message ,100, MPI_CHAR ,source ,tag , // Receive data
MPI_COMM_WORLD ,& status); // (blocking)

36 puts(message);
}

38 }

40 MPI_Finalize (); // end of every MPI program

42 return 0;
}
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The Message Passing Interface Simple Example

Simple Example in C++ (I)

1 #include <iostream >
#include <sstream >

3 #include <mpi.h> // provides MPI macros and functions

5

int main (int argc , char *argv [])
7 {

MPI::Init(argc ,argv); // begin of every MPI program
9

int P = MPI:: COMM_WORLD.Get_size (); // number of
11 // involved processes

int myRank = MPI:: COMM_WORLD.Get_rank ();
13 int tag =50;

15 // number of current process always between 0 and P-1
if (myRank != 0)

17 {
std:: ostringstream message;

19 message << "I am process " << myRank << " of " << P << std::endl;
int dest = 0;

21 MPI:: COMM_WORLD.Send(message.str().c_str(), // Send data
message.str().size()+1,MPI::CHAR ,dest ,tag); // (blocking)

23 }
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The Message Passing Interface Simple Example

Simple Example in C++ (II)

24 else
{

26 std::cout << "I am process 0 of " << P << std::endl << std::endl;
for (int source =1; source <P; ++ source)

28 {
char message [100];

30 MPI:: COMM_WORLD.Recv(message ,100, MPI_CHAR , // Receive data
source ,tag); // (blocking)

32 std::cout << message << std::endl;
}

34 }

36 MPI:: Finalize (); // end of every MPI program

38 return 0;
}
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The Message Passing Interface Simple Example

Compilation of Program

• Sample program is written in SPMD-Stile. This is not prescribed by the MPI
Standard, but makes starting of program easier.

• Compiling, linking and execution is different for every implementation.

• Many implementations contain shell-scripts, which hide the location of the
libraries. For MPICH the commands to compile the program and start 8
processes are

mpicc -o hello hello.c
mpirun -machinefile machines -np 8 hello

In this case the names of the computers used are taken from the file
machines.
For C++ programs the command for compilation is

mpicxx -o hello hello.c
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The Message Passing Interface Simple Example

Output of the Example Programs (with P=8)

1 I am process 0 of 8

3 I am process 1 of 8

5 I am process 2 of 8

7 I am process 3 of 8

9 I am process 4 of 8

11 I am process 5 of 8

13 I am process 6 of 8

15 I am process 7 of 8
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The Message Passing Interface Simple Example

Structure of MPI-Messages

MPI-Messages consist of the actual data and an envelope comprising:

1 number of the sender

2 number of the receiver

3 tag: an integer value to mark different messages between identical
communication partners

4 communicator: subset of processes + communication context. Messages
belonging to different contexts don’t influence each other. Sender and
receiver have to use the same communicator. The communicator
MPI COMM WORLD is predefined by MPI and contains all started processes.
In C++ communicators are objects over which the messages are sent. The
communicator object MPI::COMM_WORLD is already predefined.

Peter Bastian and Olaf Ippisch (IWR) Parallel Computing November 9, 2009 118 / 180



The Message Passing Interface Simple Example

Initialising and Finishing

int MPI_Init(int *argc , char *** argv)

2

void Init(int& argc , char **& argv)

4 void Init()

Before the first MPI functions are used, MPI_Init / MPI::Init has to be called.

int MPI_Finalize(void)

2

void Finalize ()

After the last MPI function call MPI_Finalize / MPI::Finalize must be
executed to get a defined shutdown of all processes.
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The Message Passing Interface Communicators and Topologies

Communicator

All MPI communication functions contain an argument of type MPI Comm (in C)
or are methods of a communicator object. Such a communicator contains the
following abstractions:

• Process group: builds a subset of processes which take part in a global communication.
The predefined communicator MPI COMM WORLD contains all started processes.

• Context: Each communicator defines it’s own communication context. Messages can only
be received within the same context in which they are send. It’s e.g. possible for a
numerical library to define it’s own communicator. The messages of the library are then
completely separated from the messages of the main program.

• Virtual Topologies: A communicator represents a set of processes {0, . . . , P − 1}. This set
can optionally be provided with an additional structure, e.g. a multi-dimensional field or a
general graph.

• Additional Attributes: An application (e.g. a library) can associate any static data with a
communicator. The communicator is then only a means to preserve this data until the next
call of the library.

Peter Bastian and Olaf Ippisch (IWR) Parallel Computing November 9, 2009 120 / 180



The Message Passing Interface Communicators and Topologies

Communicators in C++

In C++ communicators are objects of classes derived from a base class Comm. The
available derived classes are

Intracomm for the communication inside a group of processes.
MPI::COMM_WORLD is an object of class Intracomm as all processes
are included in MPI::COMM_WORLD. There exist two derived classes
for the formation of topologies of processes

Cartcomm can represent processes which are arranged on a
Cartesian topology

Graphcomm can represent processes which are arranged along
arbitrary graphs

Intercomm for the communication between groups of processes
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The Message Passing Interface Communicators and Topologies

Determining Rank and Size

int MPI_Comm_size(MPI_Comm comm , int *size)

2

int Comm:: Get_size () const

The number of processes in a communicator is determined by the function
MPI_Comm_size / Comm::Get_size(). If the communicator is MPI_COMM_WORLD
this is equal to the total number of started processes.

int MPI_Comm_rank(MPI_Comm comm , int *rank)

2

int Comm:: Get_rank () const

Each process has a unique number inside a group represented by a communicator.
This number can be determined by MPI_Comm_rank / Comm::Get_rank().
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The Message Passing Interface Blocking Communication

Blocking Communication

int MPI_Send(void *message , int count , MPI_Datatype dt ,

2 int dest , int tag , MPI_Comm comm);

int MPI_Recv(void *message , int count , MPI_Datatype dt ,

4 int src , int tag , MPI_Comm comm ,

MPI_Status *status);

6

void Comm::Send(const void* buf , int count ,

8 const Datatype& datatype , int dest , int tag) const

void Comm::Recv(void* buf , int count , const Datatype& datatype ,

10 int source , int tag , Status& status) const

void Comm::Recv(void* buf , int count , const Datatype& datatype ,

12 int source , int tag) const

The first three arguments message, count, and dt, specify the actual data.
message points to a contiguous memory block containing count elements of type
dt. The specification of the data type makes data conversion by MPI possible.
The arguments dest, tag and comm form the envelope of the message (the
number of the sender/receiver is given implicitly by the invocation).
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The Message Passing Interface Blocking Communication

Data Conversion

MPI implementations for heterogeneous systems are able to do a automatic
conversion of the data representation. The conversion method is left to the
particular implementation (e.g. by XDR).

MPI provides the architecture independent data types:

MPI CHAR, MPI UNSIGNED CHAR, MPI BYTE
MPI SHORT, MPI INT, MPI LONG, MPI LONG LONG INT,
MPI UNSIGNED, MPI UNSIGNED SHORT, MPI UNSIGNED LONG,
MPI FLOAT, MPI DOUBLE and MPI LONG DOUBLE.

IN C++ the datatypes are:

MPI::CHAR, MPI::UNSIGNED CHAR, MPI::BYTE
MPI::SHORT, MPI::INT, MPI::LONG, MPI::LONG LONG INT,
MPI::UNSIGNED, MPI::UNSIGNED SHORT, MPI::UNSIGNED LONG,
MPI::FLOAT, MPI::DOUBLE and MPI::LONG DOUBLE.

The MPI data type MPI BYTE / MPI::BYTE is never converted.
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The Message Passing Interface Blocking Communication

Status

typedef struct {

2 int count;

int MPI_SOURCE;

4 int MPI_TAG;

int MPI_ERROR;

6 } MPI_Status;

In C MPI_Status is a struct containing information about the number of received
objects, source rank, tag and an error status.

int Status :: Get_source () const

2 void Status :: Set_source(int source)

int Status :: Get_tag () const

4 void Status :: Set_tag(int tag)

int Status :: Get_error () const

6 void Status :: Set_error(int error)

In C++ an object of class Status provides methods to access the same
information.
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The Message Passing Interface Blocking Communication

Varieties of Send

• buffered send (MPI Bsend / Comm::Bsend): If the receiver has not yet
executed a corresponding recv-function, the message is buffered by the
sender. If enough memory is available, a “buffered send” is always terminated
immediately. In contrast to asynchronous communication the sending buffer
message can be immediately reused.

• synchronous send (MPI Ssend / Comm::Ssend): The termination of a
synchronous send indicates, that the receiver has executed the recv-function
and has started to read the data.

• ready send (MPI Rsend / Comm::Rsend): A ready send can only be started if
the receiver has already executed the corresponding recv. The call leads to
an error else .
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The Message Passing Interface Blocking Communication

MPI Send and MPI Receive II

The MPI Send-command either has the semantic of MPI Bsend or MPI Ssend,
depending on the implementation. Therefore MPI Send can, but don’t have to
block. The sending buffer can be reused immediately in any case.

The function MPI Recv is in any case blocking, e.g. it is only terminated if
message contains data. The argument status contains source, tag and error
status of the received message.

MPI ANY SOURCE / MPI::ANY SOURCE and MPI ANY TAG / MPI::ANY TAG can be
used for the arguments src and tag respectively. Thus MPI Recv contains the
functionality of recv any.
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The Message Passing Interface Blocking Communication

Guard Function

int MPI_Iprobe(int source , int tag , MPI_Comm comm ,

2 int *flag , MPI_Status *status);

bool Comm:: Iprobe(int source , int tag , Status& status) const

4 bool Comm:: Iprobe(int source , int tag) const

is a non-blocking guard function for the receiving of messages. flag is set to true
true (6= 0) if a message with matching source and tag can be received. The
arguments MPI ANY SOURCE / MPI::ANY SOURCE and MPI ANY TAG /
MPI::ANY TAG are also possible.
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The Message Passing Interface Non-blocking communication

Non-blocking Communication

MPI provides the functions

int MPI_ISend(void *buf , int count , MPI_Datatype dt,

2 int dest , int tag , MPI_Comm comm ,

MPI_Request *req);

4 int MPI_IRecv(void *buf , int count , MPI_Datatype dt,

int src , int tag , MPI_Comm comm ,

6 MPI_Request *req);

8 Request Comm::Isend(const void* buf , int count ,

const Datatype& datatype , int dest , int tag)

const

10 Request Comm::Irecv(void* buf , int count , const Datatype&

datatype ,

int source , int tag) const

for non-blocking communication. They imitate the respective communication
operations. With the MPI Request / MPI::Request-objects the state of the
communication job can be checked (corresponding to our msgid).
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The Message Passing Interface Non-blocking communication

MPI Request-Objects

The state of the communication can be checked with MPI Request-objects
returned by the communication functions using the function (among others)

int MPI_Test(MPI_Request *req ,int *flag , MPI_Status *status);

flag is set to true ( 6= 0) if the communication job designated by req has
terminated. In this case status contains information about sender, receiver and
error state.

1 bool Request ::Test(Status& status)

bool Request ::Test()

In C++ the Test method of the Request object returned by the communicator
method returns true if the job initiated by the method call has terminated.
It is important to mind that the MPI Request-object becomes invalid as soon as
MPI Test / Request::Test returns flag==true / true. It must not be used
thereafter, as the MPI Request-objects are managed by the MPI-implementation
(so-called opaque objects).
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The Message Passing Interface Global Communication

Global Communication

MPI also offers functions for global communication where all processes of a
communicator participate.

int MPI_Barrier(MPI_Comm comm);

2

void Intracomm :: Barrier () const

blocks every process until all processes have arrived (e.g. until they have executed
this function).

1 int MPI_Bcast(void *buf , int count , MPI_Datatype dt,

int root , MPI_Comm comm);

3

void Intracomm ::Bcast(void* buffer , int count ,

5 const Datatype& datatype , int root) const

distributes the message of process root to all other processes of the
communicator.
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The Message Passing Interface Global Communication

Collection of Data

MPI offers various functions for the collection of data. For example:

1 int MPI_Reduce(void *sbuf , void *rbuf , int count ,

MPI_Datatype dt , MPI_Op op, int root , MPI_Comm comm);

3

void Intracomm :: Reduce(const void* sendbuf , void* recvbuf , int

count ,

5 const Datatype& datatype , const Op& op, int root) const

combines the data in the send buffer sbuf of all processes with the associative
operation op. The result is available in the receive buffer rbuf of process root.
As operations op e.g. MPI SUM, MPI MAX and MPI MIN can be used to calculate
the sum, maximum or minimum over all processes.

Remark

Global communications have to be called with maching arguments (e.g. root in
MPI Reduce) by all processes of a communicator.
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The Message Passing Interface Avoiding Deadlocks: Coloring

Shifting along Ring: Creation of Deadlocks

Problem: Each process p ∈ {0, . . . ,P − 1} has to transfer data to (p + 1)%P.

M1

M0

M2

M1

M3

M2

M0

M3

0 1 2 3

vorher:

nachher:

With blocking communication functions a deadlock is created using

. . .
send(Π(p+1)%P ,msg);
recv(Π(p+P−1)%P ,msg);
. . .

Peter Bastian and Olaf Ippisch (IWR) Parallel Computing November 9, 2009 133 / 180



The Message Passing Interface Avoiding Deadlocks: Coloring

Deadlock Prevention

A solution with optimal degree of parallelism can be reached by colouring.
Let G = (V ,E ) be a graph with

V = {0, . . . ,P − 1}
E = {e = (p, q)|process p has to communicate with process q}

Each edge then has to be given a colour so that the colours of all edges meeting
at each node are unique. The colour assignment is given by the mapping
c : E → {0, . . . ,C − 1}, where C is the number of colours necessary. The
communication can then be done in C steps, whereas only messages along edges
of colour i are exchanged in step 0 ≤ i < C .
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The Message Passing Interface Avoiding Deadlocks: Coloring

Number of Colours

Two colours are needed for shifting along a ring if P is even, but three colours are
needed if P is odd.
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The Message Passing Interface Avoiding Deadlocks: Coloring

Exchange with all Neighbours

The algorithm can easily be modified to shift messages in both directions. Each
Process exchanges then messages with both neighbours in the graph.
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The number of colours is the same as in the case of simple shifting. Two
messages are send along each edge. Deadlocks are prevented if the process with
the smaller number sends first.
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The Message Passing Interface Avoiding Deadlocks: Coloring

General Graphs

For general, undirected graphs the determination is not so simple and it can also
be necessary to determine the colouring at runtime. Distributed algorithms are
available to solve this problem.
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Alternative: Timestamps
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The Message Passing Interface Avoiding Deadlocks: Coloring

Creating Communicators based on Colours

A new communicator can be created with the function

1 int MPI_Comm_split(MPI_Comm comm , int colour ,

int key , MPI_Comm *newcomm);

3

Intracomm Intracomm :: Split(int colour , int key) const

MPI Comm split is a collective operation, executed by all processes of the
communicator comm. All processes with the same value of the argument colour
form a new communicator. The ordering (rank) within the new communicator is
controlled by the argument key.
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Things to Remember

What you should remember

• Message passing is a general concept for data exchange. There are different
realisations of this concept.

• Two different types of communication exist: Blocking (or synchronous) and
Non-blocking (or asynchronous).

• MPI is a standardised message passing system. Different implementations
exist implementing the MPI standard (e.g. MPICH, OpenMPI).

• C and C++ versions of the MPI functions exist

• Deadlocks in communication can occur with blocking communication
functions and need to be averted by techniques like colouring or timestamps.
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Further Reading

For Further Reading

MPI: The different version of the Message-Passing Interface Standard
http://www.mpi-forum.org/docs/

MPICH-A Portable Implementation of MPI
http://www-unix.mcs.anl.gov/mpi/mpich

Open MPI: Open Source High Performance Computing
http://www.open-mpi.org/

Overview of available MPI Tutorials
http://www-unix.mcs.anl.gov/mpi/tutorial/
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Analysis of Parallel Algorithms

Introduction

• We want to solve a problem Π on a parallel computer.

• Example: “Solve system of linear equations Ax = b with A ∈ RN×N and
x , b ∈ RN ”.

• Problem description does not include how it is solved.

• Π has a problem size parameter N ∈ N.

• Π is solved on a parallel machine with P identical processors and a given
communication network.

• Π is solved
• on 1 processor with a sequential algorithm and
• on P processors with a parallel algorithm.

How “good” is the parallel algorithm ?
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Analysis of Parallel Algorithms

Time Measurements

Depending on problem size N and processor number P we can define the following
run-times:

• Sequential run-time TS (N): Time needed by a specified algorithm to solve Π
for problem size N on one processor of the parallel machine.

• Best sequential run-time Tbest(N): Run-time of a hypothetical sequential
algorithm that solves Π for any problem size N in the shortest possible time.

• Parallel run-time TP (N,P): Run-time of a given parallel algorithm to solve Π
for problem size N on a parallel machine with P processors.
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Analysis of Parallel Algorithms

Speedup

Definition (Speedup)

Given the time measurements we can define the speedup

S(N,P) =
Tbest(N)

TP (N,P)
.

Remark.
The speedup is defined with respect to the best sequential algorithm! If it were
defined via some TS (N), any speedup could be achieved by comparing against a
slow sequential algorithm.
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Analysis of Parallel Algorithms

Speedup Bound

Theorem (Speedup bound)

The speedup S(N,P) fullfills the inequality

S(N,P) ≤ P.

Proof.

Suppose we have S(N,P) > P, then simulating the parallel algorithm on one
processor would need time PTP (N,P) and

PTP (N,P) = P
Tbest(N)

S(N,P)
< Tbest(N)

which is a contradiction to the definition of Tbest .
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Analysis of Parallel Algorithms

Superlinear Speedup

Remark.
The proof above assumes that simulation takes no additional time. There are
inherently parallel algorithms where the sequential algorithm must simulate a
parallel algorithm: Given a program for computing f (n), find n ∈ {1, . . . ,P}
where its run-time is minimal.

Superlinear Speedup.

Some people measure speedups greater than P. This is most often because Tbest

must be replaced by some TS in practise. The most common situation is that for
increasing P and fixed N the local problems fit into cache and the sequential code
is not cache-aware.
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Analysis of Parallel Algorithms

Efficiency

Definition (Efficiency)

The efficiency of a parallel algorithm is defined as

E (N,P) =
S(N,P)

P
=

Tbest(N)

PTP (N,P)
.

Theorem (Efficiency bound)

The speedup bound immediately gives

E (N,P) ≤ 1.

Remark.
Interpretation: E · P processors are effectively working on the solution of the
problem, (1− E ) · P are overhead.
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Analysis of Parallel Algorithms

Other Measures

Definition (Cost)

The cost of a parallel algorithm is defined as

C (N,P) = PTP (N,P).

In contrast to the previous numbers it is not dimensionless.

Definition (Cost optimality)

An algorithm is called cost optimal if its cost is proportional to Tbest . Then its
efficiency E (N,P) = Tbest/C (N,P) is constant.

Definition (Degree of parallelism)

Γ(N) is the maximum number of machine instructions that can be executed in
parallel. Obviously Γ(N) = O(TP (N, 1)).
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Analysis of Parallel Algorithms Examples

Example: Scalar Product of Two Vectors

Run-time of best sequential algorithm is given by

TS (N) = N2ta,

ta: time for a floating point operation.
Run-time of parallel algorithm using tree combine:

TP (N,P) =

⌈
N

P

⌉
2ta + dlog2 Pe(tm + ta),

tm: time to send a number.
Speedup is

S(N,P) =
N2ta⌈

N
P

⌉
2ta + dlog2 Pe(tm + ta)

=
P⌈

N
P

⌉
P
N︸ ︷︷ ︸

load imbalance

+ Pdlog2 Pe
N

tm+ta

2ta︸ ︷︷ ︸
communication

.
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Analysis of Parallel Algorithms Examples

Speedup Graph Scalar Product
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Analysis of Parallel Algorithms Examples

Example: Gaussian Elimination

Run-time of best sequential algorithm is given by

TS (N) = N3 2

3
ta,

ta: time for a floating point operation.
Run-time of parallel algorithm (row-wise cyclic, asynchronous):

TP (N,P) = (P − 1)(ts + Ntm) +
1∑

m=N−1

(⌈m

P

⌉
m2ta + tas

)
≈ 2

3

N3

P
ta + Ntas + Pts + NPtm,

ts : message latency, tas : asynchronous latency.
Speedup is

S(N,P) =
P

1 + 3
2

P
N2

(
P tw

ta
+ tas

ta
+ P

N
ts

ta

)
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Analysis of Parallel Algorithms Examples

Speedup Graph Gaussian Elimination
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Analysis of Parallel Algorithms Examples

Example: A Grid Algorithm

0 1

i=P-1i=0

floorfloorceil

N-1

• Sequential algorithm processes
N × N grid points in lexicographic
order from left to right, bottom to
top. Time per grid point is top.

• Uses Pipelining.

• Granularity is fine.

• Process points sequentially until
ΠP−1 is busy.

• First N mod P processors have
dN/Pe points per row.

• Remaining N − N mod P processors
have bN/P + 1c points per row.
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Analysis of Parallel Algorithms Examples

Grid Algorithm Speedup

Run-time of best sequential algorithm is given by

TS (N) = N2top,

ta: time for a floating point operation.
Run-time of parallel algorithm:

TP (N,P) =

(
N −

⌊
N

P

⌋)
top + (P − 2)top︸ ︷︷ ︸

pipeline start-up

+ N

(⌈
N

P

⌉
top + tm

)
︸ ︷︷ ︸

last proc

.

Speedup is

S(N,P) =
P

P

N

⌈
N

P

⌉
︸ ︷︷ ︸

load imbalance

+
P(N − bN/Pc)

N2︸ ︷︷ ︸
sequential part

+

(
P(P − 2)

N2
+

P

N

)
tm

ta︸ ︷︷ ︸
communication
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Analysis of Parallel Algorithms Examples

Speedup Graph Grid Algorithm Variable N

 0

 5

 10

 15

 20

 25

 30

 35

 0  100  200  300  400  500  600  700  800  900  1000

S
pe

ed
up

N

Speedup Gauss-Seidel P=32

t_op/t_a=1
t_op/t_a=10

t_op/t_a=100
t_op/t_a=1000

Peter Bastian and Olaf Ippisch (IWR) Parallel Computing November 9, 2009 154 / 180



Analysis of Parallel Algorithms Examples

Speedup Graph Grid Algorithm Variable P
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Analysis of Parallel Algorithms Examples

Reasons For Non-optimal Speedup

We can identify the following reasons for non-optimal speedup:

• Load imbalance: Not every processor has the same amount of work to do.

• Sequential part: Not all operations of the sequential algorithm can be
processes in parallel.

• Additional operations: The optimal sequential algorithm cannot be
parallelised directly and must be replaced by a slower but parallelisable
algorithm.

• Communication overhead : Depends relative cost of computation and
communication.

Peter Bastian and Olaf Ippisch (IWR) Parallel Computing November 9, 2009 156 / 180



Analysis of Parallel Algorithms Scalability

Scalability

• Scalability is the ability of a parallel algorithm to use an increasing number of
processors: How does S(N,P) behave with P?

• S(N,P) has two arguments. What about N?

• We consider several different choices.
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Analysis of Parallel Algorithms Scalability

Fixed Size Scaling and Amdahl’s Law

Fixed size scaling

Very simple: Choose N to be fixed. Equivalently, we can fix the sequential
execution time Tbest = Tfix.

Amdahl’s Law (1967)

Assume a fixed sequential execution time. The part qTfix with 0 ≤ q ≤ 1 is
assumed not to be parallelisable. The remaining part (1− q)Tfix is assumed to be
fully parallelisable. Then the speedup is given by

SA(P) =
Tfix

qTfix + (1− q)Tfix/P
=

1

q + 1−q
P

.

Remark

SA(P) ≤ 1/q.
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Analysis of Parallel Algorithms Scalability

Speedup Graph Amdahl’s Law
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Analysis of Parallel Algorithms Scalability

Other Scalings

The sequential part q is a function of N and usually decreases with increasing N.
Therefore choose N = N(P).

Gustafson Scaling

Choose N = N(P) such that TP (N(P),P) = Tfix. Motivation: Weather
prediction.

Memory Scaling

Choose N = N(P) such that memory requirements scale with the available
memory: M(N(P)) = M0P. Useful for memory-bound applications, e.g. finite
element methods.

Isoefficient Scaling

Choose N = N(P) such that E (N(P),P) = E0. This is not always possible! If
such N(P) exists the algorithm is called scalable.
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Analysis of Parallel Algorithms Scalability

Scalar Product: Fixed Sequential Execution Time

Remember the scalar product example:

TS (N) = N2ta,

TP (N,P) = (N/P)2ta + log2 P(tm + ta).

Fixed size scaling TS (N,P) = Tfix :

N2ta = Tfix =⇒ NA =
Tfix

2ta
.

This results in the speedup

SA(P) =
Tfix

Tfix/P + log2 P(tm + ta)
=

P

1 + P log2 P tm+ta

Tfix

.
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Analysis of Parallel Algorithms Scalability

Scalar Product: Gustafson Scaling

Gustafson scaling TP (N(P),P) = Tfix :

N

P
2ta + log2 P(tm + ta) = Tfix =⇒ NG (P) = P

(
Tfix − log2 P(tm + ta)

2ta

)
.

There is an upper limit to P !
Assuming Tfix � log2 P(tm + ta) we get NG (P) ≈ PTfix/(2ta).

This results in the speedup

SG (P) =
NG (P)2ta

NG (P)2ta/P + log2 P(tm + ta)
=

P

1 + log P tm+ta

Tfix

.

Communication overhead is O(log P) instead of O(P log P).
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Analysis of Parallel Algorithms Scalability

Scalar Product: Memory Scaling

Gustafson scaling M(N(P)) = M0P:

M(N(P)) = wN = M0P =⇒ NM (P) = P(M0/w).

There is no upper limit to P !

This results in the speedup

SM (P) =
NM (P)2ta

NM (P)2ta/P + log2 P(tm + ta)
=

P

1 + log P (tm+ta)w
M02ta

.

Same as Gustafson scaling as long as Tfix � log2 P(tm + ta).
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Analysis of Parallel Algorithms Scalability

Scalar Product: Isoefficient Scaling

Isoefficient scaling

E (N(P),P) = S(N(P),P)/P = E0 ⇒ S(N(P),P) = E0P.

Inserting the speedup gives

S =
P

1 + P log2 P
N

(tm+ta)
2ta

!
= E0P =⇒ NI (P) = P log2 P

E0

1− E0

tm + ta

2ta
.

The resulting speedup is S(NI (P),P) = PE0.
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Analysis of Parallel Algorithms Things to Remember

What you should remember

• Basic performance measures are speedup and efficiency.

• They are defined relative to the best sequential algorithm.

• Most parallel algorithms scale well if the problem size is increased with the
number of processors.
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Analysis of Parallel Algorithms Further Reading

For Further Reading

Chapter 4 in V. Kumar, A. Grama, A. Gupta and G. Karypis (1994).
Introduction to Parallel Computing .
Benjamin/Cummings.
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Programming with CUDA Introduction

Motivation

• Development of graphics processors (GPU) is dramatic:

• GPUs are parallel processors!

• GPGPU computing: Use GPUs for general parallel computing.
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Programming with CUDA Introduction

GPU - CPU Comparison

Intel QX 9770 NVIDIA 9800 GTX
Available since Q1/2008 Q1/2008
Cores 4 16 × 8
Transistors 820 Mio 754 Mio
Clock 3200 MHz 1688 MHz
Cache 4 × 6 MB 16 × 16 KB
Peak 102 GFlop/s 648 GFlop/s
Bandwith 128 GB/s 70.4 GB/s
Price 1200 $ 150 $

Latest model GTX 280 has 30×8 cores and a peak of 1 TFlop/s.
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Programming with CUDA Introduction

CUDA

• Stands for Compute Unified Device Architecture

• Scalable hardware model with e.g. 4×8 processors in a notebook and 30×8
processors on a high end card.

• C/C++ programming environment with language extensions. Special
compiler nvcc.

• The code to execute on the GPU can only be C.

• Run-time library and several application libraries (BLAS, FFT).

• Extensive set of examples.

• Coprocessor architecture:
• Some code runs on GPU which then invokes code on the GPU.
• Data must be copied explicitely between CPU and GPU memory (no direct

access).
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Programming with CUDA Introduction

Programming Model at a Glance

• Parallel threads cooperating via shared
variables.

• Threads are organized into blocks of a
“chosen” size.

• Blocks can be 1-, 2- or 3-dimensional.

• Blocks are organized in a grid of variable
size.

• Grids can be 1- or 2-dimensional.

• # threads typically much larger than #
cores (“hyperthreading”).

• Block size determined by HW/problem, grid
size determined by problem size.

• No penalty for context switch.
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Programming with CUDA Introduction

Example of a Kernel

__global__ void scale_kernel (float *x, float a)

2 {

int index = blockIdx.x*blockDim.x + threadIdx.x;

4 x[index] *= a;

}

• __global__ function type qualifier indicates that this function executes on
the device and can only be called from host (“kernel”).

• Built-in variable threadIdx gives position of the thread within the block.

• Built-in variable blockIdx gives position of the block within the grid.

• Built-in variable blockDim gives the size of the block.

• Here, each thread is responsible to scale one element of a vector.

• The total number of threads needs to be ajusted to the size of the vector.
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Programming with CUDA Hardware Implementation

Hardware at a Glance

• A Multiprocessor (MP) consists of M = 8
“processors”.

• MP has one instruction unit and 8 ALUs.
Threads executing different instructions are
serialized!

• 8192 registers per MP, partitioned to
threads at compile-time.

• 16 KB shared memory per MP organized in
16 banks.

• Up to 4GB global memory, latency 600
cycles, bandwith up to 80 GB/s .

• Constant and texture memory are cached
and read-only.

• Most graphics card only provide single
precision arithmetic.

• Arithmetic is not IEEE conforming.
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Programming with CUDA Hardware Implementation

Execution and Performance Issues

• Divergence: Full performance can only be achieved when all threads of a
warp execute the same instruction.

• Threads are scheduled in warps of 32.

• Hyperthreading: A MP should execute more than 8 threads at a time
(recommended block size is 64) to hide latencies.

• Shared memory access takes 2 cycles.

• Fastest instructions are 4 cycles (e.g. single precision multiply-add).

• Access to shared memory is only fast if each thread accesses a different bank,
else access to banks is serialized.

• Access to global memory can be speed up through coalescing access to
aligned locations. Requires use of special data types, e.g. float4.
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Programming with CUDA CUDA examples

CUDA Language Extensions

• Function type qualifiers
• __device__ on device, callable from device.
• __global__ on device, callable from host.

• Variable type qualifiers
• __device__ in global memory, lifetime of app.
• __constant__ in constant memory, lifetime of app.
• __shared__ in shared memory, lifetime of block.

• Directive for kernel invocation (see below).

• Built-in variables __gridDim__, __blockIdx__, __blockDim__,
__threadIdx__, __warpSize__ .
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Programming with CUDA CUDA examples

Hello CUDA I

// scalar product using CUDA

2 // compile with: nvcc hello.cu -o hello

4 // includes , system

#include <stdlib.h>

6 #include <stdio.h>

8 // kernel for the scale function to be executed on device

__global__ void scale_kernel (float *x, float a)

10 {

int index = blockIdx.x*blockDim.x + threadIdx.x;

12 x[index] *= a;

}

14
// wrapper executed on host that calls scale on device

16 // n must be a multiple of 32 !

void scale (int n, float *x, float a)

18 {

// copy x to global memory on the device

20 float *xd;

cudaMalloc( (void **) &xd, n*sizeof(float) ); // allocate memory on device

22 cudaMemcpy(xd,x,n*sizeof(float),cudaMemcpyHostToDevice); // copy x to device

24 // determine block and grid size

dim3 dimBlock (32); // use BLOCKSIZE threads in one block

26 dim3 dimGrid(n/32); // n must be a multiple of BLOCKSIZE!

28 // call function on the device

scale_kernel <<<dimGrid ,dimBlock >>>(xd,a);

30
// wait for device to finish

32 cudaThreadSynchronize ();

34 // read result
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Programming with CUDA CUDA examples

Hello CUDA II

cudaMemcpy(x,xd,n*sizeof(float),cudaMemcpyDeviceToHost);

36
// free memory on device

38 cudaFree(xd);

}

40
int main( int argc , char** argv)

42 {

const int N=1024;

44 float sum =0.0;

float x[N];

46 for (int i=0; i<N; i++) x[i] = 1.0*i;

scale(N,x ,3.14);

48 for (int i=0; i<N; i++) sum += (x[i] -3.14*i)*(x[i] -3.14*i);

printf("%g\n",sum);

50 return 0;

}
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Programming with CUDA CUDA examples

Scalar Product I

1 // scalar product using CUDA

// compile with: nvcc scalarproduct.cu -o scalarproduct -arch sm_11

3
// includes , system

5 #include <stdlib.h>

#include <stdio.h>

7 #include <math.h>

#include <sm_11_atomic_functions.h>

9
#define PROBLEMSIZE 1024

11 #define BLOCKSIZE 32

13 // integer in global device memory

__device__ int lock =0;

15
// kernel for the scalar product to be executed on device

17 __global__ void scalar_product_kernel (float *x, float *y, float *s)

{

19 extern __shared__ float ss[]; // memory allocated per block in kernel launch

int block = blockIdx.x;

21 int tid = threadIdx.x;

int index = block*BLOCKSIZE+tid;

23
// one thread computes one index

25 ss[tid] = x[index]*y[index];

__syncthreads ();

27
// reduction for all threads in this block

29 for (unsigned int d=1; d<BLOCKSIZE; d*=2)

{

31 if (tid %(2*d)==0) {

ss[tid] += ss[tid+d];

33 }

__syncthreads ();
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35 }

37 // combine results of all blocks

if (tid ==0)

39 {

while (atomicExch (&lock ,1) ==1) ;

41 *s += ss[0];

atomicExch (&lock ,0);

43 }

}

45
// wrapper executed on host that uses scalar product on device

47 float scalar_product (int n, float *x, float *y)

{

49 int size = n*sizeof(float);

51 // allocate x in global memory on the device

float *xd;

53 cudaMalloc( (void **) &xd, size ); // allocate memory on device

cudaMemcpy(xd,x,size ,cudaMemcpyHostToDevice); // copy x to device

55 if( cudaGetLastError () != cudaSuccess)

{

57 fprintf(stderr ,"error in memcpy\n");

exit(-1);

59 }

61 // allocate y in global memory on the device

float *yd;

63 cudaMalloc( (void **) &yd, size ); // allocate memory on device

cudaMemcpy(yd,y,size ,cudaMemcpyHostToDevice); // copy y to device

65 if( cudaGetLastError () != cudaSuccess)

{

67 fprintf(stderr ,"error in memcpy\n");

exit(-1);
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69 }

71 // allocate s (the result) in global memory on the device

float *sd;

73 cudaMalloc( (void **) &sd, sizeof(float) ); // allocate memory on device

float s=0.0f;

75 cudaMemcpy(sd ,&s,sizeof(float),cudaMemcpyHostToDevice); // initialize sum on device

if( cudaGetLastError () != cudaSuccess)

77 {

fprintf(stderr ,"error in memcpy\n");

79 exit(-1);

}

81
// determine block and grid size

83 dim3 dimBlock(BLOCKSIZE); // use BLOCKSIZE threads in one block

dim3 dimGrid(n/BLOCKSIZE); // n is a multiple of BLOCKSIZE

85
// call function on the device

87 scalar_product_kernel <<<dimGrid ,dimBlock ,BLOCKSIZE*sizeof(float)>>>(xd ,yd,sd);

89 // wait for device to finish

cudaThreadSynchronize ();

91 if( cudaGetLastError () != cudaSuccess)

{

93 fprintf(stderr ,"error in kernel execution\n");

exit(-1);

95 }

97 // read result

cudaMemcpy (&s,sd,sizeof(float),cudaMemcpyDeviceToHost);

99 if( cudaGetLastError () != cudaSuccess)

{

101 fprintf(stderr ,"error in memcpy\n");

exit(-1);
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103 }

105 // free memory on device

cudaFree(xd);

107 cudaFree(yd);

cudaFree(sd);

109
// return result

111 return s;

}

113
int main( int argc , char** argv)

115 {

float x[PROBLEMSIZE], y[PROBLEMSIZE ];

117 float s;

for (int i=0; i<PROBLEMSIZE; i++) x[i] = y[i] = sqrt (2.0f);

119 s = scalar_product(PROBLEMSIZE ,x,y);

printf("result of scalar product is %f\n",s);

121 return 0;

}

Remark: This is not the most efficient version. See the CUDA tutorial for a
version that utilizes full memory bandwidth.
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