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Chapter 1

Recapitulation of the Finite Element Method

In this chapter we want to give a short summary about the Finite Element
Method, a numerical technique for finding approximate solutions to boundary
value problems for partial differential equations. Introductions to the finite
element method can be found in Eriksson et al. [1996]; Braess [2003]; Ciarlet
[2002]; Ern and Guermond [2004]; Brenner and Scott [1994]; Rannacher [2006];
Bastian [2014].

Elliptic Model Problem: ”Strong Formulation”

Now we consider linear elliptic problems that are commonly found in mechan-
ical and physical partial differential equation models. The aim is to introduce
the notion of a weak formulation that gives access to existence and uniqueness
results for the solutions and that is well suited for the numerical approximation
of such problems.

In the theory of partial differential equations, elliptic operators are differential
operators that generalize the Laplace operator. An elliptic differential equation
of second order has the form

−∇ · (K(x)∇u(x)) + c(x)u(x) = f(x) x ∈ Ω ⊂ Rn

u(x) = g(x) x ∈ ΓD ⊆ ∂Ω (1.1)
−K(x)∇u(x) · n(x) = j(x) x ∈ ΓN = ∂Ω\ΓD

with the coefficient functions K and c.

We assume Ω to be open, connected and bounded. An important assumption
on the coefficient K is that for all ξ ∈ Rn we have

k0‖ξ‖2 ≤ ξTK(x)ξ ∀x ∈ Ω

which is called uniform ellipticity and that

ξTK(x)ξ ≤ K0‖ξ‖2 ∀x ∈ Ω

which is boundedness. Furthermore K(x) is assumed to be symmetric and
c(x) ≥ 0.
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Chapter 1 Recapitulation of the Finite Element Method

Regarding the Problem (1.1) we can investigate the following questions:
• For the problem to be well-posed we have to guarantee that

– the solution exists,
– it is unique
– and stable: ‖u‖ ≤ c (‖f‖+ ‖g‖+ ‖j‖︸ ︷︷ ︸

data

).

• For a numerical solution producing an approximation uh on would like to
guarantee an priori error estimate of the form

‖u− uh‖ ≤ chk‖u‖

where h is a mesh size parameter.
• Guaranteed error control of the numerical solution requires an posteriori

error estimate of the form

‖u− uh‖ ≤ η(uh)

with an η that is effectively computable.
Note that ‖ · ‖ means a “generic” norm in these lecture notes. More over, the
strong formulation (1.1) requires very restrictive demands placed on the data
(f, g, j) to answer these questions. For this reason we consider the weak/varia-
tional formulation.

1.1 The Variational Formulation of Elliptic Partial
Differential Equations

We describe the general abstract framework for elliptic problems with homo-
geneous Dirichlet data, ∂Ω = ΓD and g = 0. To get the variational form we
multiply the equation by a “test function” v(x) and do integration by parts:∫

Ω

[−∇ · (K∇u) + cu]v dx =

∫
Ω

(K∇u) · ∇v + c uv dx+

∫
∂Ω

(K∇u) · νv ds

=

∫
Ω

(K∇u) · ∇v + c uv dx (v = 0 on ∂Ω)

=: a(u, v).

This relation holds true for all test functions v(x) ∈ C1(Ω)∩ C0(Ω). The idea is
now to reverse the argument and to define the function u by requiring

a(u, v) = l(v) :=

∫
Ω

fv dx
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1.1 The Variational Formulation of Elliptic Partial
Differential Equations

for “sufficiently many” test functions v.
Put in an abstract way, the problem reads as follows. Given suitable function

spaces U and V (see below) define the function u by the variational formulation:

Find u ∈ U : a(u, v) = l(v) ∀v ∈ V. (1.2)

Here, a(·, ·) ∈ L(U × V,R) is a so-called bilinear form and l(·) ∈ L(V,R) is a
linear functional.

Remark 1.1. L(U×V,R) is the space of continuous bilinear forms and L(V,R),
is the space of continuous bilinear functionals. L(V,R) is also abbreviated by
V ′ and is called the dual space of V . �

The following two theorems ensure the existence, uniqueness and stability of the
solution given by (1.2).

Theorem 1.2 (Banach-Nečas-Babuška). Let U and V be Banach spaces (com-
plete, linear, normed spaces), let V be reflexive and a ∈ L(U × V,R), l ∈
L(V,R). Then (1.2) is well-posed if and only if

∃α > 0 : inf
u∈U

sup
v∈V

a(u, v)

‖u‖U‖v‖V
≥ α, (1.3)

∀v ∈ V : (∀u ∈ U : a(u, v) = 0)⇒ (v = 0). (1.4)

Furthermore, the following stability estimate holds:

‖u‖U ≤
1

α
‖l‖V ′. �

Additional Comments

• The dual space V ′ is equipped with the norm

‖l‖V ′ = sup
w∈V
w 6=0

l(w)

‖w‖V
.

• a(u, ·) ∈ V ′ for given u ∈ U .
• The linear operator A : U → V ′ is defined by Au := a(u, ·).
• (1.2) ⇔ Au = l. In that sense eqref1.2 is a linear equation in function

spaces.
• (1.3) ⇔ A is injective.
• (1.4) ⇔ A is surjective.
• f ∈ L2(Ω) implies that l(v) =

∫
Ω fv dx = (f, v)L2(Ω) ∈ V ′.
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Chapter 1 Recapitulation of the Finite Element Method

Theorem 1.3 (Lax-Milgram). Let V be a Hilbert space, a ∈ L(V × V,R),
(U = V !), and l ∈ V ′, i.e. a(·, ·) is a continuous bilinear form and l(·) a
continuous functional. If the bilinear form a(·, ·) is coercive ( also called V-
elliptic), i.e.

∃α > 0,∀u ∈ V : a(u, u) ≥ α‖u‖2
V ,

then there exists a unique solution to model problem (1.2) and the following
stability estimate holds

‖u‖V ≤
1

α
‖l‖V ′. �

Remark 1.4. bla
• The Lax-Milgram theorem is proved with the help of the Riesz represen-

tation theorem (which requires V to be a Hilbert space) and the Banach
fixed-point theorem.
• One can show that Lax-Milgram theorem 1.3 implies Banach-Nečas-Babuška

theorem 1.2, but not vice versa.
• Note that we do not assume a(·, ·) to be symmetric in order to proof

well-posedness.
• For our model problem Lax-Milgram theorem is sufficient. Banach-Nečas-

Babuška theorem 1.2 is needed in more complex situations. It is used to
proof well-posedness to parabolic equations or even more complex systems
of partial differential equations (e.g. Stokes equations).

Sobolev Spaces

In order to prove the well-posedness with the help of Lax-Milgram theorem, we
have to find an appropriate Hilbert space. Such spaces are given by so-called
Sobolev spaces that consist of weakly differentiable functions.

Definition 1.5 (L2(Ω)). Sobolev spaces are based on the space of functions
which are square integrable in the sense of Lebesgue, i.e.

L2(Ω) =

u :

∫
Ω

u2(x) dx <∞

 .

Functions in L2(Ω) are equipped with the scalar product and norm

(u, v)0,Ω =

∫
Ω

uv dx, ‖u‖0,Ω =
√

(u, u)0,Ω. �
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L2 functions are not differentiable in the classical sense and one needs an
alternative notion of differentiability. The idea is to use integration by parts to
transfer derivatives to a function that is differentiable in the classical sense.

Definition 1.6 (Weak Derivative). Let α ∈ Nd
0 be a multi-index, that is

α := (α1, ..., αd) and |α|1 :=
d∑
i=1

αi.

Considering a function u ∈ L2(Ω), we say that u is called weakly differentiable,
if a function g ∈ L2(Ω) exists, so that for all test functions φ ∈ C∞0 (Ω) the
following condition holds∫

Ω

g(x)φ(x) dx = (−1)|α|1
∫
Ω

u(x) ∂
|α|

∂xαφ(x) dx.

Such a function g is called the α-th weak derivative of u in the L2(Ω) sense and
we define ∂αu := ∂|α|

∂xαu := g. Here the multi-index notation

∂|α|1

∂xα
u(x) =

∂|α|1

∂xα1
1 · · · ∂x

αd
d

u(x)

has been used. �

Definition 1.7 (Sobolev space Hk(Ω)). The Hilbert space of all elements u ∈
L2(Ω) with square integrable weak derivatives ∂αu ∈ L2(Ω) for all α with |α|1 ≤
k is called Sobolev space of order k and will be denoted by Hk(Ω), i.e.

Hk(Ω) := {u ∈ L2(Ω) : ∂αu ∈ L2(Ω) ∀0 ≤ |α|1 ≤ k}.

The Sobolev space Hk(Ω) is equipped with the inner product

(u, v)k,Ω :=
∑

0≤|α|1≤k

∫
Ω

(∂αu) (∂αv) dx

and the induced norm
‖u‖k,Ω :=

√
(u, u)k,Ω. �

Definition 1.8. The space of all linear continuous functionals u∗ : Hk(Ω)→ R
is denoted by

H−k(Ω) := L(Hk(Ω),R) = (Hk(Ω))′

and is also called the dual space of Hk(Ω). �
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Chapter 1 Recapitulation of the Finite Element Method

According to the Riesz representation theorem any continuous linear func-
tional l ∈ H−k(Ω) can be represented by an element ul ∈ Hk(Ω) via

l(v) := (ul, v)k,Ω. (1.5)

Since we consider Dirichlet boundary conditions in this lecture the following
subspaces of Sobolev spaces will be of importance.

Definition 1.9 (Sobolev space Hk
0 (Ω)). The Sobolev space of all functions van-

ishing in a weak sense on the boundary of Ω is given by

Hk
0 (Ω) := {u ∈ Hk(Ω) : u|∂Ω = 0 “almost everywhere”}. �

Remark 1.10 (Subset relations). By Definition 1.7 the identityH0(Ω) = L2(Ω)
follows. Moreover, we have the following relations

. . . ⊃ H−1(Ω) ⊃ L2(Ω) ⊃ H1(Ω) ⊃ H2(Ω) ⊃ . . .
∪ ∪

H1
0(Ω) ⊃ H2

0(Ω) ⊃ . . .

where the dual space L2(Ω)′ has been identified with the space L2(Ω) itself.
Regarding equation 1.5 the dual space of a Sobolev space is even bigger than
the space itself. �

Remark 1.11 (Construction of Sobolev spaces). An alternative way to define
Sobolev spaces is to think of them as the completion of a certain function space
with respect to a certain norm. These spaces are often labeled as W k(Ω).
It can be shown that W k(Ω) = Hk(Ω) holds.
• For k ≥ 0 the Sobolev space Hk(Ω) is given as the completion of Ck(Ω)

with respect to ‖ · ‖k,Ω.
• For k > 0 the Sobolev space Hk

0 (Ω) is given as the completion of C∞0 (Ω)
with respect to ‖ · ‖k,Ω. �

A relation between classical function spaces and Sobolev spaces is given by
the following

Proposition 1.12 (Sobolev embedding theorem). For dimension n, k ∈ N0 and
k − n

2 > m there exists a continuous embedding

W k,p(Ω) ↪→ Cm(Ω) ⊂ C(Ω). �

Application of Lax-Milgram-Theorem 1.3

Now, we want to apply Lax-Milgram Theorem to our model problem in order
to proof the well-posedness of the problem. To do so, we have to determine
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1.1 The Variational Formulation of Elliptic Partial
Differential Equations

an appropriate Hilbert space V and show that the bilinear form a(·, ·) is coer-
cive and continuous with respect to the norm of the Hilbert space. Moreover,
continuity of the linear functional l is required which we will presuppose in the
considered examples and can be easily achieved since f ∈ L2(Ω) already implies
l(v) =

∫
Ω fv dx ∈ V

′. The following examples differ only in the given boundary
conditions.

Example: Homogeneous Dirichlet boundary conditions Let us consider-
ing Problem 1.1 with ΓD = ∂Ω, g = 0, so called homogenous Dirichlet boundary
conditions.

We take the Hilbert space V = H1
0(Ω) equipped with the inner product

(·, ·)1,Ω. In order to prove continuity and coercivity of the bilinear form with
respect to V , we need Friedrich’s inequality, which can be proved by the funda-
mental theorem of calculus and the Cauchy-Schwarz inequality.

Theorem 1.13 (Friedrich’s inequality). For every function v ∈ H1
0(Ω)

‖v‖0,Ω ≤ sΩ |v|1,Ω = sΩ‖∇v‖0,Ω

holds with the diameter sΩ = diam(Ω) of the domain Ω and the semi-norm

|v|k,Ω =

(∑
|α|=k

∫
Ω

(∂αv)2 dx

) 1
2

∀v ∈ H1
0(Ω). �

Using Friedrich’s inequality one can show that |.|1,Ω is a norm on V and this
norm is equivalent to ‖.‖1,Ω.

Example: Pure Neumann boundary conditions Now we consider the
problem with pure Neumann boundary conditions, i.e. ΓD = ∅ and ΓN = ∂Ω.

Here we use the Sobolev space V = {v ∈ H1(Ω) :
∫

Ω v dx = 0} with inner
product (·, ·)1,Ω to guarantee the well-posedness of the regarded problem. Note
that this space does not explicitely include a boundary condition as it has been in
the previous case. Instead we expect all functions to have a mean value equal to
zero in order to assure the uniqueness of the solution. For the proof of coercivity
and continuity we need:

Theorem 1.14 (Poincaré’s inequality). There exist positive constants c1, c1

such that

‖v‖2
0,Ω ≤ c1|v|21,Ω + c2

(∫
Ω

v dx

)2

∀v ∈ H1(Ω). �
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Chapter 1 Recapitulation of the Finite Element Method

Theorem 1.15 (Trace Theorem). Assume Ω is bounded and has Lipschitz
boundary. Then there exists a bounded linear operator γ : H1(Ω) → L2(∂Ω)
such that

‖γv‖0,∂Ω ≤ c‖v‖1,Ω ∀v ∈ H1(Ω).

In the original version the existing operator is even stronger: γ : H1(Ω) →
H

1
2 (∂Ω), but the above formulation is sufficient for our purposes. �

Example: Inhomogeneous Dirichlet boundary conditions As in the first
example, we assume ΓD = ∂Ω but with the difference that now we have g 6= 0.
In this case we decompose our solution into a homogeneous u0 ∈ H1

0(Ω) and
non-homogeneous part ug ∈ H1(Ω), i.e.

u = u0 + ug

and we further assume the inhomogeneous part to be an extension of the bound-
ary values γug = g with the operator γ : H1(Ω) → H

1
2 (Ω) from the trace

theorem. Note that this requires g ∈ H 1
2 (Ω).

With the help of this decomposition we can treat the problem similar to the
homogeneous Dirichlet example:

Find u0 ∈ H1
0(Ω) : a(u0, v) = l(v)− a(ug, v) ∀v ∈ H1

0(Ω).

Mixed boundary conditions Regarding mixed boundary conditions ΓD ⊂
∂Ω,ΓD 6= ∅ we can use the Hilbert space

V = {v ∈ H1(Ω) : v = 0 on ΓD “almost everywhere”}

in order to prove well-posedness. The proof of coercivity then requires a variant
of Friedrich’s inequality.

1.2 Conforming Finite Element Method

Definition 1.16 (Conformity). Let V be an adapted Sobolev space to the vari-
ational problem (1.2) and Vh be the finite-dimensional Finite Element ansatz
space. Then the discretization Vh is called “conforming”, if

Vh ⊂ V

or else it is called “non-conforming”. �

An important characterization of finite-dimensional subspaces of Sobolev spaces
can be deduced from the following theorem.
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1.2 Conforming Finite Element Method

Theorem 1.17. Let Ω be a bounded domain, {ω1, . . . , ωN} a partitioning of
Ω into a finite number of subdomains and Vh a space of functions such that
for v ∈ Vh we have v|ωi ∈ C∞. Then Vh ⊂ Hk(Ω), k ≥ 1, if and only if
Vh ⊂ Ck−1(Ω). �

In our applications we need k = 1. From the theorem we conclude that a
piecewise infinitely differentiable function, e.g. a piecewise polynomial, is in H1

if and only if the function is globally continuous. The conforming finite element
method comprises a specific way to construct the finite-dimensional space Vh
using piecewise polynomial functions that are globally continuous.

The Lax-Milgram theorem immediately establishes the solution of the varia-
tional problem

Find uh ∈ Vh: a(uh, v) = l(v) ∀v ∈ Vh (1.6)

in the subspace Vh.
Any finite dimensional vector space is spanned by a set of basis functions

Vh = span{ϕh1 , ..., ϕhNh}.

Using the basis, for every uh ∈ Vh we have the representation

uh =

Nh∑
j=1

zhj ϕ
h
j .

Inserting the basis representation into the weak discrete problem (1.6) results in
a linear system of equations:

Find uh ∈ Vh: a(uh, v) = l(v) ∀v ∈ Vh

⇔ a

(
Nh∑
j=1

zhj ϕ
h
j , ϕ

h
i

)
= l(ϕhi ) i = 1, . . . , Nh

⇔
Nh∑
j=1

zhj a(ϕhj , ϕ
h
i ) = l(ϕhi ) i = 1, . . . , Nh

⇔ Ahzh = bh.

with the unknown vector zh ∈ RNh, the stiffness matrix Ah ∈ RNh×Nh and the
load vector bh ∈ RNh, which are defined by

(Ah)ij := a(ϕhj , ϕ
h
i ), (bh)i := l(ϕhi ).

The matrix Ah is sparse because of the small overlap of the basis functions and
its elements can be computed by an element-wise evaluation of the integral.

It can be shown that Ah is symmetric and positive definite, if the bilinearform
a(·, ·) is symmetric and coercive.
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Chapter 1 Recapitulation of the Finite Element Method

Finite Element Mesh

An important prerequisite for the practical construction of the space Vh and its
basis is the partitioning of the domain Ω. This partitioning is called a mesh or
grid in finite element terminology consists of so called elements or cells:

Th = {t1, ..., tm}.

Each element ti is an open, bounded and connected subset of Rn. The parti-
tioning property is expressed by

m⋃
i=1

ti = Ω, ti ∩ tj = ∅ ∀i, j ∈ {1, ...,m}, i 6= j.

ht = diam(t) is the diameter of an element and

h := max
t∈Th

ht

denotes the mesh size.
In order to speak of convergence of the finite element approximation we actu-

ally need a sequence of meshes with h→ 0.
The individual elements ti of the mesh typically have simple shape and in

order to simplify the calculations ti is given by a transformation from a reference
element. In figure 1.1 shows different types of reference elements t̂ in different
space dimensions that are used in practice: the simplex and the cube family.

Proposition 1.18 (Reference transformation). Every element ti ⊂ Rn, i ∈ Th
can be obtained from the reference element t̂ ⊂ Rn by using an invertible affine-
linear transformation (shifting, rotation, scaling...)

µi : Ŝn or Q̂n → ti, ti = µi(t̂) = Bit̂+ zi,

with Bi ∈ Rd×d, detBi > 0 and zi ∈ Rd. �

As a consequence we have

Corollary 1.19. Ω is a polyhedral domain (polygon in two space dimensions)!

In general, nonlinear transformations µ can also be considered which then
allows one to handle domains with curved boundaries but this will not be con-
sidered in this lecture.

It turns out that the mesh Th has to satisfy the following additional properties:

1. Regularity of structure: Two cells have at most one vertex or one edge
(or one face in 3D) in common (no “hanging nodes”).
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1.2 Conforming Finite Element Method

0

n = 0

(0,0) (1,0)

n = 1

(0,0)

(0,1)

(1,0)

n = 2

(0,0,0) (1,0,0)

(0,0,1)

(0,1,0)

n = 3

(a) Ŝn: n-dimensional unit simplex with n+ 1 vertices

0

n = 0

(0,0) (1,0)

n = 1

(0,0) (1,0)

(0,1) (1,1)

n = 2

(0,0,0) (1,0,0)

(0,0,1)

(0,1,0)

(0,1,1)

(1,1,0)

(1,1,1)

(1,0,1)

n = 3

(b) Q̂n: n-dimensional unit cube with 2n vertices

Figure 1.1: Examples for reference elements on simplices and cubes

2. Regularity of form: For every cell it holds

∃c1 > 0 : ht ≤ c1ρt

with the apothem ρt and the circumscribed radius ht.

3. Regularity of size: Every cell is of the same size.

∃c2 > 0 : max
t∈Th

ht ≤ c2 min
t∈Th

ht.

Remark 1.20. This only make sense if we have a sequence of grids Th,ν and
ν ∈ N such that hν → 0 and all constants ci, i = {1, 2}, are the same for every
ν. �

Finite Element Spaces

Using the mesh we now we can construct Finite Element ansatz spaces and deal
with questions about the practical realization of the method. Ω is a polygon
domain with the decomposition Th in triangles or rectangles (triangular pyramid
or hexahedron in 3-D) and all the properties given above are satisfied.
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Chapter 1 Recapitulation of the Finite Element Method

Generally we define the following multivariate polynomial spaces of degree k
or smaller:

Pnk := {u ∈ C∞(Rn) : u(x) =
∑

0≤|α|1≤k

cαx
α},

Qn
k := {u ∈ C∞(Rn) : u(x) =

∑
0≤|α|∞≤k

cαx
α}

with |α|1 = α1 + ... + αn, |α|∞ = maxi=1,...,n αi and xα = xα1
1 · . . . · xαn. In R2

this looks like

P2
k := {u ∈ C∞(R2) : u(x) =

∑
0≤i+j≤k

cijx
i
1x

j
2},

Q2
k := {u ∈ C∞(R2) : u(x) =

∑
0≤i,j≤k

cijx
i
1x

j
2}

With that we may define the following function spaces:

Pnk (Th) := {u ∈ C0(Ω) : ∀t ∈ Th : u
∣∣
t
∈ Pnk},

Qn
k(Th) := {u ∈ C0(Ω) : ∀t ∈ Th : u

∣∣
t

= ût ◦ µ−1
t , ût ∈ Qn

k}.

It can be checked that this definition is in fact proper, i.e. the requirement of
global continuity does not contradict the polynomial form within each element.

The next step is to construct a basis for the finite element space. In particular,
for the finite element spaces considered here, a so-called Lagrange basis can be
found which is characterized by the property

ϕhi (sj) = δij, j = 1, ..., Nh,

for certain points sj. In the lowest order case k = 1 the points sj are the vertices
of the mesh Th.

Approximation Properties of FE spaces

Definition 1.21 (Lagrange-Interpolation). Given a Lagrange basis we can de-
fine the Lagrange interpolation operator acting on continuous functions:

I : C0(Ω)→ Pnk (Th), Iv =

Nh∑
i=1

v(si)ϕ
h
i . �

Remark 1.22. Note that Ivh ≡ vh for every vh ∈ Pnk (Th). �
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1.2 Conforming Finite Element Method

Remark 1.23. In order to define Lagrange interpolation for Sobolev functions
we need k > n

2 for Hk(Ω) ⊂ C0(Ω). Then the Sobolev embedding theorem
ensures that functions are continuous and pointwise evaluation is well-defined.
This means for n = 1 that k ≥ 1 and for n = 2, 3 that k ≥ 2. �

A cornerstone of the finite element a-priori error estimate is the following
approximation property of finite element functions:

Proposition 1.24. For k ∈ N, k > min(1, n/2) and Lagrange interpolation
I : Hk(Ω) → Pnk−1(Th) (note the polynomial degree is k − 1!) and m ∈ {0, 1}
we have the estimate

‖u− Iu‖m,Ω ≤ chk−m|u|k,Ω
with a constant c = c(n, k, t̂, Th). In particular, the constant depends on the
size of the angles of the triangulation. �

As an example consider n = 2 and k > 1 (required to make Lagrange inter-
polation well-defined), i.e. the smallest k is 2 and the corresponding polynomial
degree is 1 (piecewise linear functions). Then we have ‖u − Iu‖1,Ω ≤ ch|u|2,Ω.
However, the Lax-Milgram theorem establishes only a solution in H1. Thus one
has to assume that a solution with “additional regularity” exists.

Regularity Assumptions

We now discuss briefly under which assumptions solution in higher-order Sobelev
spaces actually do exist.

Example 1.25. For domains with smooth boundary or convex polygonal do-
main Ω it has been proved that u ∈ H2(Ω).

Example 1.26. Ω has a Cs boundary ∂Ω (s times continuously differentiable
parameterized), then one can show u ∈ Hs(Ω).

The regularity of solutions of problem (1.2) can be also “very low”. For this
discussion fractional order Sobolev spaces are required, i.e. Hs(Ω) with s ∈ R.

Example 1.27. Consider the problem−∇·(K(x)∇u) = f (in weak form) where
the coefficient K(x) > 0 is discontinuous and has the following “checkerboard”
form:

K1 K2

K2 K1
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Chapter 1 Recapitulation of the Finite Element Method

Then one can show that for 0 < K1 ≤ K2 the solution satisfies u ∈ H1+α

with α = 2
π arctan

(
2
√
K1K2

K2−K1

)
≈ 4

π

√
K1

K2
which approaches zero for K1 � K2.

Correspondingly, the convergence of the finite element method is hα which is
extremely slow and is observed in practice. �

A-priori Error Estimates

We start with a very important property of the finite element solution.

Proposition 1.28 (Galerkin orthogonality). Suppose u ∈ V solves (1.2) and
uh solves (1.6), i.e.

a(uh, vh) = l(vh) ∀vh ∈ Vh. (1.7)

Then it follows that the error e = u− uh satisfies

a(e, vh) = 0 vh ∈ Vh.

Proof. Since Vh ⊂ V , we can use vh as the test function in the original equation

a(u, vh) = l(vh) ∀vh ∈ Vh.

Subtracting from this equation (1.7), we get the Galerkin orthogonality relation
for the error u− uh:

a(u− uh, vh) = a(u, vh)− a(uh, vh) = l(vh)− l(vh) = 0 ∀vh ∈ Vh.

If a(·, ·) defines a scalar product on V , which it does in the symmetric case,
then we can conclude that the error is orthogonal (w.r.t. the scalar product
a(·, ·)) to all functions in Vh.

An important consequence of Galerkin orthogonality is

Lemma 1.29 (Céa’s lemma). The bilinear form a : V × V → R, V = H1
0(Ω),

fulfills the properties
• continuity: |a(v, w)| ≤ C‖v‖1,Ω ‖w‖1,Ω for some constant C > 0 and all
v, w ∈ V and
• coercivity: a(v, v) ≥ α‖v‖2

1,Ω for some constant α > 0 and all v ∈ V .
Then the error satisfies

‖u− uh‖1,Ω ≤
C

α
inf
vh∈Vh

‖u− vh‖1,Ω ∀vh ∈ Vh.

The infimum term characterizes the best approximation of u in the subspace Vh
with respect to the H1-norm. �

Céa’s lemma together with the approximation property gives the a-priori es-
timate.
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1.2 Conforming Finite Element Method

Theorem 1.30 (A priori error estimate). For the error u−uh between the exact
solution u ∈ V and the FE solution uh with the ansatz space Vh ⊂ H1

0(Ω) of
order k ≥ 1, the polynomial degree of the ansatz functions, it holds the a priori
error estimation

‖u− uh‖1,Ω ≤ chk−1|u|k,Ω,

whereby the dimension n ≤ 3 and the solution is required to be in Hk(Ω). �

In the L2-norm one can show

‖u− uh‖0,Ω ≤ ch2|u|2,Ω

for polynomial degree 1.

Practical Implementation of the matrix Ah

In this section we want to present a systematic way to compute the entries of
the stiffness matrix Ah ∈ RNh×Nh for the elliptic problem

(K∇u,∇v) = (f, v) ∀v ∈ V.

This process is called “matrix assembly”. To assemble the linear system of equa-
tions,

Ahzh = bh,

we use a cell-wise computation of the necessary integrals. The definition of the
matrix entry is

(Ah)ij = a(ϕhj , ϕ
h
i ) =

∫
Ω

(K∇ϕhj ) · ∇ϕhi dx.

Now we split the domain into elements to arrive at

(Ah)ij =
∑
t∈Th

∫
t

(K∇ϕhj ) · ∇ϕhi dx.

We calculate the contribution of one element with the help of the reference
transformation µt from 1.18. On element t we have the relation

v̂(x̂) = v(µt(x̂)) (1.8)

between the finite element function v on the element t ∈ Th and the correspond-
ing function on the reference element. Recall that for affine transformations we
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Chapter 1 Recapitulation of the Finite Element Method

have µt(x̂) = Btx̂+zt and Bt = ∇̂µt(x̂) (the hat on the gradient operator means
differentiation with respect to x̂). The transformation formula for integrals∫

t

v(x) dx =

∫
t̂

v̂(x̂)| detBt| dx̂

then establishes that we can calculate the required integral on the reference
element.

In addition, from the chain rule applied to (1.8) it follows

∇v(µt(x̂)) = B−Tt ∇̂v̂(x̂).

Using all these relations the matrix entry can be computed as

(Ah)ij =
∑
t∈Th

∫
t̂

[K(µt(x̂))
(
∇̂µt(x̂)

)−T ∇̂ϕ̂j(x̂)] ·
(
∇̂µt(x̂)

)−T ∇̂ϕ̂i(x̂)| det ∇̂µt(x̂)| dx̂.

In practice the computations are organized such that all integrals on the element
t contributing to different i, j are computed consecutively so that the (expensive)
evaluations of µt (Jacobian and determinant) can be reused. Moreover, the
evaluations of (gradients of) the basis functions ϕ̂hi on the reference element can
be computed once and stored.

A posteriori error estimation

An important role in partial differential equations is error control. Of interest
is to estimate the error between an approximate solution uh and the exact solu-
tion u. For this purpose we have the “a posteriori error estimator”, which only
depends on calculated quantities and the data f . The a priori error in the previ-
ous section is not useful to control the error, because the necessary information
about higher-order derivatives of the exact solution u are not available.

Theorem 1.31. For the error u− uh there holds the psteriori error estimate

‖u− uh‖1,Ω ≤ c

{∑
t∈Th

h2
t‖R‖2

0,t +
∑

γ∈F ih∪FNh

hγ‖r‖2
0,γ

} 1
2

with the strong formulation of the elliptic operator

R = f + ∇ · (K∇uh)︸ ︷︷ ︸
= 0 for P1-elements

−c uh,
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1.2 Conforming Finite Element Method

the jump terms over the edges γ ∈ F i
h and the error in the Neumann boundary

condition γ ∈ FN
h

r(x) =

{
[−(K∇uh) · ν] x ∈ γ ∈ F i

h

−(K∇uh) · ν − j x ∈ γ ∈ FN
h

.

The constant c depends on the mesh and the polynomial degree and is hardly
computable in practice. �

Interpolation of non-smooth functions

The Lagrange interpolation requires enough regularity of the Sobolev function.
In certain situations, such as for the a-posteriori error estimate given above, on
requires a finite element interpolation that can work directly on H1 functions.

One possibility is the local “Clement” interpolation 1.32:

Definition 1.32 (Clement interpolation). For every function v ∈ H1(Ω) exists
the “Clement” interpolation Chv ∈ Vh:

Ch : H1(Ω)→ Vh ⊃ Pn1 (Th),

which is a combination of the Lagrange interpolation and the following L2-
projection. �

Remark 1.33. The Clement interpolation is not a projection, i.e. ChChv 6=
Chv. �

Another option is the “L2-projection” 1.34, which is orthogonal but not local.

Definition 1.34 (L2-projection). The L2-projectionQh : L2(Ω)→ Vh is defined
by

(Qhv, wh)0,Ω = (v, wh)0,Ω ∀wh ∈ Vh
with the estimate

‖v −Qhv‖0,Ω ≤ ch|v|1,Ω. �
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Chapter 2

Classical Iterative Methods

2.1 Linear Iterative Methods

The regular linear system
Ax = b (2.1)

is solved by constructing a sequence x0, x1, . . . with arbitrary initial guess x0

that converges towards the solution x. One way to construct linear iterative
methods is via defect correction. For arbitrary xk define the error as

ek := x− xk. (2.2)

Due to linearity we have

Aek = Ax− Axk = b− Axk := dk (2.3)

which is called defect. Note that dk = b − Axk can be readily computed while
the underlying error ek is usually not available.

In order to arrive at an iterative method A on the left hand side of (2.3) is
replaced by some approximation W , i.e. we solve Wvk = dk and vk = W−1dk

approximates ek. This gives us the generic form of a linear iterative method:

xk+1 = xk +W−1(b− Axk). (2.4)

Particular choices for W are

WRic = ω−1I ω ∈ R,Richardson
WJac = diag(A) Jacobi
WGS = L+D A = L+D + U,Gauß-Seidel

Analysis of linear iterative methods is based on the error propagation equation

ek+1 = x− xk+1

= x− xk −W−1(Ax− Axk)
= (x− xk)−W−1A(x− xk)
= ek −W−1Aek

= (I −W−1A)ek =: Sek

The matrix S = I −W−1A is called iteration matrix .

25



Chapter 2 Classical Iterative Methods

Definition 2.1.

σ(A) := {λ ∈ C : λ is eigenvalue of A}

is called the spectrum of A and

ρ(A) := max{|λ| : λ ∈ σ(A)}

is called the spectral radius of A.

Theorem 2.2. A,W regular matrices. Then the iterative scheme (2.4) con-
verges if and only if ρ(S) < 1.

Proof. See Hackbusch [1991]. Idea: ek = Ske0 and show Sk → 0. For diagonal-
izable matrices this is easy to see as Sk = TDkT−1 and Dk = diag(λk1, . . . , λ

k
N)

a diagonal matrix. The argument can be extended to non-diagonalizable matri-
ces.

In general it is difficult to determine ρ(S). One option is to use a norm
estimate

ek+1 ≤ (I −W−1A)ek

⇒ ‖ek+1‖ ≤ ‖I −W−1A‖ ‖ek‖

for any submultiplicative matrix norm. Since ρ(S) ≤ ‖S‖ for any norm and
‖S‖ < 1 is required for convergence, the norm needs to be chosen carefully.

A special case are symmetric positive definite matrices where the spectral
radius can be computed exactly and related to the condition number.

Theorem 2.3. A,B symmetric and positive-definite matrices. Then the itera-
tion

xk+1 = xk +
1

λmax(BA)
B(b− Axk)

converges with the rate

ρ = 1− 1

κ(BA)

where

κ(BA) =
λmax(BA)

λmin(BA)

is the spectral condition number and λmax(BA), λmin(BA) are the extreme
eigenvalues of BA.
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2.1 Linear Iterative Methods

Proof. A is symmetric positive definite, so there is an unitary matrix Q such
that A = QDQT with D = diag(λ1, . . . , λN) with λi ∈ σ(A) ⊂ R+. Set
D

1
2 := diag(

√
λ1, . . . ,

√
λN) and A

1
2 := QD

1
2QT . Then we have σ(BA) =

σ(A
1
2BAA−

1
2 ) = σ(A

1
2BA

1
2 ). Since T := A

1
2BA

1
2 is symmetric and positive

definite all eigenvalues of BA are real and positive. Now T is also diagonalizable
and has a complete set of eigenvectors. Since σ(S) = σ(I − 1

ωT ) = {µi : µi =

1− λi
ω for λi ∈ σ(T ) = σ(BA)}, setting ω = λmax(T ) we get µi ∈ [0, 1− λmin(T )

λmax(T ) ].
So ρ(S) = 1− 1

κ(T ) .

For B = I we obtain the Richardson iteration W = 1
λmax(A)I. For B = A−1

we have κ(BA) = 1 and ρ(S) = 0.
The matrix B is supposed to reduce the condition number of A and is therefore

often called a preconditioner .
Now what is the condition number of A?

Observation 2.4 (Raleigh Quotient). Let A ∈ Rn×n be symmetric and positive
definite. Then the extreme eigenvalues can be characterized by

λmin(A) = inf
x 6=0

〈Ax, x〉
〈x, x〉

, λmax(A) = sup
x 6=0

〈Ax, x〉
〈x, x〉

,

where 〈., .〉 is any scalar product in Rn.

Proof. 1. Let 〈., .〉 be the Euclidean scalar product. There exists Q with
A = QTDQ and QQT = I. Then

〈Ax, x〉
〈x, x〉

=
〈DQx,Qx〉
〈Qx,Qx〉

=

∑N
i=1 λi(Qx)2

i

〈Qx,Qx〉
.

From λmin〈Qx,Qx〉 ≤
∑N

i=1 λi(Qx)2
i ≤ λmax〈Qx,Qx〉 we conclude the

result.

2. Extend to 〈u, v〉M = 〈Mu, v〉 = 〈M 1
2u,M

1
2v〉.

Lemma 2.5. Let Ah be obtained from a Finite Element discretization of the
Poisson equation, i.e. (Ah)ij = a(φj, φi), using Lagrange basis functions of P1

on a mesh of size h. Then there exists a constant c such that

κ(Ah) ≤ ch−2

and the estimate is sharp.

Proof. Let 〈., .〉 be the Euclidean scalar product. We write Ωij := supp(φi) ∩
supp(φj).
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Chapter 2 Classical Iterative Methods

〈Ahx, x〉 =

Nh∑
i=1

Nh∑
j=1

xixja(φj, φi)

=

Nh∑
i,j=1

xixj

∫
Ωij

∇φj · ∇φi dx

=

Nh∑
i,j=1

xixj
∑
t∈Ωij

∫
t̂

(B−Tt ∇φ̂j) · (B−Tt ∇φ̂i)| detBt| dx̂ (*)

≤
Nh∑
i=1

xi

 Nh∑
j=1

xj
∑
t∈Ωij

chd−2


= chd−2〈Ex, x〉
≤ chd−2‖Ex‖ ‖x‖
≤ chd−2‖E‖2 ‖x‖2

= chd−2‖E‖2 〈x, x〉

where

Eij :=

{
1 Ωij = supp(φi) ∩ supp(φj) 6= ∅
0 otherwise.

Note that ‖E‖2 ≤ K when E symmetric and ‖E‖∞ = K. In (*) we used the
estimates

‖B−Tt ‖ ≤ c
1

h
, | detBt| ≤ chd and ‖∇φ̂i‖ ≤ 1.

Dividing by 〈x, x〉 and taking the supremum then shows

λmax(Ah) = sup
x 6=0

〈Ahx, x〉
〈x, x〉

≤ chd−2.

Now we give an estimate for λmin and recognize that based on the Lagrange
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2.2 Block Iterative Methods

basis functions we have for any function uh =
∑Nh

i=1 xiφi:

〈Ahx, x〉 = a(uh, uh)

≥ α‖uh‖2
1,Ω

= α(‖uh‖2
0,Ω + |uh|21,Ω)

≥ α(‖uh‖2
0,Ω +

1

s2
‖uh‖2

0,Ω) (Friedrich inequality: assume ΓD 6= 0)

≥ α
1 + s2

s2
‖uh‖2

0,Ω

≥ α
1 + s2

s2
hd〈x, x〉 (not shown here)

and thus

λmin(Ah) = inf
x 6=0

〈Ahx, x〉
〈x, x〉

≥ α
1 + s2

s2
hd

Together we obtain

κ(Ah) =
λmax(Ah)

λmin(Ah)
≤ ch−2.

2.2 Block Iterative Methods

These are precursor to overlapping Schwarz methods.
The following notation is handy when displaying block methods and describing

the parallel implementation of iterative methods.

Index sets

An index set I is a finite subset of N0. In particular index sets need not be
consecutive or starting with 0 or 1. x ∈ RI is the vector having components (x)i
for all i ∈ I. Alternatively identify a vector x ∈ RI with the map x : I → R.

Analogously, for any two index sets I, J ⊂ N0: A ∈ RI×J is the matrix with
entries (A)i,j for all (i, j) ∈ I × J . Alternatively: A : I × J → R.

Subvectors and submatrices

Let Ĩ ⊂ I and J̃ ⊂ J . Then, for x ∈ RI , xĨ is given by (xĨ)i = (x)i for all i ∈ Ĩ
and for A ∈ RI×J , AĨ ,J̃ is given by (AĨ ,J̃)i,j = (A)i,j for all (i, j) ∈ Ĩ × J̃ .

Displaying a representation of a vector or matrix requires an ordering of the
index sets, e.g. the lexicographic ordering. Also, certain iterative methods, e.g.
Gauß-Seidel, require an ordering of the index set.
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Chapter 2 Classical Iterative Methods

Partitioning

Block methods are based on a partitioning of the index set I ⊂ N0. Let P =
{1, . . . , p} be the index set of the blocks and choose Ii ⊆ I for i ∈ P such that⋃

i∈P

Ii = I and Ii ∩ Ij = ∅ for all i 6= j.

Block-Jacobi and Block-Gauß-Seidel

Then the Block-Jacobi and Block-Gauß-Seidel methods are defined by

(WBJac)i,j =

{
(A)i,j if i, j ∈ Ik for a k ∈ P
0 else,

(WBGS)i,j =

{
(A)i,j if i ∈ Ik, j ∈ Il for l ≤ k and k, l ∈ P
0 else .

Assume that the index set I is ordered such that i < j whenever
block(i) < block(j) where block(i) = k :⇔ i ∈ Ik. Then

WBJac =


AI1,I1 0 . . . 0

0 AI2,I2

...
...

. . .
...

0 . . . . . . . . . AIp,Ip

 , WBGS =


AI1,I1 0 . . . 0

AI2,I1 AI2,I2

...
...

. . .
...

AIp,I1 . . . . . . . . . AIp,Ip

 .

Both methods require the solution of the p smaller systems AIi,Ii.

Algorithmic Formulation

Define the rectangular restriction matrix

RIi : RI → RIi, (RIix)α := (x)α ∀α ∈ Ii.

RIi is a |Ii| × |I| matrix with exactly one 1 per row. All 1s are in different
columns, so rankRIi = |Ii|.

With this we can write
AIi,Ii = RIiAR

T
Ii

and get for the Block-Jacobi method

xk+1 = xk +
∑
i∈P

RT
Ii
A−1
Ii,Ii

RIi(b− Axk)
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2.3 Descent Methods

where the computations can be done in parallel. In case of the Block-Gauß-Seidel
method we get

For i = 1, . . . , p : xk+ i
p = xk+ i−1

p +RT
Ii
A−1
Ii,Ii

RIi(b− Ax
k+ i−1

p ).

Without further assumptions on Ii and A these corrections have to be computed
sequentially!

For the convergence of the block variants one can prove:

Theorem 2.6. A let be symmetric positive definite.

1. 2WBJac − A be symmetric and positive definite then ‖SBJac‖A < 1.

2. ‖SBGS‖A < 1 where ‖S‖A is the matrix norm associated to the energy
norm ‖x‖A :=

√
〈Ax, x〉.

Proof. See [Hackbusch, 1991, Satz 4.5.4 and 4.5.6].

2.3 Descent Methods

These are nonlinear iterative methods based on minimizing the functional

F (x) =
1

2
〈Ax, x〉 − 〈b, x〉.

Theorem 2.7. A symmetric and positive definite. Then the unique minimum
x∗ of F coincides with the solution of the linear system Ax = b.

Proof. For any x = x∗ + v show F (x) = F (x∗) + 1
2〈Av, v〉 > F (x∗) if v 6= 0.

Uniqueness is proven by contradiction.

1D-minimization

Given an iterate xk and a “search direction” pk one can easily solve the problem

Find α ∈ R such that F (xk + αpk)→ min

by

α =
(pk)T (b− Axk)

(pk)TApk
. (2.5)

Gradient descent method: Choose pk = −∇F (xk) = b− Axk.

Theorem 2.8. A symmetric and positive definite. Then, with x being the
solution of Ax = b, the gradient descent method satisfies

‖x− xk‖A ≤
κ(A)− 1

κ(A) + 1
‖x− xk−1‖A.
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Chapter 2 Classical Iterative Methods

Algorithm 2.1 Gradient Descent Method
Given: Initial guess x, right-hand side b and tolerance ε < 1
d := b− Ax
δ := δ0 := ‖d‖
while δ > εδ0 do

q := Ad . matrix vector product
α := 〈d, d〉/〈d, q〉 . scalar products
x := x+ αd . x update
d := d− αq . d = b− A(x+ v) = b− Ax− Av = d− Av
δ := ‖d‖ . recompute norm

end while

Proof. See [Hackbusch, 1991, Theorem 9.2.3].

The convergence factor can be written has

κ(A)− 1

κ(A) + 1
≤ 1− 1

κ(A) + 1
.

So for large κ(A) the convergence factor nearly the same as that of the damped
Richardson method.

Preconditioning

Idea: ChooseM regular and multiply Ax = b to the left withM−1 to obtain the
equivalent system M−1Ax = M−1b (left preconditioning). If κ(M−1A)� κ(A)
then the convergence of the gradient method applied to this system is better.

However, in general, M−1A is not symmetric even when M and A are sym-
metric. Assume M and A are symmetric and positive definite. Then M

1
2 is well

defined and

σ(M−1A) = σ(M
1
2M−1AM− 1

2 ) = σ(M− 1
2AM− 1

2 ).

Now transform Ax = b from left and right by

Ax = b

⇔ M− 1
2AM− 1

2M
1
2x = M− 1

2b

⇔ Âx̂ = b̂

with Â := M− 1
2AM− 1

2 , x̂ := M
1
2x and b̂ := M− 1

2b.
Obviously σ(Â) = σ(M−1A), Â is symmetric and positive definite and the

gradient method can formally be applied to this transformed system.
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2.3 Descent Methods

Unfortunately, the matrix Â is in general not sparse and performing operations
with Â is too costly. Instead of transforming the linear system once at the
beginning, we transform instead every single step of the method. This means

d̂ = b̂− Âx̂k = M− 1
2b−M− 1

2AM− 1
2M

1
2xk = M− 1

2 (b− Axk) = M− 1
2d,

q̂ = Âd̂ = M− 1
2AM− 1

2M− 1
2d = M− 1

2AM−1d =: M− 1
2Av,

α̂ =
〈d̂, d̂〉
〈d̂, q̂〉

=
〈M− 1

2d,M− 1
2d〉

〈M− 1
2d,M− 1

2AM−1d〉
=

〈d,M−1d〉
〈M−1d,AM−1d〉

=
〈d, v〉
〈v, Av〉

= α,

x̂ = x̂+ α̂d̂ = M
1
2x+ α̂M− 1

2d = M
1
2 (x+ αM−1d) = M

1
2 (x+ αv),

d̂ = d̂− α̂q̂ = M− 1
2d− αM− 1

2Av = M− 1
2 (d− αAv).

where v := M−1d is the result of the preconditioner.

Ultimately we are interested in x = M− 1
2 x̂, so the transformed quantities need

never be computed.

Algorithm 2.2 Preconditioned Gradient Descent Method
Given: Initial guess x, right-hand side b and tolerance ε < 1
d := b− Ax
δ := δ0 := ‖d‖
while δ > εδ0 do

procedure Solve
Mv = d

end procedure
q := Av
α := 〈d, v〉/〈v, Av〉
x := x+ αv
d := d− αq
δ := ‖d‖

end while

Conjugate Gradient Method

The conjugate gradient method is very similar to the gradient descent method.
It ensures in addition that the search directions are A-orthogonal:

〈Apk, pi〉 = 0 ∀i < k. (2.6)

The convergence rate can be estimated by

‖x− xk‖A ≤
√
κ(A)− 1√
κ(A) + 1

‖x− xk−1‖A. (2.7)
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Proof. See [Hackbusch, 1991, Theorem 9.4.12].

Algorithm 2.3 Conjugate Gradient Method
Given: Initial guess x, right-hand side b and tolerance ε < 1
d := b− Ax . initial defect
p := d . initial search direction
δ := δ0 := ‖d‖ . initial norm
while δ > εδ0 do

q := Ap . matrix vector product
α := 〈p, d〉/〈p, q〉 . optimal step length, see (2.5)
x := x+ αp . solution update
d := d− αq . defect update
β = 〈d, q〉/〈p, q〉
p = d− βp . new orthogonal search direction
δ := ‖d‖ . recompute norm

end while

The conjugate gradient method is given in Algorithm 2.3. Preconditioning
can be applied in the same way as for the gradient descent method.

There exist also extensions of descent methods applicable to nonsymmetric
matrices, e.g. the BiCGStab method and the GMRES method. All these meth-
ods also go under the name of Krylov methods

2.4 Parallel Implementation

Block-Jacobi without Convergence Test

We consider first the implementation of the Block-Jacobi method with the fol-
lowing assumptions:

• as many processors p as there are blocks and

• no termination criterion.

Assume partitioning

Ii ⊂ I,

p⋃
i=1

Ii = I, Ii ∩ Ij = ∅ ∀i 6= j.

Partitioning is (usually) done on mesh level, i.e. a partitioning of Th induces
that of I. Data decomposition: Every process i ∈ P = {1, . . . , p} stores all rows
of A corresponding to Ii.
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2.4 Parallel Implementation

Ip

Ii

I1

Ii

AIi,I = RIiA

Figure 2.1: Data Decomposition for Block-Jacobi Method

Note that A is sparse with only few non-zero elements off the block diagonal,
see fig. 2.1. In order to compute AIi,Ix process i does not need the whole x but
only xÎi with

Îi := {j ∈ I : (A)k,j 6= 0 for k ∈ Ii}.
Consequently, all non-zeroes are contained in AIi,Îi

. Note also, that

Ii ⊆ Îi

since (A)j,j > 0 for A symmetric and positive definite.
We also define the restriction RÎi,Ii

: RÎi → RIi inthe usual way by

For x ∈ RÎi : (RÎi,Ii
x)j = (x)j ∀j ∈ Ii.

The parallel Block-Jacobi Method is then given by algorithm 2.4. The com-
munication step involves the exchange of messages with (or access to memory
of) only a few other processes for each process p.

Algorithm 2.4 Parallel Block-Jacobi Method without Convergence Test
for all i ∈ {1, . . . , p} do in parallel

xÎi := RÎi
x0 . set initial guess

bIi := RIib . right-hand side
for k = 1, . . . do

dIi := bIi − AIi,Îi
xÎi . local defect

vÎi := RT
Îi,Ii

A−1
Ii,Ii

dIi . local solve
vÎi := vÎi +

∑
j 6=i,Îi∩Ij 6=∅RÎi

RT
Îj
vÎj . communication!

xÎi := xÎi + vÎi . local update
end for

end for
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Parallel Preconditioned Gradient Descent Method

The preconditioned gradient descent method (and also the (preconditioned) con-
jugate gradient method) can be parallelized along the same ideas.

Algorithm 2.5 Parallel Preconditioned Gradient Descent Method
for all i ∈ {1, . . . , p} do in parallel

xÎi := RÎi
x0

bIi := RIib
dIi := bIi − AIi,Îi

xÎi
δ := δ0 := ‖d‖ =

√∑p
i=1 ‖dIi‖2 . global communication

while δ > εδ0 do
vÎi := prec(dIi) . involves communication of vÎi
qIi := AIi,Îi

vÎi

α := 〈d, v〉/〈v,Av〉 =
∑p
i=1〈di,RÎi,IivÎi〉∑p
i=1〈RÎi,IivÎi ,qIi〉

. two global communications
xÎi := xÎi + αvÎi
dIi := dIi − αqIi
δ :=

√∑p
i=1 ‖dIi‖2 . global communication

end while
end for
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Overlapping Domain Decomposition Methods

3.1 Overlapping versus Non-overlapping Methods

Let us start with some basic ideas and two subdomains. Consider the Poisson
equation with homogeneous Dirichlet boundary conditions for simplicity:

−∆u = f in Ω ⊂ Rd,

u = 0 on ∂Ω.
(3.1)

Non-overlapping Methods

Assume Ω is partitioned into two non-overlapping subdomains

Ω̄ = Ω̄1 ∪ Ω̄2, Ω1 ∩ Ω2 = ∅, Γ = ∂Ω1 ∩ ∂Ω2

and measure(∂Ω1∩∂Ω) > 0, measure(∂Ω2∩∂Ω) > 0 and Ω1,Ω2 have Lipschitz-
continuous boundaries, for example as in figure 3.1.

Under suitable assumptions on f (more than f ∈ H−1(Ω)!) and the Ωi (e.g.
Lipschitz boundary is sufficient) problem (3.1) is equivalent to

−∆u1 = f in Ω1, u1 = 0 on ∂Ω1 \ Γ (3.2a)
−∆u2 = f in Ω2, u2 = 0 on ∂Ω2 \ Γ (3.2b)

u1 = u2 on Γ, −∇u1 · ν = −∇u2 · ν on Γ (3.2c)

Ω1 Ω2Γ

Figure 3.1: Decomposition of Ω in two non-overlapping subdomains
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Chapter 3 Overlapping Domain Decomposition Methods

where ν is the normal on Γ (selected in either way) and (3.2c) is meant in the
L2-sense. (3.2c) are called interface or transmission condition. The proof is done
in the variational framework, see Quarteroni and Valli [1999]. The continuity of
u on Γ is a consequence of the trace theorem.

One possible algorithm to solve (3.2) is the Dirichlet-Neumann procedure:
Given ukΓ on the boundary Γ one iteration reads

−∆u
k+ 1

2
1 = f in Ω1

u
k+ 1

2
1 = 0 on ∂Ω1 \ Γ (3.3a)

u
k+ 1

2
1 = ukΓ on Γ

−∆u
k+ 1

2
2 = f in Ω2

u
k+ 1

2
2 = 0 on ∂Ω2 \ Γ (3.3b)

−∇uk+ 1
2

2 · ν = −∇uk+ 1
2

1 · ν on Γ

uk+1
Γ = θu

k+ 1
2

2 + (1− θ)ukΓ on Γ (3.3c)

with θ ∈ (0, θmax). This is an iteration for the values on Γ. After convergence
the solution inside the subdomains can be recovered by solving two Dirichlet
problems.

We will treat non-overlapping methods in chapter 5 of the lecture.

Overlapping Methods

One problem in the analysis of the non-overlapping case is that the restriction
of v ∈ H1

0(Ω) to Ωi, i.e.

vi(x) =

{
v(x) for x ∈ Ωi

0 for x /∈ Ωi,

is not in H1
0(Ω). This difficulty is overcome if overlap is added. Assume Ω̂1, Ω̂2

are domains (i.e. open, connected subsets of Rd) such that Ω̂1 ∪ Ω̂2 = Ω.
Set Γ1 := ∂Ω̂1 ∩ Ω̂2, Γ2 := ∂Ω̂2 ∩ Ω̂1 as in figure 3.2. Then the Schwarz

alternating method reads as follows. Given uk defined on the whole domain Ω
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Ω̂1

Ω̂2

Γ1
Γ2

Figure 3.2: Decomposition of Ω in two overlapping subdomains

with uk = 0 on ∂Ω compute

−∆u
k+ 1

2
1 = f on Ω̂1

u
k+ 1

2
1 = 0 on ∂Ω̂1 \ Γ1 (3.4a)

u
k+ 1

2
1 = uk on Γ1

−∆u
k+ 1

2
2 = f on Ω̂2

u
k+ 1

2
2 = 0 on ∂Ω̂2 \ Γ2 (3.4b)

u
k+ 1

2
2 = u

k+ 1
2

1 on Γ2

uk+1 =

{
u
k+ 1

2
2

u
k+ 1

2
1

on Ω̂2

on Ω̂1 \ (Ω̂1 ∩ Ω̂2)
(3.4c)

This procedure was used by H. A. Schwarz in 1870 to prove the existence of
solutions of the Laplace equation in regions with non-smooth boundaries.

We will later show that for a variational formulation of (3.4) there exists ρ < 1
such that

‖u− uk+1‖1,Ω ≤ ρ‖u− uk‖1,Ω.

The convergence factor ρ depends on the form of the subdomains, in particular
the overlap of the subdomains. This can be easily seen in one space dimension.
Consider

−d
2u

dx2
= 0 in Ω = (0, 1)

u(0) = u(1) = 1

and set Ω̂1 = (0, 1
2 + a), Ω̂2 = (1

2 − a, 1) for 0 < a < 1
2 . Obviously u = 1 is the

exact solution.
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u(x)

0

1

x11
2

1
2
− a 1

2
+ a

u0

u
1
2
1

e21

e11

e22

e12
u1

u
1+ 1

2
1

u2

‖u− u1‖∞

‖u− u2‖∞

Figure 3.3: Graphical error determination for example problem

For the Schwarz alternating procedure we choose the initial guess

u0(x) :=


1− x

ε 0 ≤ x ≤ ε

0 ε < x < 1− ε
1− 1−x

ε 1− ε < x ≤ 1

with ε < 1
2 − a. The error can be determined graphically as in figure 3.3. We

analyze the error in the infinity norm and observe

‖u− uk‖∞ = ‖ek‖∞ = ek(
1

2
− a).

Then

‖ek+1‖∞ = ek+1(
1

2
− a)

= ek+1
1 (

1

2
− a)

=
1
2 − a
1
2 + a

ek2(
1

2
+ a) evaluate in (0,

1

2
+ a):

x
1
2 + a

ek2(
1

2
+ a)

=
1
2 − a
1
2 + a

1
2 − a
1
2 + a

ek1(
1

2
− a) evaluate in (

1

2
− a, 1):

1− x
1
2 + a

ek1(
1

2
− a)

=

(
1− 2a

1 + 2a

)2

‖ek‖∞

So here we have in the infinity norm ρ =
(

1−2a
1+2a

)2.
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3.2 Overlapping Schwarz Methods with Many Subdomains

3.2 Overlapping Schwarz Methods with Many
Subdomains

Now we turn to a more general construction of Schwarz methods that allows us
to extend it to

1. more than two subdomains and to

2. solve the subdomain problems by the finite element method.

Step 1: Decompose the domain Ω into p non-overlapping subdomains

Ω̄ =

p⋃
i=1

Ω̄i, Ωi ∩ Ωj = ∅, i 6= j.

In practice this could be done by constructing a mesh TH with at least p elements.
and choosing Ωi as a union of mesh elements.

Step 2: Add overlap around every Ωi

Ω̂i = {x ∈ Ω : dist(x,Ωi) < βH}

with H = maxi diam(Ωi).
In practice this could be done by refining the mesh TH into a mesh Th and
choosing Ω̂i to be a union of elements from Th.

Concerning the finite element discretization there are two options:

1. “Partition, then discretize”: Construct subdomains Ω̂i, then discretize sub-
domains individually as in figure 3.4.

• Advantage: mesh can be individually adapted to subdomains.

• Disadvantage: complicated interpolation between subdomains.

2. “Discretize, then partition”: First discretize Ω into TH . The make Th a
refinement of TH and choose Ω̂i to be a union of elements from Th as in
figure 3.5.

• Easy interpolation.

• TH will play an important role later.

We follow the second approach now. Assume Ω is polygonal.

1. Construct a coarse conforming and affine triangulation TH = {Ω1, . . . ,Ωp}.
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Chapter 3 Overlapping Domain Decomposition Methods

Figure 3.4: Partition, then discretize

Figure 3.5: Subdomain decomposition using a grid hierarchy
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3.2 Overlapping Schwarz Methods with Many Subdomains

2. Refine TH uniformly m times to obtain fine triangulation Th.

3. Add overlap, i.e.

Ω̂i := {e ∈ Th : e ∈ Ωi} ∪ {e ∈ Th : dist(e,Ωi) < βH}.

Note that
Th,i := {e ∈ Th : e ⊂ Ω̂i}

provides a conforming and affine triangulation of Ω̂i.

Then the Schwarz method can be formulated in variational form as follows.
For V = H1

0(Ω) let

u ∈ V : a(u, v) = l(v) ∀v ∈ V

be the variational formulation of (3.1). With the extension operator Ei : H1
0(Ω̂i)→

V given by

(Eiui)(x) :=

{
ui(x) x ∈ Ω̂i

0 else

we define the subspaces

Vi := {u ∈ V : u = Eiui, ui ∈ H1
0(Ω̂i)} ⊂ V.

Then the alternating Schwarz method for many subdomains is given by algo-
rithm 3.1. In the algorithm we had to solve

Algorithm 3.1 Alternating Schwarz Method for many subdomains
for k = 0, 1, . . . do

for i = 1, . . . , p do
wi ∈ Vi : a(uk+ i−1

p + wi, v) = l(v)∀v ∈ Vi
uk+ i

p := uk+ i−1
p + wi

end for
end for

wi ∈ Vi : a(uk+ i−1
p + wi, v) = l(v) ∀v ∈ Vi. (3.5)

Note that the solution of (3.5) involves solving only local problems

a(wi, v) =

∫
Ω

∇wi · ∇v dx =

∫
Ω̂i

∇wi · ∇v dx = ai(wi, v)

=

∫
Ω̂i

fv dx−
∫
Ω̂i

∇uk+ i−1
p · ∇v dx = li(v)− ai(uk+ i−1

p , v) ∀v ∈ H1
0(Ω̂i),

since v = 0 and ∇v = 0 outside Ω̂i.
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Chapter 3 Overlapping Domain Decomposition Methods

3.3 Discrete Variational Formulation of Schwarz
Methods

In order to apply (3.5) in practice we solve the variational problems approx-
imately by the conforming finite element method. So assume Vh ⊂ V is a
finite-dimensional subspace equipped with a local basis, i.e. P d

k (Th) or Qd
k(Th).

Then we set

Vh,i := {v ∈ Vh : v(x) = 0∀x ∈ Ω̄ \ Ω̂i} ⊂ Vh ⊂ V = H1
0(Ω).

Here we exploit that Ω̂i is given by the construction in 3.2, i.e. Ωi is polygonal
and the mesh resolves ∂Ω̂i.

Algorithm 3.2 Discrete Schwarz Method
for k = 0, . . . do

for i = 1, . . . , p do
wi ∈ Vh,i : ai(wi, v) = li(v)− ai(u

k+ i−1
p

h , v)∀v ∈ Vh,i
u
k+ i

p

h := u
k+ i−1

p

h + wi
end for

end for

In order to derive the algebraic formulation one needs to insert a basis repre-
sentation of the discrete function spaces:

Vh := span Φh, Φh := {φk : k ∈ I}, Vh,i := span Φh,i, Φh,i := {φk : k ∈ Îi},

where

Îi := {k ∈ I : suppφk ⊂ Ω̂i} ⊂ Ĩi, Ĩi := {k ∈ I : suppφk ∩ Ω̂i 6= ∅}.

Hereby we assume that a Lagrange basis has been chosen and that the Lagrange
basis functions have local support. Now the local problems read

wi ∈ Vh,i : ai(wi, v) = li(v)− a(u
k+ i−1

p

h , v)∀v ∈ Vh,i
⇐⇒ ai(

∑
j∈Îi

(zi)jφj, φm) = li(φm)− ai(
∑
j∈Ĩi

(xk+ i−1
p )jφj, φm)∀m ∈ Îi

⇐⇒
∑
j∈Îi

(zi)jai(φj, φm) = li(φm)−
∑
j∈Ĩi

(xk+ i−1
p )jai(φj, φm)∀m ∈ Îi

⇐⇒ AÎi,Îi
zÎi = bÎi − AÎi,Ĩi

RĨi
x (3.6)

with AÎi,Îi
= RIiAR

T
Ii
and bÎi = RÎi

b.
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3.3 Discrete Variational Formulation of Schwarz Methods

The right hand side can be written equivalently as

bÎi − AÎi,Ĩi
RĨi

xk+ i−1
p = RÎi

b−RÎi
ART

Ĩi
RĨi

xk+ i−1
p

= RÎi
b−RÎi

Axk+ i−1
p (adding zeros)

= RÎi
(b− Axk+ i−1

p ). (3.7)

The algebraic version of the update step is

u
k+ i

p

h = u
k+ i−1

p

h + wi

⇐⇒
∑
j∈I

(xk+ i
p )jφj =

∑
j∈I

(xk+ i−1
p )jφj +

∑
j∈Îi

(zi)jφj

⇐⇒ xk+ i
p = xk+ i−1

p +RT
Îi
zi (3.8)

So we arrive at the algebraic formulation of the alternating Schwarz method
given in algorithm 3.3. We observe that this is identical to the block Gauß-Seidel

Algorithm 3.3 Algebraic Formulation of the Alternating Schwarz Method
for k = 0, . . . do

for i = 1, . . . , p do

xk+ i
p
(3.8)
:= xk+ i−1

p +RT
Îi
A−1

Îi,Îi
RÎi

(b− Axk+ i−1
p ) (3.9)

end for
end for

method with the only difference that the index sets Îi are now overlapping!
In complete analogy we can formulate a method that corresponds to the block

Jacobi method with additional damping

xk+1 = xk + ω

p∑
i=1

RT
Îi
A−1

Îi,Îi
RÎi

(b− Axk) (3.10)

which is the algebraic version of

Algorithm 3.4 Variational Formulation corresponding to the block Jacobi
method with additional damping
for k = 0, 1, . . . do

for i = 1, . . . , p do
wi ∈ Vi : ai(wi, v) = li(v)− ai(uk, v)∀v ∈ Vi (3.11)
uk+1 := ω

∑p
i=1wi

end for
end for

Clearly, in this version all corrections wi can be computed in parallel. The
damping factor needs to be sufficiently small to make the method convergent.
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Chapter 3 Overlapping Domain Decomposition Methods

Error propagation operators

For the ease of writing let us introduce the abbreviations

Ri = RÎi
and Ai = AÎi,Îi

.

Setting ek+ i
p = x−xk+ i

p as usual, we obtain for one substep of the alternating
Schwarz method with these abbreviations

ek+ i
p = (I −RT

i A
−1
i RiA)ek+ i−1

p = (I − Pi)ek+ i−1
p

where we defined the projection operator Pi = RT
i A
−1
i RiA. Consequently, for

one complete step we obtain

ek+1 = (I − Pp) · · · (I − P1)e
k =

(
p∏
i=1

(I − Pi)

)
ek.

The alternating Schwarz method is therefore also called multiplicative Schwarz
method .

Remark 3.1. Note that in each individual substep the matrix RT
i A
−1
i Ri does

not have full rank and therefore can not be written as the inverse of some Wi.

Remark 3.2. Note also that zi = Pie
k+ i−1

p is the correction computed in substep
i. Below the projection operator Pi will play an important role in the analysis.

Remark 3.3. The multiplicative method needs to be symmetrized to be used
as preconditioner in CG.

For the block Jacobi inspired variant we obtain the error propagation

ek+1 =

(
I − ω

p∑
i=1

RT
i A
−1
i RiA

)
ek =

(
I − ω

p∑
i=1

Pi

)
ek.

Due to this form the method is called additive Schwarz method .
It turns out B =

∑p
i=1R

T
i A
−1
i Ri is a symmetric positive definite precon-

ditioner and therefore, according to Theorem 2.3, ω < 1
λmax(BA) is sufficient

for convergence. In practice, however, one would rather employ the additive
Schwarz method as a preconditioner in the CG method. Then the damping step
can be omitted.
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
J1 = {1, 3, 9, 11}
J2 = {2, 4, 10, 12}
J3 = {5, 7, 13, 15}
J4 = {6, 8, 14, 16}

Figure 3.6: Coloring of a structured mesh in 2D

Independent corrections

The multiplicative Schwarz method can be parallelized with the following trick.

Observation 3.4. Provided RiAR
T
j = 0, the order of computation of the two

corrections in subdomains i and j is irrelevant.

Proof.

(I − Pi)(I − Pj) = (I −RT
i A
−1
i RiA)(I −RT

j A
−1
j RjA)

= I −RT
i A
−1
i RiA−RT

j A
−1
j RjA+RT

i A
−1
i RiAR

T
j︸ ︷︷ ︸

0

A−1
j RjA

= I − Pi − Pj

Now suppose that J = {1, . . . , p} can be partitioned into

J =
c⋃

n=1

Jn, Ji ∩ Jj = ∅, i 6= j

such that RiAR
T
j = 0 for all i, j ∈ Jn. Then all corrections in Jn can be

computed in parallel.
For an appropriate decomposition of Ω into subdomains Ω̂i and sufficiently

small overlap the constant c is independent of the number of subdomains p. An
example for the unit square is given in figure 3.6. For a structured mesh in 2D
(3D) four (eight) colors are sufficient.

An algorithm for computing the partitioning into the Jn is called a coloring
algorithm and c is the number of colors.

The error propagation operator of the algorithm is then

ek+1 =

(
c∏

n=1

(
I −

∑
i∈Jn

Pi

))
ek.
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3.4 Coarse Grid Correction

We will prove below that the condition number of the system preconditioned by
the additive or multiplicative Schwarz method defined so far is

κ(BA) ≤ c(1 +
H

δ
)H−2.

Since H ≈ diam(Ω)/p
1
d this is not acceptable for large p. The reason for this is

that smooth errors are not reduced well: Consider an interior subdomain, i.e.
∂Ω̂i ∩ ∂Ω = ∅ and an error ek = 1 on Ω̂i. Then

RiAe
k = 0

since
∑

j(A)lj = 0 for l ∈ Îi and consequently the correction computed in the
subdomain Ω̂i is zero. The remedy is to add a so-called coarse grid correction
which is constructed as follows.

Let VH be a conforming finite element space equipped with a Lagrange basis
on the coarse mesh TH used to construct the subdomain decomposition. Due to
the hierarchic construction we have VH ⊂ Vh. Then for a given uk compute the
correction

w ∈ VH : a(uk + w, v) = l(v) ∀v ∈ VH .
Setting V0 := VH the variational formulation of the (damped) additive Schwarz
method is given by algorithm 3.5.

Algorithm 3.5 Additive Schwarz Method with Coarse Grid Correction
for k = 0, . . . do

for i = 0, . . . , p do
wi ∈ Vi : a(wi, v) = l(v)− a(uk, v)∀v ∈ Vi

end for
uk+1 := uk + ω

∑p
i=0wi

end for

The algebraic formulation of the additive Schwarz method with coarse grid
correction is given in algorithm 3.6.

The entries of RH there are obtained from the representation of the coarse
grid basis functions in terms of the fine grid basis functions. If

VH = span{φHk : k ∈ IH} ⊂ Vh = span{φhk : k ∈ Ih}

then

φHm =
∑
n∈Ih

rmnφ
h
n =

∑
n∈Ih

φHm(sn)φ
h
n
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3.5 Complexity Considerations and Speedup

Algorithm 3.6 Additive Schwarz Method with Coarse Grid Correction (Alge-
braic)
for k = 0, . . . do

xk+1 := xk + ω
∑p

i=0R
T
i A
−1
i Ri(b− Axk)

end for
where we extend the definition of the restriction matrices

Ri =

{
RÎi

if i ∈ {1, . . . , p}
RH otherwise

Ai = RiAR
T
i .

and

(RH)mn = rmn.

In the same way the multiplicative version can be extended by a coarse grid
correction. Algorithm 3.7 gives a symmetrized version.

Algorithm 3.7 Multiplicative Schwarz Method with Coarse Grid Correction
for k = 0, . . . do

for i = 1, . . . , p do
xk+ i

2p+1 := xk+ i−1
2p+1 +RT

i A
−1
i Ri(b− xk+ i−1

2p+1 )
end for
xk+ p+1

2p+1 := xk+ p
2p+1 +RT

0A
−1
0 R0(b− xk+ p

2p+1 )
for i = p, . . . , 1 do

xk+ 2p+2−i
2p+1 := xk+ 2p+1−i

2p+1 +RT
i A
−1
i Ri(b− xk+ 2p+1−i

2p+1 )
end for

end for

We will prove below that these algorithms correspond to κ(BA) ≤ c(1 + H
δ )

when used as preconditioners.

3.5 Complexity Considerations and Speedup

Before we analyze the Schwarz methods we present some general considerations
about the parallel scalability of the method.

Reduction of sequential complexity

We first consider the Schwarz method as a sequential method, i.e. all corrections
are computed sequentially on one processor. We make the following assumptions:
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Chapter 3 Overlapping Domain Decomposition Methods

• Subdomain problems are solved with a direct solver having a complexity
O(Nα) with α ≥ 1.

• We assume the computation time is dominated by the factorization phase.
This is justified mainly if α is large.

• We assume a structured mesh in d dimensions discretizing the domain
Ω = (0, 1)d with N = nd, n = 1

h and nH = 1
H .

• Overlap is δ = βH.

Then the time for the factorization phase is

TS(n, nH) = ndαH︸︷︷︸
coarse grid

+ ndH︸︷︷︸
# subdomains

(
H + βH

h

)dα

= ndαH + ndH

(
n

nH
(1 + β)

)dα
= ndαH + ndH

ndα

ndαH
(1 + β)dα

= ndαH + n
d(1−α)
H ndα(1 + β)dα.

(3.12)

How should nH be chosen? Minimize with respect to nH :

∂

∂nH
TS(n, nH) = dαndα−1

H + d(1− α)n
d(1−α)−1
H ndα(1 + β)dα

!
= 0

⇐⇒ n
dα−1−d(1−α)+1
H = −d(1− α)

dα
ndα(1 + β)dα

⇐⇒ nH =

(
α− 1

α

) 1
d(2α−1)

(n(1 + β))
α

2α−1

Inserting the optimal nH into (3.12):

TS(n) = c(n(1 + β))
αdα

2α−1 + cd(1−α)(n(1 + β))
αd(1−α)

2α−1 (n(1 + β))dα

= c(n(1 + β))
dα2

2α−1 + cd(1−α)(n(1 + β))
dα2

2α−1

= c(1 + β)
dα2

2α−1n
dα2

2α−1

= O(n
dα2

2α−1 ).

d α dα dα2

2α−1 Remark
2 2 4 8/3 Banded Gauß
2 3/2 3 9/4 Nested Dissection
3 2 6 4 Nested Dissection
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3.5 Complexity Considerations and Speedup

So
dα2

2α− 1
< dα ⇐⇒ α > 1.

In the case d = 3, α = 2 (nested dissection) this means

TS(n) = n4 = (n3)
4
3 = N

4
3

which is close to optimal with regard to N and much better than the direct
method which is O(N 2).

Optimal Coarse Grid in Parallel Case

We make the same assumptions as in the last section.
Now reserve one processor per subdomain and one additional processor for

the coarse grid. All corrections are computed in parallel (this is optimistic as
the coarse grid correction requires global communication). Then

TP (n, nH) = max(ndαH , (
n

nH
(1 + β))dα).

The optimal coarse grid size is obtained when the computation is balanced, i.e.

ndαH = (
n

nH
(1 + β))dα

⇐⇒ nH =
√
n(1 + β).

Note that this fixes the number of processors to p = ndH !
The optimal run-time is then

ndαH = (n(1 + β))
dα
2 .

Speedup of additive Schwarz without Coarse Grid

Assumptions:

• p = ndH processors.

• Complexity of subdomain solver is ndα.

• We consider the speedup of one iteration with respect to the Schwarz
method used as a sequential solver.

• We analyze the influence of the communication cost.

• We consider only the communication with the nearest neighbors in coor-
dinate directions (i.e. the overlap mus be sufficiently small and communi-
cation to diagonal neighbors is ignored).
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Chapter 3 Overlapping Domain Decomposition Methods

S(n, p) =
( n
nH

(1 + β))αd p tf

( n
nH

(1 + β))αd tf + ( 2d︸︷︷︸
# comm

β
n

nH︸︷︷︸
diam. of overlap

(
n

nH
(1 + β))d−1

︸ ︷︷ ︸
# dof in overlap region

) tw

=
p

1 + 2dβ n
nH

( n
nH

(1 + β))d−1−αd tw
tf

=
p

1 + 2dβ(1 + β)d(1−α)−1( n
nH

)d(1−α) tw
tf

=
p

1 + 2dβ(1 + β)d(1−α)−1(nHn )d(α−1) tw
tf

where tf is the time for one floating point operation and tw is the time needed
to communicate one floating point number.

Two cases need to be considered:

• α > 1, i.e. subdomain solver has more than linear complexity. Then

lim
n→∞

S(n, p) = p

since nH
n → 0 and d(α− 1) > 0.

• α = 1. Then d(α− 1) = 0 and the speedup is fixed to

S(n, p) =
p

1 + 2d β
1+β

tw
tf

.

Scalability

We now investigate the case p→∞.

• No coarse grid:
As shown above any speedup for one iteration can be achieved for n suf-
ficiently large provided a non-optimal subdomain solver is used. However
the number of iterations increases as p

1
d !

• With coarse grid:
When the subdomain size Nlocal := ( n

nH
(1 + β))d is fixed and p = ndH is

increased the number of iterations stays constant, the problem size N =
pNlocal increases, but also the coarse problem size NH = ndH = p increases
and eventually needs to be parallelized. Possibility: recursive application
of the Schwarz method on fewer processors.
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3.6 Numerical Examples

3.6 Numerical Examples

Now let us illustrate the behavior of the overlapping Schwarz method for a
concrete example. Throughout this section we solve the Poisson equation on
Ω = (0, 1)2 with Dirichlet boundary conditions on a structured, axiparallel and
equidistant mesh with Q1 finite elements. The number of iterations is given
for 10−6 reduction of the relative Euclidean norm of the residual and a random
initial guess. The preconditioners are always used within a conjugate gradient
method unless noted otherwise.

Strong Scaling Single Grid Additive Schwarz

This means we fix h = 1/512 and overlap δ = 4h and vary the subdomain size
H and consequently the number of subdomains H−2. Since the method is used
as a preconditioner we expect an asymptotic behavior like #IT ∼ H−1 which
is not quite confirmed yet.

H 1 1/2 1/3 1/4 1/5 1/6
P 1 4 9 16 25 36

#IT 1 26 27 29 36 41

In the next experiment we fix h = 1/512, H = 1/4, i.e. P = 16 and just vary
the size of the overlap. The results show a good improvement initially and then
a saturation.

δ/h 1 2 3 4 8 16
#IT 58 46 33 29 25 19

Weak Scaling Single Grid Schwarz

Now we scale the problem size linearly with the number of subdomains, i.e. we
fix H/h = 256 and the overlap δ = 4h. The expected behavior is the same as
for the first table above, i.e. #IT ∼ H−1. The number of iterations should not
depend on h.

We compare four different methods: additive Schwarz (AS), multiplicative
Schwarz with lexicographic ordering f the subdomains (MS) used as precondi-
tioner in restarted GMRES, symmetrized multiplicative Schwarz with lexico-
graphic ordering (SMS) used with CG and symmetrized multiplicative Schwarz
with coloring (SMSC) used with CG.
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H 1/2 1/3 1/4 1/5 1/6
Method P 4 9 16 25 36
AS #IT 26 32 38 44 50
MS #IT 15 23 28 33 38
SMS #IT 11 14 17 19 22
SMSC #IT 11 14 17 19 22

We observe that the multiplicative version needs fewer iterations but shows the
same asymptotic behavior with the number of subdomains. The symmetrized
versions still need less iterations than the nonsymmetric version but each iter-
ation is twice as expensive. Interestingly, the non-parallel version with lexico-
graphic ordering shows the same convergence rate as the version with coloring
which can be executed in parallel.

Weak Scaling Two-level Additive Schwarz

Now we add the coarse grid correction. Again weak scaling with H/h = 256
is investigated. The coarse mesh size was H/h0 = 2 as our implementation
does not allow for one cell on the coarse grid for one subdomain. The iteration
numbers are expected to be robust in h and H and should only depend on the
overlap. This is nicely confirmed by the results.

H 1/2 1/3 1/4 1/5 1/6
P 4 9 16 25 36

δ/h #IT
1 28 31 32 32 23
2 22 23 24 24 24
4 16 17 17 17 17
8 13 13 13 13 13

Additive Schwarz versus Direct Solver in 3D

In this section we look at run-times for a 3D problem and investigate whether
additive Schwarz indeed leads to a reduction in computational complexity and
run-time. All tests here have been carried out on an 2,6 GHz Intel Core i7
processor with four cores on a mesh with 403 elements using an overlap δ = 4h.
As a direct solver SuperLU was employed.

P 1 2 4 8
sequential time 149.8 100.4 145.6 199.6
wall clock time 149.8 48.1 36.0 28.0
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The table shows a reduction in computing time for 2 subdomains when both
subdomains are processed sequentially. A substantial reduction in wall-clock
time is achieved when all four cores of the CPU are used.
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Chapter 4

Abstract Schwarz Theory

This chapter is based on [Toselli and Widlund, 2005, chapter 2].

4.1 Subspace Correction Methods

The methods considered so far (and many more) can be written in an abstract,
unified way. Let the following ingredients be given.

1. A conforming finite element space Vh ⊂ H1
0(Ω) (non-homogeneous Dirich-

let boundary conditions and Neumann boundary conditions can be treated
as well).

2. A variational formulation

u ∈ Vh : a(u, v) = l(v) ∀v ∈ Vh

with a symmetric and coercive bilinear form a(·, ·).

3. A subspace decomposition Vh =
∑p

i=0 Vh,i with Vh,i ⊂ Vh.

Introducing a basis for the (sub-)spaces

Vh = span{φhk : k ∈ Ih}, Vh,i = span{φh,ik : k ∈ Ih,i}

we arrive at symmetric positive-definite linear systems

uh ∈ Vh : a(uh, v) = l(v) ∀v ∈ Vh ⇐⇒ Ax = b,

ui ∈ Vh,i : a(ui, v) = l(v) ∀v ∈ Vh,i ⇐⇒ Aixi = bi.

We do not analyze inexact subdomain solvers here. In that case a(·, ·) is replaced
by ãi(·, ·) in the local problems.

The prolongation operator RT
i : RIh,i → RIh describes the change of basis

from Vh,i to Vh, i.e.

Vh,i 3 ui =
∑
k∈Ih,i

(xi)kφ
h,i
k =

∑
k∈Ih

(RT
i xi)kφ

h
k.
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Chapter 4 Abstract Schwarz Theory

The matrices of the local problems are then given by Ai = RiAR
T
i . Then the

additive and multiplicative subspace correction methods are given by

xk+1 = xk + ω

p∑
i=0

RT
i A
−1
i Ri(b− Axk),

xk+ i+1
p+1 = xk+ i

p+1 +RT
i A
−1
i Ri(b− Axk+ i

p+1 ) i = 0, . . . , p.

As shown above, the corresponding error propagation operators are given by

Ead = I + ω

p∑
i=0

Pi, Emu = (I − P0) . . . (I − Pp) =

p∏
i=0

(I − Pi)

where

Pi = RT
i A
−1
i RiA.

The analysis of the additive case is based on analyzing the condition number
κ(
∑p

i=0 PiA), i.e. the method is used as a preconditioner. Since the multiplica-
tive method is not symmetric (of course it could be symmetrized) we will directly
analyze the norm of the error propagation operator

‖Emu‖2
A = sup

x 6=0

〈AEmux, x〉
〈Ax, x〉

.

The analysis will be based solely on the following two assumptions.

Assumption 4.1 (Stable splitting). There exists a constant c0 > 0 such that
for all x ∈ RIh there exists a splitting x =

∑p
i=0R

T
i xi with xi ∈ RIh,i and

p∑
i=0

〈RT
i xi, R

T
i xi〉A ≤ c0〈x, x〉A.

Here 〈x, y〉A = 〈Ax, y〉 is the A-scalar product. �

Assumption 4.2 (Strengthened Cauchy-Schwarz Inequality). There exist con-
stants 0 ≤ εij ≤ 1 for 1 ≤ i, j ≤ p such that

|〈RT
i xi, R

T
j xj〉A| ≤ εij〈RT

i xi, R
T
i xi〉

1
2

A〈R
T
j xj, R

T
j xj〉

1
2

A

for all xi ∈ RIh,i and xj ∈ RIh,j . Let E ∈ Rp×p be the matrix with coefficients
(E )ij = εij and spectral radius ρ(E ). Note that E does not include the index
i = 0 which is assumed to be a coarse grid space. �
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4.2 Additive Case

Obviously the second assumption holds trivially with εij = 1. Moreover, the
constants c0 and εij should be as independent as possible of the mesh size h, the
number of local problems p and possibly other problem parameters (such as the
diffusion coefficient).

Assumptions 4.1 and 4.2 need to be verified individually for the different
schemes and then can be plugged into the general theorems proven in this chap-
ter.

4.2 Additive Case

As mentioned, the analysis of the additive case is based on estimating the spec-
tral condition number κ(C) = λmax(C)

λmin(C) .

Observation 4.3. Any scalar product can be used in the definition of the
Raleigh quotient in Observation 2.4.

Proof. Let C,M be symmetric and positive definite matrices. Then

min
x 6=0

〈Cx, x〉
〈x, x〉

= min
06=x=M

1
2 y

〈CM 1
2y,M

1
2y〉

〈M 1
2y,M

1
2y〉

= min
y 6=0

〈M 1
2CM− 1

2M
1
2y,M

1
2y〉

〈My, y〉
(σ(C) = σ(M

1
2CM− 1

2 ))

= min
y 6=0

〈MCy, y〉
〈My, y〉

= min
x 6=0

〈Cx, x〉M
〈x, x〉M

.

The same argument can be applied for the maximal eigenvalue.

In particular we will in the following use the scalar product induced by the
stiffness matrix A itself.

Setting ω = 1 in the additive Schwarz iteration we identify the preconditioned
system as

BAx =

(
p∑
i=0

RT
i A
−1
i Ri

)
Ax =

p∑
i=0

Pix = Bb.

According to the considerations in Section 2.3 (set M−1 = B) we are led to
analyze the condition number of the preconditioned system

κ(BA) = κ(

p∑
i=0

Pi).
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Using observation 4.3 if suffices to obtain constants γ,Γ such that

γ〈x, x〉A ≤ 〈
p∑
i=0

Pix, x〉A ≤ Γ〈x, x〉A

which implies

κ(

p∑
i=0

Pi) ≤
Γ

γ
.

Lemma 4.4 (Properties of Pi). Pi = RT
i A
−1
i RiA is an orthogonal projection in

the A-scalar product and we have

1. P 2
i = Pi

2. APi = P T
i A. This implies 〈x, Piy〉A = 〈Pix, y〉A, i.e. Pi is self-adjoint

with respect to the A-scalar product.

3. 〈Pix, Piy〉A = 〈x, Piy〉A for all x, y ∈ RIh.

4. 〈Pix, (I − Pi)y〉A = 0 for all x, y ∈ RIh.

5. ‖x‖2
A = ‖Pix‖2

A + ‖(I − Pi)x‖2
A for all x ∈ RIh.

6. ‖Pix‖A ≤ ‖x‖A

Proof. 1. P 2
i = RT

i A
−1
i RiAR

T
i︸ ︷︷ ︸

Ai

A−1
i RiA = RT

i A
−1
i RiA = Pi

2. APi = ART
i A
−1
i RiA = (RT

i A
−1
i RiA)TA = P T

i A

3. 〈Pix, Piy〉A = xTP T
i APiy

2.
= xTAPiPiy

1.
= xTAPiy = 〈x, Piy〉A

4. 〈Pix, (I − Pi)y〉A = 〈Pix, y〉A − 〈Pix, Piy〉A
3.
= 0

5. ‖x‖2
A = ‖Pix+ (I − Pi)x‖2

A

= 〈Pix+ (I − Pi)x, Pix+ (I − Pi)x〉A
= 〈Pix, Pix〉A + 〈(I − Pi)x, (I − Pi)x〉A
= ‖Pix‖2

A + ‖(I − Pi)x‖2
A

6. ‖Pix‖2
A

5.
= ‖x‖2

A − ‖(I − Pi)x‖2
A ≤ ‖x‖2

A

Lemma 4.5 (Estimate of largest eigenvalue). From assumption 4.2 follows

〈
p∑
i=0

Pix, x〉A ≤ (1 + ρ(E ))〈x, x〉A.
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4.2 Additive Case

Proof. 1. Since assumption 4.2 does not involve P0, we split it off:

〈
p∑
i=0

Pix, x〉A = 〈P0x, x〉A + 〈
p∑
i=1

Pix, x〉A ≤ 〈x, x〉A + 〈
p∑
i=1

Pix, x〉A

Here we used

〈P0x, x〉A
4.4 (3.)

= 〈P0x, P0x〉A
4.4 (6.)
≤ 〈x, x〉A.

2. We have

〈
p∑
i=1

Pix,

p∑
i=1

Pix〉A =

p∑
i=1

p∑
j=1

〈Pix, Pjx〉A

4.2
≤

p∑
i=1

p∑
j=1

εij 〈Pix, Pix〉
1
2

A︸ ︷︷ ︸
=:(z)i

〈Pjx, Pjx〉
1
2

A︸ ︷︷ ︸
=:(z)j

(z ∈ Rp)

= zTE z

≤ ‖E ‖2〈z, z〉

= ρ(E )

p∑
i=1

〈Pix, Pix〉A (Def. of z)

4.4 (3.)
= ρ(E )〈

p∑
i=1

Pix, x〉A

C.S.
≤ ρ(E )〈

p∑
i=1

Pix,

p∑
i=1

Pix〉
1
2 〈x, x〉

1
2

A

Dividing by 〈
∑p

i=1 Pix,
∑p

i=1 Pix〉
1
2 gives

〈
p∑
i=1

Pix,

p∑
i=1

Pix〉
1
2 ≤ ρ(E )〈x, x〉

1
2

A.

Note that we used

‖E ‖2 = sup
x 6=0

‖E x‖2

‖x‖2
= sup

x 6=0
sup
y 6=0

|〈E x, y〉|
‖x‖2‖y‖2

which implies
|〈E x, y〉| ≤ ‖E ‖2‖x‖2‖y‖2.
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3. Finally

〈
p∑
i=1

Pix, x〉A
C.S.
≤ 〈

p∑
i=1

Pix,

p∑
i=1

Pix〉
1
2 〈x, x〉

1
2

A

2.
≤ ρ(E )〈x, x〉A.

Now combine 1. and 3. to conclude.

Remark 4.6. In overlapping domain decomposition each subdomain overlaps
only with a maximum number N of other subdomains. Setting

εij =

{
0 RiAR

T
j = 0 (when ∂Ωi ∩ ∂Ωj = ∅)

1 otherwise

this means
‖E ‖∞ = max

i
|{(i, j) : εij 6= 0}| = N.

Since ρ(E ) ≤ ‖E ‖∞ we can conclude that the largest eigenvalue is bounded by
N + 1 independent of p.

Lemma 4.7 (Partitioning Lemma, Lions’ Lemma). The stable splitting from
assumption 4.1 implies

c−1
0 〈x, x〉A ≤ 〈

p∑
i=0

Pix, x〉A,

i.e. c−1
0 is an estimate of the smallest eigenvalue.

Proof.

〈x, x〉A = 〈x,
p∑
i=0

RT
i xi〉A =

p∑
i=0

〈x,RT
i xi〉A =

p∑
i=0

〈x, PiRT
i xi〉A (*)

=

p∑
i=0

xTAPiR
T
i xi =

p∑
i=0

(Pix)TART
i xi =

p∑
i=0

〈Pix,RT
i xi〉A

≤
p∑
i=0

‖Pix‖A‖RT
i xi‖A (Cauchy-Schwarz)

≤

(
p∑
i=0

‖Pix‖2
A

) 1
2
(

p∑
i=0

‖RT
i xi‖2

A

) 1
2

(Cauchy-Schwarz)

For (*) we used that P 2
i = Pi and range(Pi) = range(RT

i ).
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4.3 Multiplicative Case

Squaring both sides and inserting assumption 4.1:

〈x, x〉2A ≤

(
p∑
i=0

‖Pix‖2
A

)(
p∑
i=0

‖RT
i xi‖2

A

)

≤

(
p∑
i=0

〈Pix, Pix〉A

)
c0〈x, x〉A.

Dividing through and using 3. from Lemma 4.4:

c−1
0 〈x, x〉A ≤

p∑
i=0

〈Pix, x〉A.

Theorem 4.8 (Condition number of additive Schwarz). Assumptions 4.1 and
4.2 imply

κ(

p∑
i=0

Pi) ≤ c0(ρ(E ) + 1).

Proof. Use Lemma 4.5 and 4.7.

Note that from Remark 4.6 follows that the upper bound ρ(E )+1 for overlap-
ping Schwarz methods is independent of p and h under very mild assumptions.
So the main difficulty is to ensure assumption 4.1.

4.3 Multiplicative Case

We now aim to estimate ‖Emu‖A directly as Emu is not symmetric. Let us start
with a technical lemma.

Lemma 4.9. Assume a strengthened Cauchy-Schwarz inequality holds. Then
we have for 0 ≤ i, j ≤ p and all x, y ∈ RIh

〈Pix, y〉A ≤ 〈Pix, x〉
1
2

A〈Piy, y〉
1
2

A (Note the Pi in the second factor.)

〈Pix, Pjy〉A ≤ εij〈Pix, x〉
1
2

A〈Pjy, y〉
1
2

A.

Proof. Using Lemma 4.4 we have

〈Pix, y〉A = 〈Pix, Piy〉A ≤ 〈Pix, Pix〉
1
2

A〈Piy, Piy〉
1
2

A = 〈Pix, x〉
1
2

A〈Piy, y〉
1
2

A.

Since range(Pi) = range(RT
i ) we can use the strengthened Cauchy-Schwarz

inequality:

〈Pix, Pjy〉A ≤ εij〈Pix, Pix〉
1
2

A〈Pjy, Pjy〉
1
2

A = εij〈Pix, x〉
1
2

A〈Pjy, y〉
1
2

A.
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The main theorem for the multiplicative subspace correction method then
reads:

Theorem 4.10. Let assumptions 4.1 and 4.2 hold. Then

‖Emu‖2
A ≤ 1− 1

c0(1 + 2ρ2(E ))
< 1.

Observe that ρ(E ) ≥ 1 since εii = 1 for 1 ≤ i ≤ p and c0 ≥ 1 since x = RT
i xi,

xj = 0, i 6= j, gives a contradiction to c0 < 0.

Proof. The proof is carried out in several steps.

1. Some definitions:

E−1 := I

Ej := (I − Pj) · ... · (I − P0) =

j∏
k=0

(I − Pk) for 0 ≤ j ≤ p.

Obviously Emu = Ep.

2. We need to cope with the fact that Ej is not symmetric. This is achieved
by introducing the adjoin E∗ of E with respect to the A-scalar product:

〈Ex, y〉A = 〈x,E∗y〉A ∀x, y ∈ RIh.

(Observe that E∗ = A−1EA). Then we have the following recursion:

E∗j−1Ej−1 − E∗jEj = E∗j−1PjEj−1 0 ≤ j ≤ p. (4.1)

In order to prove this, first observe that P ∗j = Pj since 〈Pjx, y, 〉A =
〈x, Pjy, 〉A according to Lemma 4.4(2). Therefore

E∗jEj = E∗j−1(I − Pj)∗(I − Pj)Ej−1 (Definition of Ej)
= E∗j−1(I − P ∗j − Pj + P ∗j Pj)Ej−1

= E∗j−1(I − Pj)Ej−1 (Pj = P ∗j , P
2
j = Pj)

= E∗j−1Ej−1 − E∗j−1PjEj−1.

This holds also for j = 0 since E−1 = I.

3. Now use eq. (4.1) in a telescoping sum:
p∑
j=1

E∗j−1PjEj−1 =

p∑
j=1

(E∗j−1Ej−1 − E∗jEj) = E∗0E0 − E∗pEp

= I − P0 − E∗pEp
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4.3 Multiplicative Case

which results in the additive representation

I − E∗pEp =

p∑
j=0

E∗j−1PjEj−1

where we used the fact E−1 = I.

Since the Pj are positive semidefinite we have

〈(I − E∗pEp)x, x〉A = 〈(
p∑
i=0

E∗j−1PjEj)x, x〉A =

p∑
j=0

〈PjEjx,Ejx〉A ≥ 0.

If we could show an estimate of the form

〈(I − E∗pEp)x, x〉A ≥ α〈x, x〉A (4.2)

with α > 0 this implies

(1− α)〈x, x〉A ≥ 〈E∗pEpx, x〉A

and thus

‖Emu‖2
A = ‖Ep‖2

A = sup
x 6=0

〈Epx,Epx〉A
〈x, x〉A

= sup
x 6=0

〈E∗pEpx, x〉A
〈x, x〉A

≤ 1− α.

So our goal now is to show (4.2).

4. From the definition of the error we get the following recursive relation:

Ej = I −
j∑

k=0

PkEk−1, 0 ≤ j ≤ p

which we show by induction:

E0 = I − P0 = I −
0∑

k=0

P0E−1

Ej = (I − Pj)Ej−1 = Ej−1 − PjEj−1

= (I −
j−1∑
k=0

PkEk−1)− PjEj−1 = I −
j∑

k=0

PkEk−1.
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5. With 4. in the form I = Ej−1 +
∑j−1

k=0 PkEk−1 we get using Lemma 4.4
and 4.9:

〈Pjx, x〉A = 〈Pjx, (Ej−1 +

j−1∑
k=0

PkEk−1)x〉A

= 〈Pjx,Ej−1x〉A + 〈Pjx, P0x〉A +

j−1∑
k=1

〈Pjx, PkEk−1x〉A

≤ 〈Pjx, x〉
1
2

A

(
〈PjEj−1x,Ej−1x〉

1
2

A + 〈PjP0x, P0x〉
1
2

A

+

j−1∑
k=1

εjk 〈PkEk−1x,Ek−1x〉
1
2

A︸ ︷︷ ︸
=:ck

)

= 〈Pjx, x〉
1
2

A

(
〈PjP0x, P0x〉

1
2

A +

j∑
k=1

εjkck

)

Squaring both sides, dividing by 〈Pjx, x〉A and estimating with (a+ b)2 ≤
2a2 + 2b2 yields:

〈Pjx, x〉A ≤ 2〈PjP0x, P0x〉A + 2

(
j∑

k=1

εjkck

)2

≤ 2〈PjP0x, P0x〉A + 2(E c)2
j

(Note: εjk, ck ≥ 0)

Now sum j = 1, . . . , p and add 〈P0x, x〉A to both sides:

〈(
p∑
j=0

Pj)x, x〉A ≤ 〈P0x, x〉A +

p∑
j=1

(
2〈PjP0x, P0x〉A + 2(E c)2

j

)
≤ (1 + 2ρ(E ))〈P0x, x〉A + 2ρ2(E )‖c‖2 (*)

= (1 + 2ρ(E ))〈P0x, x〉A + 2ρ2(E )

p∑
k=1

〈PkEk−1x,Ek−1x〉A

≤ max(1 + 2ρ(E ), 2ρ2(E ))

p∑
k=0

〈PkEk−1x,Ek−1x〉A

≤ (1 + 2ρ2(E ))

p∑
k=0

〈PkEk−1x,Ek−1x〉A
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4.3 Multiplicative Case

For (*) we used that

〈(
p∑
j=1

Pj)P0x, P0x〉A ≤ ρ(E )〈P0x, x〉A

according to Lemma 4.5 and that

p∑
j=1

(E c)2
j =

p∑
j=1

(E c)j(E c)j = 〈E c,E c〉 = cTE TE c ≤ ρ2(E )‖c‖2.

The last step is due to ρ(E ) ≥ 1 since E = I + Ẽ where Ẽ is symmetric
positive semi-definite.

Using the lower bound for the ASM from Lemma 4.7 we obtain

c−1
0 〈x, x〉A ≤ 〈(

p∑
j=0

Pj)x, x〉A

≤ (1 + 2ρ2(E ))

p∑
k=0

〈E∗k−1PkEk−1x, x〉A

= (1 + 2ρ2(E ))〈(I − E∗pEp)x, x〉A (from 3.)

From this we get

〈(I − E∗pEp)x, x〉A ≥
1

c0(1 + 2ρ2(E ))
〈x, x〉A.

From this we conclude as in 3. with 1− α = 1− 1
c0(1+2ρ2(E )) .

67





Chapter 5

Convergence Theory for Overlapping Schwarz

This chapter follows the presentation in Toselli and Widlund [2005]. The goal
is to verify the stable splitting assumption 4.1 for the two-level Schwarz method
presented in the previous chapter. We will restrict ourselves to exact subdomain
solvers. On the other hand, the theory will allow for the more general case where
the fine mesh Th is not a uniform refinement of the coarse mesh TH .

5.1 Technical Preliminaries

In order to verify the existence of a stable splitting (assumption 4.1) a specific
splitting is constructed and then analyzed. The splitting is

uh = I hĨ Huh +

p∑
i=1

I hθi(uh −I hĨ Huh)

where Ĩ H : Vh → VH = Vh,0 maps into the coarse grid space, I h is the standard
Lagrange interpolation operator1 and θi is a partition of unity.

We recall the Friedrich and Poincaré inequalities.

Lemma 5.1 (Friedrich Inequality). Suppose Ω ⊂ Rd is a bounded domain with
Lipschitz-continuous boundary2 ∂Ω and Γ ⊂ ∂Ω has non-vanishing (d − 1)-
dimensional measure. Then for all u ∈ H1(Ω)

‖u‖2
0,Ω ≤ c1|u|21,Ω + c2‖u‖2

0,Γ

with constants c1, c2 only depending on Ω and Γ.

Proof. [Toselli and Widlund, 2005, A.14]

Lemma 5.2 (Poincaré Inequality). Let Ω ⊂ Rd be a bounded Lipschitz domain.
Then we have for all u ∈ H1(Ω)

‖u‖2
0,Ω ≤ c1|u|21,Ω + c2

∫
Ω

u dx

2

1Note that it is only applied to finite element functions — no regularity issue here.
2That is in the vicinity of a point on the boundary it can be expressed as the graph of a Lipschitz-continuous
function.
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H
Ω

Γ

Σ

1Ω̂
Γ̂

Σ̂

µ

µ−1

µΓ

µ−1
Γ

π π̂

Figure 5.1: Scaling argument used in proof of Cor. 5.3

where c1, c2 only depend on Ω.

Note that for ū :=
∫

Ω u dx we have

‖u− ū‖0,Ω ≤
√
c1|u|1,Ω.

Moreover, the dependence of c1, c2 on Ω can be made more explicit. We use a
scaling argument here to show this (but also a direct proof is possible).

Corollary 5.3. Let Ω be a bounded Lipschitz domain with diameter H. Then
there exist constants ĉ1 and ĉ2 only depending on the shape of Ω (but not its
diameter) such that

‖u‖2
0,Ω ≤ ĉ1H

2|u|21,Ω + ĉ2H‖u‖2
0,Γ.

Proof. Consider the map µ(x̂) = Hx̂ + x0 such that Ω is contained in a box
with side length H and origin x0. The map µ−1(x) = x−x0

H maps Ω into the unit
cell, see figure 5.1. We set û(x̂) := u(µ(x̂)), then

∂û

∂x̂i
(x̂) =

∂u(µ(x̂))

∂x̂i
=
∂u

∂xi
(µ(x̂))H

=⇒ ∇x̂û = H∇xu

⇐⇒ ∇xu = H−1∇x̂û

and

∇µ(x̂) = HI ⇐⇒ ∇µ−1(x) = H−1I.
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5.2 Coarse Grid Contribution

Now

‖u‖2
0,Ω =

∫
Ω

u2(x) dx =

∫
Ω̂

u2(µ(x̂))Hd dx̂ = Hd‖û‖2
0,Ω̂

≤ Hd(ĉ1|û|21,Ω̂ + ĉ2‖û‖2
0,Γ̂

)

= Hd

ĉ1

∫
Ω̂

∇x̂û · ∇x̂û dx̂+ ĉ2

∫
Γ̂

û2(ŝ) dŝ


= Hd

ĉ1

∫
Ω̂

(H∇xu(µ(x̂))) · (H∇xu(µ(x̂))) dx̂+ ĉ2

∫
Γ̂

u2(µΓ(ŝ)) dŝ


= Hd

ĉ1H
2

∫
Ω

∇xu(x) · ∇xu(x)H−d dx+ ĉ2

∫
Γ

u2(s)H−(d−1) ds


= ĉ1H

2|u|21,Ω + c2H‖u‖2
0,Γ.

For the second term write the surface integral as a volume integral:∫
Γ

f(s) ds =

∫
Σ

f(π(ξ))φ(ξ) dξ, π : Σ→ Γ, Σ ⊂ Rd−1,

∫
Γ̂

f̂(ŝ) dŝ =

∫
Σ̂

f̂(π̂(ξ̂))φ̂(ξ̂) dξ̂, π̂ : Σ̂→ Γ̂, Σ̂ ⊂ Rd−1.

Now diam(Σ) = diam(Γ), diam(Σ̂) = diam(Γ̂) and all the scaling is contained
in the map µΓ : Σ̂→ Σ with ξ = µΓ(ξ̂) = Hξ̂ + σ0 and ξ̂, ξ ∈ Rd−1. As a result
φ̂(ξ̂) = φ(µΓ(ξ̂)).

5.2 Coarse Grid Contribution

The interpolation to the coarse grid space VH = Vh,0 is defined as follows.

Definition 5.4 (Quasi-Interpolation Operator). Let VH be the P1 or Q1 finite
element space on TH . Then define ĨH : H1

0(Ω)→ VH as

(ĨHu)(si) :=

{
0 si ∈ ∂Ω

|ωsi|−1
∫
ωsi
u(x) dx otherwise

where si is a vertex in the mesh TH , ω̄si is the union of all elements T ∈ TH
having si as a vertex and |wsi| =

∫
ωsi

1 dx is the volume of ωsi.
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Chapter 5 Convergence Theory for Overlapping Schwarz

We now prove some important properties of the quasi-interpolation operator
ĨH .

Lemma 5.5. Let TH be a shape regular mesh. Then there exists c > 0 such
that for all T ∈ TH

‖u− ĨHu‖0,T ≤ cHT |u|1,ωT (5.1)
|ĨHu|1,T ≤ c|u|1,ωT (5.2)

where ω̄T is a union of elements including T itself such that

•
⋃
T ′∈TH ,T̄ ′∩T̄ 6=∅ ⊆ ω̄T ,

• either ∂ωT ∩ ∂Ω = ∅ or ∂ωT ∩ ∂Ω has non-vanishing (d− 1)-dimensional
measure and

• the number of elements making up ωT is finite and independent of H.

Estimate (5.1) is an error estimate for the coarse space interpolation operator,
while the estimate (5.2) provides the stability of the interpolation operator in
the H1-norm.

Proof. We restrict ourselves to P1 finite elements in three dimensions (of course
the argument can be transfered to other cases).

1. Let {φHi : i ∈ IH} be the Lagrange basis of VH and let i ∈ IH be the index
of any vertex of T ∈ TH . Then since φi(x) ≤ 1 we have

‖φHi ‖0,T =

∫
T

|φHi (x)|2 dx ≤
∫
T

1 dx ≤ cH3
T .

2. For T ∈ TH let si be a vertex of T such that si /∈ ∂Ω. Then

|(ĨHu)(si)| = |ωsi|−1 |
∫
ωsi

u(x) dx| (Def. 5.4)

≤ |ωsi|−1

∫
ωsi

|u(x)|2 dx


1
2
∫
ωsi

1 dx


1
2

(C.S.)

= ‖u‖0,ωsi
|ωsi|−

1
2

≤ ‖u‖0,ωsi
cH
− 3

2

T .

For the last inequality we used the shape regularity of the mesh which
implies |ωsi| ≤ cH3

T (we need to know the diameter of the neighbors).
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5.2 Coarse Grid Contribution

3. Let A,B,C,D be the indices of the vertices of T . Then

‖ĨHu‖2
0,T = ‖

∑
i∈{A,B,C,D}

(ĨHu)(si)φ
H
i ‖2

0,T

≤ 4
∑

i∈{A,B,C,D}

|(ĨHu)(si)|2‖φHi ‖2
0,T (triangle ineq.)

≤ 4
∑

i∈{A,B,C,D}

‖u‖2
0,ωsi

cH−3
T H3

T

≤ c‖u‖2
0,ωT

.

So we have shown the stability in the L2-norm ‖ĨHu‖0,T ≤ c‖u‖0,ωT .
Note that all constants are generic, i.e. c may have different values at
different occurences.

In the first estimate we used in addition to the triangle inequality the
estimate (

N∑
i=1

ai

)2

≤ 2dldNe
N∑
i=1

a2
i

for any numbers ai ∈ R. 2dldNe is the smallest power of two greater or equal
to N . Let us proof this. From the binomial formula (a−b)2 = a2−2ab+b2

follows 2ab ≤ a2 + b2 and together with the other binomial formula we
get the well-known estimate (a+ b)2 = a2 + 2ab+ b2 ≤ 2a2 + 2b2, i.e. we
have proven N = 2. Now assume the estimate has been proven up to size
n ∈ N and let N = 2n−m where m ∈ {0, 1}. Then(

N∑
i=1

ai

)2

=

(
n∑
i=1

ai +
N∑

i=n+1

ai

)2

≤ 2

(
n∑
i=1

ai

)2

+ 2

(
N∑

i=n+1

ai

)2

≤ 2 · 2dldne
n∑
i=1

a2
i + 2 · 2dld(n−m)e

N∑
i=n+1

a2
i

≤ 2 · 2dldne
N∑
i=1

a2
i ≤ 2dldNe

N∑
i=1

a2
i .

For the last estimate 2 · 2dldne ≤ 2dldNe consider first the case N = 2n.
Then N = 2n ⇐⇒ ldN = ld(2n) = 1+ldn ⇐⇒ ldn = ldN−1. Now
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Chapter 5 Convergence Theory for Overlapping Schwarz

2 · 2dldne = 21+dldne = 21+dldNe−1 = 2dldNe where we used that dx + ke =
dxe + k for k ∈ Z. Now consider the second case N = 2n − 1 ⇐⇒
2n = N + 1. Then ld(2n) = ld(N + 1) ⇐⇒ 1 + ldn = ld(N +
1) ⇐⇒ ldn = ld(N +1)−1. Taking the ceiling of the last equality gives
dldne = dld(N + 1)− 1e = dld(N + 1)e − 1 = dldNe − 1. The last step
follows from the fact that ldN is not integer since N is odd and therefore
not a power of two. Now we can conclude 2 · 2dldne = 2dldNe as in the case
N even.

Finally observe that all natural numbers N ≥ 2 can be generated by a
unique sequence of doubling or doubling and subtracting one.

4. First consider the case ∂ωT ∩ ∂Ω = ∅, i.e. an interior subdomain. Set
û(x) = u(x)− |ωT |−1

∫
ωT
u dx on ωT . Now we have

‖u− ĨHu‖2
0,T = ‖u− |ωT |−1

∫
ωT

u dx+ |ωT |−1

∫
ωT

u dx− ĨHu‖2
0,T

= ‖û− ĨH û‖2
0,T (*)

≤ (‖û‖0,T + ‖ĨH û‖0,T )2

(3.)
≤ c‖û‖2

0,ωT

≤ cH2
T |û|21,ωT

= cH2
T |u|21,ωT .

For (*) we used that ĨH reproduces constants as long as we are away from
∂Ω. For the last equality note that the 1-semi-norm of a constant is 0.

Now to the case ∂ωT ∩∂Ω 6= ∅. Through enlargement of ωT , Γ = ∂ωT ∩∂Ω
has non-zero (d − 1)-dimensional measure. By construction ĨHu is zero
on Γ for u ∈ H1

0(Ω). Therefore

‖u− ĨHu‖2
0,T ≤ c‖u‖2

0,ωT
≤ cH2

T |u|21,ωT .

Here we used the Friedrich inequality.

5. Now we are in the position to prove the estimate eq. (5.2). Here we need
to use a so-called local inverse inequality. It states that for a finite element
function v ∈ VH there exists a constant c depending only on the mesh such
that for all T ∈ TH

|v|1,T ≤ cH−1
T ‖v‖0,T .
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5.2 Coarse Grid Contribution

Now consider first again the case ∂ωT ∩ ∂Ω = ∅:

|ĨHu|21,T = |ĨHu− |ωT |−1

∫
ωT

u dx|21,T (constant has zero seminorm)

= |ĨH û|21,T
≤ cH−2

T ‖ĨH û‖2
0,T (inverse ineq.)

= cH−2
T ‖ĨH û− û+ û‖2

0,T

≤ cH−2
T (‖û− ĨH û‖0,T + ‖û‖0,T )2 (triangle ineq.)

≤ cH−2
T (c′H2

T |û|21,ωT + c′′H2
T |û|21,ωT ) ((5.1) and Poincaré)

≤ c|u|21,ωT (|û|1,ωT = |u|1,ωT )

And for the boundary case ∂ωT ∩ ∂Ω 6= ∅ we get

|ĨHu|21,T ≤ cH−2
T ‖ĨHu‖2

0,T (inverse ineq.)
≤ cH−2

T ‖u‖
2
0,ωT

≤ cH−2
T H2

T |u|21,ωT (Friedrich, shape reg.)
≤ c|u|21,ωT .

Now let {φhi : i ∈ Ih} be the Lagrange basis for Vh. For u ∈ C0(Ω̄) we define
the Lagrange interpolation operator as usual:

Ihu :=
∑
i∈Ih

u(si)φ
h
i

where si is the Lagrange point associated with the basis function φi.
The next lemma investigates the fine grid interpolation operator applied to

coarse grid functions.
Lemma 5.6. There exists c > 0 independent of h and H such that

|uH −IhuH |2s,t ≤ ch
2(1−s)
t |uH |21,ωt (5.3)

for all t ∈ Th, uH ∈ VH and s ∈ {0, 1}. Note that |v|0,t = ‖v‖0,t.
Proof. 1. Consider t ∈ Th such that t is completely inside some T ∈ TH .

T

t

Figure 5.2: t ∈ Th such that t is completely inside some T ∈ TH
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Chapter 5 Convergence Theory for Overlapping Schwarz

Then the Lagrange interpolation on t is exact, i.e.

uH −IhuH = 0.

If VH ⊆ Vh (which is true when Th is a refinement of TH) then the proof
of (5.3) is complete. The remaining part is only necessary when VH 6⊆ Vh.

We consider again the case of P1 in 3D, i.e. tetrahedral elements.

2. For φhi ∈ Vh we have

|φhi |21,t =

∫
t

d∑
j=1

(∂jφ
h
i )

2 dx ≤ ch−2
t h3

t = cht

(needs shapre regularity ρ ≥ cht).

3. With that we get

|IhuH |21,t = |
∑

i∈{A,B,C,D}

uH(si)φ
h
i |21,t

≤ c
∑

i∈{A,B,C,D}

|uH(si)|2|φhi |21,t (as before (
N∑
i=1

ai)
2 ≤ N

N∑
i=1

a2
i )

≤ cht
∑

i∈{A,B,C,D}

|uH(si)|2.

Now we need to estimate |uH(si)|.

4. Consider t ∈ Th with corner indices i ∈ {A,B,C,D}. Then for any pair
(t, i) we can find a tetrahedron t′i, not necessarily an element of Th (!),
such that:

• t′i has si (i.e. one of the vertices of tetrahedron t) as one of its corners.

• t′i has diameter ht′i ≤ cht and ρt′i ≥ c′ht (shape regularity).

• t′i ⊆ ωt

• t′i ⊆ Ti ∈ TH (i.e. it is completely inside one T ∈ TH).

This is due to the shape regularity of TH .
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5.2 Coarse Grid Contribution

T

t

i
t′i

Figure 5.3: tetrahedron t′i

Without loss of generality consider now one corner i = A of t ∈ Th.
Then choose t′A with properties as described above and vertex positions
{xA, xB′, xC ′, xD′}. Let µ be the map that transforms the reference tetra-
hedron t̂ to t′A and set µ̂(x̂) := uH(µ(x̂)) as usual. Then, on the reference
element, we have with xA = µ(x̂A)

|uH(xA)| = |û(x̂A)| ≤
∑

i∈{A,B,C,D}

|û(x̂i)|

= c
4

|t̂|

|t̂| ∑
i∈{A,B,C,D}

1

4
|û(x̂i)|

 |t̂| =
∫
t̂

1 dx

= c

∫
t̂

|û(x̂)| dx̂ (quadrature rule)

≤ c

∫
t̂

|û(x̂)|2 dx̂


1
2
∫

t̂

1 dx̂


1
2

(Cauchy-Schwarz)

≤ c‖û‖0,t̂.

Now use a scaling argument to transform to the real element:

‖û‖2
0,t̂

=

∫
t̂

|û(x̂)|2 dx̂ =

∫
t′i

| û(µ−1(x))︸ ︷︷ ︸
=uH(x)

|2 detB−1 dx

≤ ch−3
t′i

∫
t′i

|uH(x)|2 dx ≤ ch−3
t ‖uH‖2

0,t′i
(assumption on t′i)

≤ ch−3
t ‖uH‖2

0,ωt
. (enlarge domain of int.)
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5. Going now back to 3. we have

|IhuH |21,t ≤ cht
∑

i∈{A,B,C,D}

|uH(si)|2 (result from 3.)

≤ cht
∑

i∈{A,B,C,D}

h−3
t ‖uH‖2

0,ωt

= ch−2
t ‖uH‖2

0,ωt

6. Now again we use either the Friedrich or Poincaré inequality.

In the case that ∂ωt ∩ ∂Ω = Γ has non-zero measure, we have

|uH −IhuH |21,t ≤ 2|uH |21,t + 2|IhuH |21,t
≤ 2|uH |21,t + ch−2

t ‖uH‖2
0,ωt

(using 5.)
≤ 2|uH |21,t + ch−2

t h2
t |uH |21,ωt (Friedrich)

≤ c|uH |21,ωt

For the case ∂ωt ∩ ∂Ω = ∅ the operator Ih reproduces constants and we
set ūH to the average of uH on ωt. Then

|uH −IhuH |21,t = |uH + Ih(ūH − uH)|21,t (since ∇ūH = 0)
≤ 2|uH |21,t + 2|Ih(ūH − uH)|21,t
≤ 2|uH |21,t + ch−2

t ‖ūH − uH‖2
0,ωt

(using 5.)
≤ 2|uH |21,t + ch−2

t h2
t |ūH − uH |21,ωt (Poincaré ineq.)

≤ c|uH |21,ωt (∇ūH = 0)

This proves (5.3) for the case s = 1.

7. Now the case s = 0 in (5.3). We use the L2-norm in 3.:

‖IhuH‖2
0,t = ‖

∑
i∈{A,B,C,D}

uH(si)φ
h
i ‖2

0,t

≤ c
∑

i∈{A,B,C,D}

|uH(si)|2‖φhi ‖2
0,t

≤ ch3
t

∑
i∈{A,B,C,D}

|uH(si)|2

≤ c‖uH‖2
0,ωt

(using 4.)

Now we can proceed as in 6.
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5.3 Localization to the Subdomains

First we consider ∂ωt ∩ ∂Ω = Γ with non-zero measure:

‖uH −IhuH‖2
0,t ≤ 2‖uH‖2

0,t + 2‖IhuH‖2
0,t

≤ c‖uH‖2
0,ωt

(7. and enlargement)
≤ ch2

t |uH |21,t (Friedrich ineq.)

In the case ∂ωt ∩ ∂Ω = ∅ we have

‖uH −IhuH‖2
0,t ≤ 2‖uH − ūH‖2

0,t

+ 2‖Ih(ūH − uH)‖2
0,t

≤ c‖uH − ūH‖2
0,ωt

(use 7., enlarge first, combine)
≤ ch2

t |uH − ūH |21,ωt (Poincaré ineq.)
= ch2

t |uH |21,ωt (∇ūH = 0)

This ends the proof of Lemma 5.6.

5.3 Localization to the Subdomains

For uh, vh ∈ P1(Th) the product function uhvh is a piecewise quadratic finite
element function.

Lemma 5.7. Assume uh is a P2 finite element function and Ih is the Lagrange-
interpolation operator into P1 on the same grid. Then there exists c > 0 inde-
pendent of h such that

|Ihuh|1,t ≤ c|uh|1,t ∀t ∈ Th.

Proof.

|Ihuh|21,t = |Ihuh − uh + uh|21,t
≤ 2|uh −Ihuh|21,t + 2|uh|21,t
≤ ch2

t |uh|22,t + 2|uh|21,t (approximation error)
≤ ch2

th
−2
t |uh|21,t + 2|uh|21,t (inverse ineq., uh ∈ P2)

≤ c|uh|21,t

Next we look in detail at the L2-norm of a function in the vicinity of a sub-
domain boundary.

Let Ω̂i denote one of the (overlapping) subdomains, δi the overlap of this
subdomain and Hi = diam(Ω̂i). Then set

Ω̂i,δi := {x ∈ Ω̂i : dist(x, ∂Ω̂i\∂Ω) < δi}.
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δi

Ω̂i,δi

∂Ω̂i

Figure 5.4: Interior (left) and boundary subdomain (right)

Lemma 5.8. There exists c > 0 such that for all u ∈ H1(Ω̂i):

‖u‖2
0,Ω̂i,δi

≤ cδ2
i

(
(1 +

Hi

δi
)|u|2

1,Ω̂i
+

1

Hiδi
‖u‖2

0,Ω̂i

)
.

Proof. 1. According to the trace theorem 1.15 there exists

γ : H1(ω)→ L2(∂ω)

such that ‖γu‖0,∂ω ≤ c‖u‖1,ω. Through a scaling argument we make
explicit the dependence on the size of the domain (refer to corollary 5.3):

‖u‖2
0,∂ω =

∫
∂ω

|u(s)|2 ds (ω̂ is of size 1)

=

∫
∂ω̂

|û(ŝ)|2Hd−1 dŝ (H = diam(ω))

≤ ĉHd−1‖û‖2
1,ω̂ (trace thm. on ω̂)

= ĉHd−1

∫
ω̂

û2 dx̂+

∫
ω̂

∇x̂û · ∇x̂û dx̂


= ĉHd−1

∫
ω

u2H−d dx+

∫
ω

H2∇xu · ∇xuH
−d dx


= ĉ

(
1

H
‖u‖2

0,ω +H|u|21,ω
)

i.e. ‖u‖2
0,∂ω ≤ ĉ

H‖u‖
2
0,ω +Hĉ|u|21,ω.

2. Now assume there exists a triangulation Ti,δi of Ω̂i,δi into shape regular
patches of size δi:

¯̂
Ωi,δi =

⋃
k∈Ti,δi

k̄.
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5.3 Localization to the Subdomains

Note that the patches don’t need to be simplices or cubes since we will
not construct finite element functions.
Moreover set Γi = ∂Ω̂i\∂Ω. Then

‖u‖2
0,Ω̂i,δi

=
∑
k∈Ti,δi

‖u‖2
0,k

≤
∑
k∈Ti,δi

c
(
δ2
i |u|21,k + δi‖u‖2

0,∂k∩Γi

)
(Friedrich ineq.)

= c
(
δ2
i |u|21,Ω̂i,δi + δi‖u‖2

0,∂Ω̂i

)
(enlarge Γi → ∂Ω̂i)

≤ c

(
δ2
i |u|21,Ω̂i,δi + δiĉ

(
1

Hi
‖u‖2

0,Ω̂i
+Hi|u|21,Ω̂i

))
(using 1.)

≤ cδ2
i

((
1 +

Hi

δi

)
|u|2

1,Ω̂i,δi
+

1

Hiδi
‖u‖2

0,Ω̂i

)

Next we need two assumptions that let us prove properties of the partition of
unity.

Assumption 5.9 (Minimal Distance). Let {Ω̂i}pi=1 be a decomposition of Ω into
overlapping subdomains. Then we require that for i ∈ {1, ..., p} exists δi > 0
such that

∀x ∈ Ω̂i ∃j(x) ∈ {1, . . . , p} : x ∈ Ω̂j(x) ∧ dist(x, ∂Ω̂j(x)\∂Ω) ≥ δi.

This means that x ∈ Ω̂i is away from the (interior) boundary in at least one
subdomain. (Note: j(x) = i is possible).

∂Ω

Ω̂i Ω̂k

Ω̂j

Figure 5.5: Example

Assumption 5.10 (Finite Covering). For {Ω̂i}pi=1 exists a coloring with at most
N c colors in the following sense:

c(i) = c(j) =⇒ Ω̂i ∩ Ω̂j = ∅
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Chapter 5 Convergence Theory for Overlapping Schwarz

where c : {1, . . . , p} → {1, . . . , N c} is the coloring map.

From Assumption 5.10 we can deduce that any x ∈ Ω is contained in at most
N c subdomains:
Set Jx := {j ∈ 1, . . . , p : x ∈ Ω̂j}. Then for all i, j ∈ Jx we have x ∈ Ω̂i ∩ Ω̂j,
i.e. Ω̂i ∩ Ω̂j 6= ∅ =⇒ c(i) 6= c(j).
Since the number of colors is N c we have |Jx| ≤ N c.

Note also that assumption 5.10 does not bound the number of neighbors of a
single subdomain.

Ω1

Figure 5.6: Only 3 colors are needed but Ω1 overlaps with all subdomains

Finally we need some properties of the partition of unity.

Lemma 5.11 (Partition of Unity). Let {Ω̂i}pi=1 a decomposition of Ω into over-
lapping subdomains such that assumptions 5.9 and 5.10 are satisfied. Then there
exist functions {θ̃i}pi=1 from W 1,∞(Ω) such that

(a) 0 ≤ θ̃i(x) ≤ 1, x ∈ Ω̄,

(b) supp(θ̃i) = {x ∈ Ω : θ̃i(x) 6= 0} ⊂ Ω̂i,

(c)
∑p

i=1 θ̃i(x) = 1 ∀x ∈ Ω̄

(d) ‖∇θ̃i‖∞ ≤ c
δi
or rather ‖∇θ̃i(x)‖∞ ≤ c

δi
∀i = 1, . . . , p.

W 1,∞(Ω) is the space of functions with bounded derivatives almost everywhere
(i.e. up to a set of zero measure).

Proof. [Toselli and Widlund [2005], Lemma 3.4] The proof is constructive.
For all i ∈ {1, . . . , p} set

di(x) :=

{
dist(x, ∂Ω̂i\∂Ω) x ∈ Ω̂i ∪ {∂Ω̂i ∩ ∂Ω}
0 else
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5.3 Localization to the Subdomains

and
θ̃i(x) :=

di(x)∑p
k=1 dk(x)

.

di(x) and θ̃i are well defined on Ω̄ and θ̃i ∈ C0(Ω̄).

Ω̂i

Figure 5.7: Example of di(x)

Clearly,

• θ̃i ≥ 0 since di ≥ 0

•
∑p

i=1 θ̃i(x) =
∑p

i=1
di(x)∑p
k=1 dk(x)

= 1

• θ̃i(x) = 1−
∑

k 6=i θ̃k(x) ≤ 1 since θ̃k(x) ≥ 0.

So the only difficult property to prove is (d) which we do in several steps.

1. We aim to show that θ̃i is Lipschitz continous, i.e.

|θ̃i(x)− θ̃i(y)| ≤ c

δi
|x− y|

provided |x− y| is sufficiently small. This would bound the gradient since
|∂j θ̃i(x)| ≤ c

δi
.

2. Abbreviate for ease of writing δk(x, y) := dk(x) − dk(y) for 1 ≤ k ≤ p.
Now we show

|δk(x, y)| ≤ |x− y|.

Case I x, y ∈ Ω̂k. Then choose z ∈ ∂Ω̂k\∂Ω such that

dk(y) = dist(y, ∂Ω̂k\∂Ω) = |y − z|

i.e. z is a closest point to the boundary for y.
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Ω̂k

z

x

y

Figure 5.8: Case I in proof of Lemma 5.11

Then

dk(x) = dist(x, ∂Ω̂k\∂Ω)

≤ |x− z| (since z ∈ ∂Ω̂k\∂Ω)
= |x− y + y − z|
≤ |x− y|+ |y − z|
= |x− y|+ dk(y)

⇐⇒ δk(x, y) = dk(x)− dk(y) ≤ |x− y|

In the same way choose z′ ∈ ∂Ω̂k\∂Ω such that

dk(x) = dist(x, ∂Ω̂k\∂Ω) = |x− z′|.

The same argument shows

dk(y) = dist(y, ∂Ω̂k\∂Ω)

≤ |y − z′|
= |y − x+ x− z′|
≤ |y − x|+ dk(x)

⇐⇒ −δk(x, y) = dk(y)− dk(x) ≤ |y − x|

and therefore |δk(x, y)| ≤ |x− y|.

Case II x, y 6∈ Ω̂k. i.e. x, y are outside Ω̂k. Then we have

|dk(x)− dk(y)| = |0− 0| = 0 ≤ |x− y|.
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x

yΩ̂i

Ω̂k

Figure 5.9: Case II in proof of Lemma 5.11

Case III x ∈ ∂Ω̂k. We need to consider two subcases.

a) x ∈ ∂Ω̂k\∂Ω. Let y ∈ Ω̂k.

1.) z ∈ ∂Ω̂k\∂Ω such that dist(y, ∂Ω̂k\∂Ω) = |y − z|

dk(x) = 0 ≤ |x− z| = |x− y + y − z| ≤ |x− y|+ dk(y)

⇐⇒ −dk(y) ≤ |x− y|

2.) dk(y) = |y− z| ≤ |y−x| since z was the closest point on
the boundary from y.

Since dk(x) = 0 we get from 2(III)a1 and 2(III)a2:

|δk(x, y)| = |dk(x)− dk(y)| = |dk(y)| ≤ |x− y|.

b) x ∈ ∂Ω̂k∩∂Ω: This is very similar to 2I above. Let y ∈ Ω̂k.

1.) And z ∈ ∂Ω̂k\∂Ω such that dk(y) = |y − z|:

dk(x) ≤ |x− z| ≤ |x− y|+ |y − z| = |x− y|+ dk(y)

⇐⇒ δk(x, y) ≤ |x− y|.

2.) And z′ ∈ ∂Ω̂k\∂Ω such that dk(x) = |x− z′|:

dk(y) ≤ |y − z′| ≤ |y − x|+ |x− z′| = |y − x|+ dk(x)

⇐⇒ −δk(x, y) ≤ |x− y|.

3. From the minimal distance assumption 5.9 we get
p∑

k=1

dk(x) ≥ dj(x)(x) ≥ δi (one distance is at least δi).
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4. Now we are able to estimate

|θ̃i(x)− θ̃i(y)| =
∣∣∣∣ di(x)∑p

k=1 dk(x)
− di(y)∑p

k=1 dk(y)

∣∣∣∣ (insert definition)

=

∣∣∣∣di(x)
∑p

k=1 dk(y)− di(y)
∑p

k=1 dk(x)

(
∑p

k=1 dk(x)) (
∑p

k=1 dk(y))

∣∣∣∣ (common denominator)

=

∣∣∣∣∣di(x)
∑p

k 6=i dk(y)− di(y)
∑p

k 6=i dk(x)

(
∑p

k=1 dk(x)) (
∑p

k=1 dk(y))

∣∣∣∣∣ (di(x)di(y) drops out)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

di(x)
∑p

k 6=i dk(y)

0︷ ︸︸ ︷
−di(x)

p∑
k 6=i

dk(x) + di(x)

p∑
k 6=i

dk(x)−di(y)
∑p

k 6=i dk(x)

(
∑p

k=1 dk(x)) (
∑p

k=1 dk(y))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=


p∑

k=1

dk(y)︸ ︷︷ ︸
>0


−1 ∣∣∣∣∣∣∣∣∣

di(x)∑p
k=1 dk(x)︸ ︷︷ ︸
θ̃i(x)

p∑
k 6=i

dk(y)− dk(x)︸ ︷︷ ︸
δk(x,y)

+

∑p
k 6=i dk(x)∑p
k=1 dk(x)︸ ︷︷ ︸
1−θ̃i(x)

(di(x)− di(y))︸ ︷︷ ︸
δi(x,y)

∣∣∣∣∣∣∣∣∣
≤ 1

δi︸︷︷︸
(use 3.)

θ̃i(x)︸︷︷︸
≤1

p∑
k 6=i

|δk(x, y)|︸ ︷︷ ︸
≤N c|x−y|

+
(

1− θ̃i(x)
)

︸ ︷︷ ︸
≤1

|δi(x, y)|︸ ︷︷ ︸
≤|x−y|


≤ N c + 1

δi
|x− y|

5.4 Proof of Assumptions of Abstract Schwarz Theory

First consider the strengthened Cauchy-Schwarz inequaltiy 4.2. This enters into
the upper bound for κ(Pad) as well as in the bound for ‖Emu‖A. In the latter
the spectral radius ρ(E ) is required. Remark 4.6 shows that

ρ(E ) ≤ ‖E ‖∞ = N̂ c
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5.4 Proof of Assumptions of Abstract Schwarz Theory

where N̂ c is the maximum number of subdomains with wich a single subdomain
overlaps (including itself).

This is generally not the same as N c from assumption 5.10 which allows a
direct estimate on the upper bound of the additive Operator.

Lemma 5.12. Let assumption 5.10 hold. Then

〈
p∑
i=0

Pix, x〉A ≤ (N c + 1) 〈x, x〉A.

Proof. Set Jk := {i ∈ {1, . . . , p} : c(i) = k} for 1 ≤ k ≤ N c.

〈
p∑
i=0

Pix, x〉A = 〈P0x, x〉A + 〈
N c∑
k=1

∑
i∈Jk

Pix, x〉A

= 〈P0x, x〉A +
N c∑
k=1

∑
i∈Jk

〈Pix, x〉A

= 〈P0x, x〉A

+
N c∑
k=1

∑
i∈Jk

〈Pix, Pix︸︷︷︸
4.4−3.

+
∑

j∈Jk,j 6=i︸ ︷︷ ︸
Ω̂i∩Ω̂j=∅

Pjx〉A

= 〈P0x, x〉A +
N c∑
k=1

〈
∑
i∈Jk

Pix,
∑
i∈Jk

Pix〉A

≤ 〈x, x〉A +
N c∑
k=1

〈x, x〉A (sum of orth. proj. = orth. proj.)

= (N c + 1)〈x, x〉A

In general assumption 5.10 does not deliver a satisfactory upper bound for
ρ(E ).

Lemma 5.13. Let TH , Th be shape regular, quasi-uniform triangulations and
let assumptions 5.9 and 5.10 hold. Then for every x ∈ RIh there exists a decom-
position x =

∑p
i=0R

T
i xi such that
p∑
i=0

〈RT
i xi, R

T
i xi〉A ≤ c

(
1 +

H

δ

)
〈x, x〉A

with c > 0 independent of H, h and δ := min δi.
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Proof. 1. With each RT
i xi we identify a finite element function

Vh ⊃ Vh,i 3 ui =
∑
j∈Ih

(RT
i xi)jφ

h
j

and u =
∑

j∈Ih(x)jφ
h
j is the function to be decomposed. We construct

ui ∈ Vh,i by setting

u0 := Ih(Ĩhu),

ui := Ih (θi(u− u0)) , i = 1, . . . , p, θi = Ihθ̃i.

By construction the ui are in the correct subspaces such that they can
be represented by the appropriate coefficient vectors (i.e. the equation
ui =

∑
j∈Ih(R

T
i xi)jφ

h
j can be solved for xi). Obviously

p∑
i=0

〈RT
i xi, R

T
i xi〉A =

p∑
i=0

a(ui, ui)

and the rest of the proof we consider only finite element functions.

2. . We consider u0 first. Set uH := ĨHu, i.e. u0 = IhuH .

a(u0, u0) = a(IhuH ,IhuH)

≤ c |IhuH |21,Ω (continuity of BLF)

= c |IhuH − uH + uH |21,Ω
≤ c

(
|uH −IhuH |21,Ω + |uH |21,Ω

)
= c

(∑
t∈Th

|uH −IhuH |21,t + |uH |21,Ω

)

≤ c

(
c
∑
t∈Th

|uH |21,ωt + |uH |21,Ω

)
(Corollary 5.3, s = 1)

≤ c |uH |21,Ω (t appears in finitely many ωt)

= c
∣∣∣ĨHu

∣∣∣2
1,Ω

(“finite covering argum.”)

≤ c |u|21,Ω (5.3, (5.2), finite covering arg.)
≤ c a(u, u) (coercivity of BLF)
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5.4 Proof of Assumptions of Abstract Schwarz Theory

3. Now we look at the subdomains i ∈ {1, . . . , p}.

a(ui, ui) ≤ c|ui|21,Ω (continuity)

= c

∣∣∣∣∣∣Ih

θi (u− u0)︸ ︷︷ ︸
=:ω

∣∣∣∣∣∣
2

1,Ω

(Definition)

≤ c|θiω|21,Ω̂i (5.7, θiω ∈ P2(Th), supp(θiω) ⊂ Ω̂i)

= c

∫
Ω̂i

∇(θiω) · ∇(θiω) dx

≤ c

∫
Ω̂i

‖ω∇θi‖2
2︸ ︷︷ ︸

=:(1)

+ ‖θi∇ω‖2
2︸ ︷︷ ︸

=:(2)

dx

Product rule:

∇(θiω) · ∇(θiω) =
d∑
j=1

(∂j(θiω))2

=
d∑
j=1

((∂jθi)ω + θi∂jω))2

≤
d∑
j=1

2 (∂jθiω)2 + 2 (θi∂jω)2

We will estimate the two terms (1) and (2) later.

4. For s = 0, 1 we have

|ω|2
s,Ω̂i

= |u−IhuH |2s,Ω̂i (Def. ω)

= |u− uH + uH −IhuH |2s,Ω̂i
≤ 2|u− ĨHu|2s,Ω̂i + 2|uH −IhuH |2s,Ω̂i.

|u− ĨHu|2s,Ω̂i =
∑

T∈TH ,T∩Ω̂i 6=∅

|u− ĨHu|2s,T

≤
∑

T∈TH ,T∩Ω̂i 6=∅

cH
2(1−s)
T |u|21,ωT (Lemma 5.5)
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|uH −IhuH |2s,Ω̂i =
∑

t∈Th,t∩Ω̂i 6=∅

|uH −IhuH |2s,t

≤
∑

t∈Th,t∩Ω̂i 6=∅

c h
2(1−s)
t |uH |21,ωt

≤ c
∑

t∈Th,t∩Ω̂i 6=∅

h
2(1−s)
t |uH |21,t (reorganize, enlarge possibly)

≤ c
∑

T∈TH ,T∩Ω̂i 6=∅︸ ︷︷ ︸
larger

H
2(1−s)
T |ĨHu|21,T (ht ≤ HT ∀t ∩ T 6= ∅)

≤ c
∑

T∈TH ,T∩Ω̂i 6=∅

H
2(1−s)
T |u|21,ωT (Lemma 5.5)

Ω̂i

Figure 5.10: TH and Th shape regular, quasi-uniform triangulations

Therefore we have for s = 0, 1:

|ω|2
s,Ω̂i
≤ c

∑
T∈TH ,T∩Ω̂i 6=∅

H
2(1−s)
T |u|21,ωT .

5. Now we continue with 3.
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5.4 Proof of Assumptions of Abstract Schwarz Theory

Term (2):

∫
Ω̂i

‖θi∇ω‖2
2 dx ≤

∫
Ω̂i

‖∇ω‖2
2 dx (θi ≤ 1)

= |u− u0|21,Ω̂i
≤ c

∑
T∈TH ,T∩Ω̂i 6=∅

|u|21,ωT (4. above s = 1)

Term (1):

∫
Ω̂i

‖ω∇θi‖2
2 dx =

∫
Ω̂i,δi

|ω|2‖∇θi‖2
2 dx (∇θi = 0 interior)

≤
(
c

δi

)2 ∫
Ω̂i,δi

|ω|2 dx

≤
(
c

δi

)2

δ2
i

((
1 +

Hi

δi

)
|ω|2

1,Ω̂i
+

1

Hiδi
‖ω‖2

0,Ω̂i

)
(Lemma 5.8)

≤ c

(
1 +

Hi

δi

)
c

∑
T∈TH ,T∩Ω̂i 6=∅

|u|21,ωT

+ c
1

Hiδi
c′

∑
T∈TH ,T∩Ω̂i 6=∅

H2
T |u|21,ωT (using 4.)

Use that Hi ⊆ HT ⊆ Hi, i.e. TH is quasi-uniform with HT ∼ Hi (the
subdomain diameter). So we get in continuation of 3.:

a(ui, ui) ≤ c

(
1 +

Hi

δi

) ∑
T∈TH ,T∩Ω̂i 6=∅

|u|21,ωT .

91



Chapter 5 Convergence Theory for Overlapping Schwarz

6. Finally, sum over subdomains and coarse grid.

p∑
i=1

a(ui, ui) ≤ c

p∑
i=1

(1 +
Hi

δi

) ∑
T∈TH ,T∩Ω̂i 6=∅

|u|21,ωT

 (
Hi

δi
∼ H

δ
)

≤ c

(
1 +

H

δ

) ∑
T∈TH

|u|21,ωT (T ∩ Ω̂i 6= ∅ finitely many Ω̂i)

≤ c

(
1 +

H

δ

) ∑
T∈TH

|u|21,T (T ∩ ωT for finitely many)

≤ c

(
1 +

H

δ

)
|u|21,Ω

≤ c

(
1 +

H

δ

)
a(u, u) (coercivity)

Together with 2. and the fact that H
δ > 0 we get

p∑
i=1

a(ui, ui) ≤ c

(
1 +

H

δ

)
a(u, u)

= c

(
1 +

H

δ

)
〈x, x〉A.

This ends the proof for the additive and multiplicative two-level Schwarz
method.
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Multigrid Methods

6.1 Multilevel Finite Element Spaces

In this chapter we consider a hierarchy of finite element spaces that are obtained
on a sequence of nested meshes obtained by uniform refinement of an initial mesh
TH = T0 as shown in figure 6.1.

The mesh levels are denoted by

TH = T0, T1, . . . , TL = Th,

and the corresponding lowest order (bi-, tri-, . . . ) linear finite element spaces
are

VH = V0 ⊂ V1 ⊂ · · · ⊂ VL = Vh. (6.1)
The spaces are spanned by the corresponding Lagrange basis functions:

Vl = span{φli : i ∈ Il}, 0 ≤ l ≤ L.

The index sets Il = {1, . . . , Nl} are chosen in such a way that

i ∈ Il ∧ φli(si) = 1 =⇒ ∀k > l ∧ k ≤ L : φki (si) = 1,

i.e. the basis functions φki correspond to the same vertex position si at all levels
k ≥ l when i ∈ Il.

Since Vl ⊂ Vk for all k > l any basis function on level l can be represented on
all finer levels, i.e. there exist coefficients θl,ki,j such that

φli =
∑
j∈Ik

θl,ki,jφ
k
j , i ∈ Il, l < k ≤ L.

T2

T1

T0

1D

T0 T1 T2

2D

Figure 6.1: Uniform refinement
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φ0
1

1

φ1
2

2

φ1
1

1

φ1
3

3

4 2 5 1 6 3 7

Figure 6.2: Basis functions on multiple levels

As an example consider the 1D case in figure 6.2.

Remark 6.1. The coefficients θl,ki,j are given by

θl,ki,j = φli(sj)

and therefore θl,ki,j 6= 0 if and only if sj ∈ suppφli. On a cube mesh in d space
dimensions we have at most (2k−l+1− 1)d nonzero coefficients to represent φli on
level k > l.

As a consequence the interpolation (restriction) of vl ∈ Vl to level l+ 1 (l−1)
can be done in O(Nl) operations. We will see below that in fact the interpolation
to any level k > l can be done in O(Nk) operations.

6.2 Multilevel Subspace Correction Methods

Jacobi and Gauß-Seidel as subspace corrections

Consider Vh = span{φhi : i ∈ Ih} and set Vi := span{φhi } for i ∈ Ih. Then
Vi ⊂ Vh and Vh =

⊕Nh
i=1 Vi (direct sum of vector spaces), meaning that there is

a unique representation of any uh ∈ Vh as a sum of elements from the Vi’s.
In that case the additive subspace correction method reads in function space

formulation

uk+1
h := ukh +

∑
i∈Ih

(f, φhi )0,Ω − a(ukh, φ
h
i )

a(φhi , φ
h
i )

φhi

since the subspace problem is

a(ukh + ziφ
h
i , φ

h
i ) = (f, φhi )0,Ω

⇐⇒ zia(φhi , φ
h
i ) = (f, φhi )0,Ω − a(ukh, φ

h
i ).

This corresponds to the Jacobi Method.
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6.2 Multilevel Subspace Correction Methods

The multiplicative method (aka Gauß-Seidel) reads

u
k+ i

Nh

h = u
k+ i−1

Nh

h +
(f, φhi )0,Ω − a(u

k+ i−1
Nh

h , φhi )

a(φhi , φ
h
i )

φhi .

Hierarchical Basis (Multigrid)

In this method Vh = VL is decomposed as a direct sum by

VL = V0 ⊕
L⊕
l=1

⊕
i∈Il\Il−1

span{φli}.

Again V l
i := span{φli} is one-dimensional and the additive version reads

uk+1
h := ukh + v0 +

L∑
l=1

∑
i∈Il\Il−1

(f, φli)0,Ω − a(ukh, φ
l
i)

a(φli, φ
l
i)

φli (6.2)

where v0 solves a(ukh+v0, w) = (f, w)0,Ω ∀w ∈ V0, i.e. the standard coarse grid
solution. The method given by (6.2) is called Hierarchical Basis Method and
was introduced in Yserentant [1986]. The corresponding multiplicative version
is known as the Hierarchical Basis Multigrid Method introduced in Bank et al.
[1988].

The multiplicative method requires the fixation of an ordering of the indices
and is typically symmetrized in order to use it as a preconditioner. This involves
visiting some subspaces more than once, for example in the order

IL \ IL−1, IL−1 \ IL−2, . . . , I1 \ I0, I0, Ĩ1 \ I0, . . . , ˜IL \ IL−1 (6.3)

where tilde means that the ordering is reversed within the set.
Finally, the efficient implementation of the sum (6.2) requires some thought

because in a(ukh, φ
l
i), ukh ∈ VL is a fine-grid function and φli is a coarse-grid

function.
The convergence properties of these methods are

κ(BHBA) =

{
O(log H

h ) d = 2

O(Hh ) d = 3,

‖EHBMG‖A ≤

{
1− 1

O(log H
h )

d = 2

1− 1
O(Hh )

d = 3.
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True Multigrid Methods

True multigrid methods work with a non-unique decomposition of the subspaces:

VL = V0 +
L∑
l=1

∑
i∈Il

V l
i .

Obviously the representation

uh = u0 +
L∑
l=1

∑
i∈Il

uli, u0 ∈ V0, u
l
i ∈ V l

i

is not unique.
The additive version is then very similar to (6.2) and reads

uk+1
h := ukh + v0 +

L∑
l=1

∑
i∈Il

(f, φli)0,Ω − a(ukh, φ
l
i)

a(φli, φ
l
i)

φli (6.4)

Due to the non-uniqueness of the decomposition the method needs to be used
as a preconditioner and is known as Multilevel Diagonal Scaling. A simpler
version where a(φli, φ

l
i) ≈ hd−2

l (valid on quasi-uniform grids for the Laplace
operator) is known as the BPX-Method introduced by Bramble et al. [1990].

The appropriately symmetrized version, e.g. using the ordering from (6.3), is
a special case of the standard multigrid method using a V-cycle (γ = 1), one
forward Gauß-Seidel step as pre-smoother and one backward Gauß-Seidel step
as post-smoother. The multigrid method was introduced in Brandt [1977] and
Hackbusch [1978].

The convergence properties of these methods are

κ(BMDSA) ≤ c

and

‖EMDS‖A ≤ c′ < 1

with c, c′ independent ofH, h. The first proofs of this have been given by Oswald
[1991] and Dahmen and Kunoth [1992], see also Yserentant [1993].

6.3 Sequential Implementation

We now consider the implementation of (6.4) on a sequential machine.
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6.3 Sequential Implementation

First, observe that the sum

WL :=
L∑
l=0

Nl = NL(1 +
1

η
+

1

η2
+ · · ·+ 1

ηL
) ≤ NL

∞∑
l=0

η−l = O(NL) (6.5)

when η−1 < 1. Since η = 2d for uniform refinement this is the case. This
motivates that we would like to implement (6.4) with work proportional to NL.

However, a naive implementation of either (fh, φ
l
i) or a(ukh, φ

l
i) requiresO(ηL−l)

operations which yields

L∑
l=0

NL

ηL−l
ηL−l =

L∑
l=0

NL = O(NLL) = O(NL logNL)

since Nl = N0η
l.

An optimal implementation requires to compute the numbers

ν li = (fh, φ
l
i)− a(ukh, φ

l
i)

recursively proceeding from fine to coarse:

ν li = (fh, φ
l
i)− a(ukh, φ

l
i)

= (fh,
∑
j∈Il+1

θl,l+1
i,j φl+1

j )− a(ukh,
∑
j∈Il+1

θl,l+1
i,j φl+1

j )

=
∑
j∈Il+1

θl,l+1
i,j

(
(fh, φ

l+1
j )− a(ukh, φ

l+1
j )
)

=
∑
j∈Il+1

θl,l+1
i,j ν l+1

j

(6.6)

The computation of (6.6) for all ν li, i ∈ Il has complexity O(Nl) and conse-
quently the computation of ν li for all i ∈ Il, 0 ≤ l < L takes O(NL) according
to (6.5).

As a consequence only a level-wise computation of (6.4) as in the standard
multigrid method is computationally efficient.

This implies the following sequential algorithms (6.1, 6.2) in terms of coeffi-
cients. By Al and bl denote the stiffness matrix and right-hand side on level l
and Rl : RIl+1 → RIl is the restriction matrix given by

(Rl)i,j = θl,l+1
i,j (6.7)

as in section 3.4.
The multiplicative algorithm can be extended by visiting subspaces multi-

ple times in different order. By Sν1
pre and Sν2

post we denote two generic iterative
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Chapter 6 Multigrid Methods

Algorithm 6.1 Multilevel Diagonal Scaling
Given: xkL
dL := bL − ALx

k
L

for l = L− 1, . . . , 0 do
dl := Rldl+1

end for
v0 := A−1

0 d0

for l = 1, . . . , L do
vl := D−1

l dl . Dl := diag(Al)
vl := vl +RT

l−1vl−1

end for
xk+1
L := xkL + vL

schemes applying ν1 (ν2) iterations. Typically Spre, Spost are either symmetric
or Spost ◦Spre is symmetric (but this is not required). The method introduced in
section 6.2 assumes Spre and Spost to be the forward and backward Gauß-Seidel
method. Other choices are SSOR or ILU.

Algorithm 6.2 Recursive version of the multiplicative algorithm with param-
eters ν1, ν2 and γ
function mgc(l, xl, bl) . bl input, xl input/output parameter

if l==0 then
x0 := A−1

0 b0

end if
xl := Sν1

pre(xl, bl) . apply ν1 iterations on Alxl = bl with initial guess xl
dl := bl − Alxl
dl−1 := Rl−1dl
vl−1 := 0
for j = 0, . . . , γ − 1 do

function mgc(l − 1, vl−1, bl−1)
end function

end for
xl := xl +RT

l−1vl−1

xl := Sν2
post(xl, bl)

end function

The value γ = 1 is called V-cycle, γ = 2 is called W-cycle.
The cost of one iteration is optimal, i.e. O(NL) if γ < η, where η is the growth

factor from level to level.
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6.4 Parallel Implementation of Multigrid Methods

6.4 Parallel Implementation of Multigrid Methods

The parallelization is based on the following ideas:

• The coarse grid problem is either solved sequentially or in a distributed
fashion as in the two level Schwarz method.

• The solution of the one-dimensional subspaces in the additive scheme is
trivially parallel.

• In the multiplicative scheme the smoothers Spre, Spost need to be paral-
lelized: Either use the damped Jacobi method or a hybrid method that
is additive between processors and multiplicative within processors. (Aka
Block-Jacobi with Gauß-Seidel as inexact block solver.)

• Prolongation and restriction between grid levels is trivially parallel.

• Note that in multigrid N0 is in principle independent of the number of
processors p. If p � N0 then the coarse levels need to be treated by less
than p processors.

The parallelization of the grid transfer is essential. We first treat the case
where:

• Ω̂l
i is a union of elements of Tl associated with processor i on level l.

• Every grid level is decomposed in an overlapping fashion where Ω̂l
i ⊇ Ω̂l+1

i

for 0 ≤ l < L and the overlap is at least one element on each level.

• The domain decomposition results in an overlapping decomposition of the
index sets

Il =

p⋃
i=1

Il.i, 0 ≤ l ≤ L

and we require that the decomposition is such that

∀α ∈ Il ∀β ∈ Il+1,i : θl,l+1
α,β 6= 0 =⇒ α ∈ Il,i, (6.8)

i.e. the interpolation can be done locally.

• The two conditions above imply that |T0| ≥ p.

Remember, by Rl : RIl+1 → RIl we denote the sequential multigrid re-
striction operator and by rl,i : RIl → RIl,i the subdomain restriction opera-
tor, i.e. (rl,ix)j = (x)j ∀j ∈ Il,i known from the Schwarz method. Finally,
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Chapter 6 Multigrid Methods

Rl,i : RIl+1,i → RIl,i is the local restriction operator that can be carried out in
each processor and which is given by

(Rl,i xl+1,i)α =
∑

β∈Il+1,i

θl,l+1
α,β (xl+1,i)β. (6.9)

θl,l+1
α,βα

Figure 6.3: Local restriction operator

Observation 6.2 (Local Restriction). For all 0 ≤ l < L, 1 ≤ i ≤ p and
xl+1,i ∈ RIl+1,i:

Rl r
T
l+1,i xl+1,i = rTl,iRl,i xl+1,i (6.10)

Il+1,i

l + 1

l

Il,i

Figure 6.4: Local restriction
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6.4 Parallel Implementation of Multigrid Methods

Proof. • For α ∈ Il,i:

(rTl,iRl,i xl+1,i)α = (Rl,i xl+1,i)α (Def. of rl,i, α ∈ Il,i)

=
∑

β∈Il+1,i

θl,l+1
α,β (xl+1,i)β (Def. of Rl,i, (6.9))

=
∑
β∈Il+1

θl,l+1
α,β (rTl+1,i xl+1,i)β (Def. of rl+1,i)

= (Rl r
T
l+1,i xl+1,i)α

Here we used that

(rTl+1,ixl+1,i)β =

{
(xl+1,i)β β ∈ Il+1,i

0 β /∈ Il+1,i.

• For α /∈ Il,i: In this case (6.8) implies

α /∈ Il,i =⇒ ∀β ∈ Il+1,i : θl,l+1
α,β = 0.

So

(Rl r
T
l+1,i xl+1,i)α =

∑
β∈Il+1,i

θl,l+1
α,β (xl+1,i)β = 0

and

(rTl,iRl,i xl+1,i)α = 0

since α /∈ Il,i.

Observation 6.3 (Local prolongation). For all 0 ≤ l < L, 1 ≤ i ≤ p and
xl ∈ RIl:

rl+1,i RT
l xl︸ ︷︷ ︸

global, seq. prolong.︸ ︷︷ ︸
on subdom. i

= RT
l,i rl,i xl︸ ︷︷ ︸

on subdom. i︸ ︷︷ ︸
local prolongation

(6.11)

Proof. Consider β ∈ Il+1,i.

(RT
l,irl,ixl)β =

∑
α∈Il,i

θl,l+1
α,β (rl,ixl)α (Def. of RT

l,i)

=
∑
α∈Il,i

θl,l+1
α,β (xl)α (Def. of rl,i, α ∈ Il,i)

=
∑
α∈Il

θl,l+1
α,β (xl)α (due to assumption (6.8))
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Now these two observations can be used as follows. Given any xl+1 ∈ RIl+1,
decompose it into xl+1,i such that

xl+1 =

p∑
i=1

rTl+1,i xl+1,i.

Then

Rl xl+1 = Rl

p∑
i=1

rTl+1,i xl+1,i

=

p∑
i=1

Rl r
T
l+1,i xl+1,i

=

p∑
i=1

rTl,iRl,i xl+1,i

where the right-hand side is again an additive decomposition on the coarser grid.
This can be iterated over all levels to get

R0R1 · · ·Rl xl+1 =

p∑
i=1

rT0,iR0,iR1,i · · ·Rl,i xl+1,i. (6.12)

For the prolongation we get for any l < L by recursive application of obser-
vation 6.3:

rL,iR
T
L−1 · · ·RT

l+1R
T
l xl = RT

L−1,i rL−1,iR
T
L−2 · · ·RT

l xl

= RT
L−1,i · · ·RT

l,i rl,i xl.
(6.13)

Coarse Grid correction in two level Schwarz

Eq. (6.12) and (6.13) immediately show how to implement the coarse grid cor-
rection in two level Schwarz:

1. Compute defect.

2. Compute additive splitting.

3. Restrict locally over all levels until l = 0 is reached.

4. Sum defect over all partitions, requires nearest neighbor. Communication.

5. Solve coarse grid problem (either parallel or sequentially).

6. Communicate required parts of corrections to each processor.

7. Prolongate corrections over all levels until l = L is reached.

Note that no communication is needed at intermediate levels.
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6.4 Parallel Implementation of Multigrid Methods

Application to Multigrid

On each level do:

1. Smooth (includes communication).

2. Compute defect, do additive decomposition.

3. Restrict locally.

4. Sum defect over partitions (communication required).

5. Solve coarse grid problem recursively (includes communication).

6. Provided correction is available on partition prolongate locally.

7. Smooth (includes communication).

2

1

0

Hoverlap overlap

RAS decomposition

Figure 6.5: Data decomposition with minimal overlap and RAS smoother.

Observe that condition (6.8) is satisfied.

Non-overlapping Multigrid Implementation

The data decomposition from figure 6.6 also satisfies (6.8). Note that there is
no overlap with the other subdomains, except in codimension 1.

H

Figure 6.6: Data decomposition without overlap
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This data decomposition corresponds to a non-overlapping decomposition

Ω̄ =

p⋃
i=1

Ω̄i, Ωi ∩ Ωj = ∅ ∀i 6= j.

We may define the linear and bilinear forms

li(v) :=

∫
Ωi

fv dx, ai(u, v) :=

∫
Ωi

(K∇u) · ∇v dx, i = 1, . . . , p. (6.14)

With the index sets

Ĩl,i := {α ∈ Il : supp(φlα) ∩ Ωi 6= ∅}, i = 1, . . . , p (6.15)

we define the right-hand side vectors and matrices

bl,i ∈ RĨl,i (bl,i)α := li(φ
l
α),

Al,i ∈ RĨl,i×Ĩl,i (Al,i)α,β := ai(φ
l
β, φ

l
α).

Together with the index sets we have the restriction operators R̃l,i : RIl → RĨl,i

given as usual by
(R̃l,i xl)α := (x)α, ∀α ∈ Ĩl,i.

Since the Ωi form a partitioning of Ω we have

l(v) =

p∑
i=1

li(v), a(u, v) =

p∑
i=1

ai(u, v)

and as a consequence

bl =

p∑
i=1

R̃T
l,ibl,i, Al =

p∑
i=1

R̃T
l,iAl,iR̃l,i.

This representation is similar to the local stiffness matrix in finite element as-
sembly.

Now if we consider the computation of the defect on level l for a given iterate
xkl , we obtain

dkl = bl − Alx
k
l =

p∑
i=1

R̃T
l,ibl,i −

p∑
i=1

R̃T
l,iAl,iR̃l,ix

k
l

=
k∑
i=1

R̃T
l,i(bl,i − Al,i(R̃l,ix

k
l )) =

p∑
i=1

R̃T
l,id

k
l,i.

This means:
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• The quantity dkl,i = bl,i − Al,i x
k
l,i can be computed locally, without com-

munication provided xkl,i = R̃l,ix
k
l is available.

• dkl =
∑p

i=1 d
k
l,i is an additive representation of the defect which is exactly

what is needed to apply observation 6.2 for parallel restriction.

Thus, in the non-overlapping version, no communication is needed in restriction.
However, there is an additional problem in the smoother: For α ∈ Il,i ∩ Il,j 6= ∅
and i 6= j neither processor can compute the correction implied by the Jacobi or
Gauß-Seidel smoothers since a(φlα, φ

l
α) is not available. There are two options:

• Use additional storage and a single communication during the setup phase
to store the missing entries a(φlβ, φ

l
α). (For a hybrid Gauß-Seidel smoother

an additional non-overlapping decomposition of the index set Il =
⋃p
i=1 Îl,i,

Îl,i ∩ Îl,j = ∅ ∀i 6= j, Îl,i ⊆ Ĩl,i is needed.)

• For the BPX method a(φlα, φ
l
α) ≈ hd−2

l is assumed and no additional
storage and communication is necessary.

6.5 A Convergence Proof for Multilevel Methods

This proof applies to MDS and to multiplicative V-cycle multigrid with one
Gauß-Seidel pre-smoothing step. It uses the Schwarz theory and follows the
presentation in Smith et al. [1996].

Define the a-projection Pl : H1(Ω)→ Vl to level l as

a(Plu, v) = a(u, v) ∀v ∈ Vl.

Practically a computation of Plu would involve the solution of a linear system
with the matrix Al.

With the help of the a-projection we can define the splitting

u0 := P0u,

ul := (Pl −Pl−1)u for l > 0.

Lemma 6.4 (Properties of Pl). Assume a is symmetric. Given u ∈ Vh = VL
the projection Pl satisfies

1. u =
∑L

l=0 ul and

2. a(ul, uk) =

{
0 l > k,

a(u, ul) l = k.
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Proof. 1.
L∑
l=0

ul = P0u+ (P1u−P0u) + (P2u−P1u)

+ · · ·+ (PLu−PL−1u)

= PLu = u

The last equality

holds as u ∈ VL.

2. Assume l ≥ k > 0.

a(ul, uk) = a(Plu−Pl−1u,Pku−Pk−1u)

= a(Plu,Pku)− a(Plu,Pk−1u)

− a(Pl−1u,Pku) + a(Pl−1u,Pk−1u)

= a(Plu,Pku)− a(Pl−1u,Pku) (*)

=

{
a(u,Pku)− a(u,Pku) = 0 if l − 1 ≥ k ⇐⇒ l > k,

a(u,Plu)− a(Pl−1u, u) = a(u, ul) if l = k.

For (*) we used that a(Plu,Pk−1u) = a(u,Pk−1u) since Pk−1u ∈ Vl
and a(Pl−1u,Pk−1u) = a(u,Pk−1u) as Pk−1u ∈ Vl−1.
Assume l > k = 0.

a(ul, u0) = a(Plu−Pl−1u,P0u)

= a(Plu,P0u)− a(Pl−1u,P0u)

= a(u,P0u)− a(u,P0u) (*)
= 0.

For (*) we used that P0 ∈ V0 ⊆ Vl−1 ⊂ Vl.
Assume l = k = 0.

a(u0, u0) = a(P0u,P0u) = a(u,P0u)

since P0u ∈ V0.

For any function w ∈ Vl, l ≥ 0, we can write

w =
∑
i∈Il

w(sli)φ
l
i =

∑
i∈Il

Il(φ
l
iw)

with the Lagrange points sli and the Lagrange interpolation operator Il. Here
the φli act as a “partition of unity” (up to the Dirichlet boundary and Il(φ

l
iw) =

w(si), φ
l
i ∈ Vl,i = span{φli}). Then for u ∈ Vh = VL

u = u0 +
L∑
l=1

∑
i∈Il

Il(φ
l
iul)︸ ︷︷ ︸

=:ul,i

= u0 +
L∑
l=1

∑
i∈Il

ul,i

106



6.5 A Convergence Proof for Multilevel Methods

forms a splitting of u since

u0 +
L∑
l=1

∑
i∈Il

Il(φ
l
iul) = u0 +

L∑
l=1

∑
i∈Il

ul(s
l
i)φ

l
i︸ ︷︷ ︸

=ul

=
L∑
l=0

ul = u.

Now we show that this splitting is stable.

Lemma 6.5. Assume the variational problem is H2-regular and the meshes Tl
are quasi-uniform. Then there exists a constant c > 0 independent of h such
that for all u ∈ Vh:

a(u0, u0) +
L∑
l=1

∑
i∈Il

a(ul,i, ul,i) ≤ c a(u, u).

Proof. 1. Let l > 0.∑
i∈Il

a(ul,i, ul,i) ≤
∑
i∈Il

c|ul,i|21,Ω (cont., equiv. of |.|1, ‖.‖1)

≤ c
∑
i∈Il

|ul,i|21,Ωl,i (Ωl,i := suppφli)

= c
∑
i∈Il

|Il(φ
l
iul)|21,Ωl,i (Def. of ul,i)

≤ c
∑
i∈Il

|φliul|21,Ωl,i (Lemma 5.7)

= c
∑
i∈Il

∫
Ωl,i

‖∇(φliul)‖2
2 dx

≤ c
∑
i∈Il

∫
Ωl,i

‖φli∇ul‖2
2 + ‖ul∇φli‖2

2 dx

≤ c
∑
i∈Il

(
|ul|21,Ωl,i +

1

h2
l,i

‖ul‖2
0,Ωl,i

)

≤ c

(
|ul|21,Ω +

1

h2
l

‖ul‖2
0,Ω

)
(Tl quasi-uniform)

2. We need to estimate ‖ul‖0,Ω. The continuous problem

U ∈ H1
0(Ω) : a(U, v) = l(v) ∀v ∈ H1

0(Ω)
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is H2-regular, i.e. U ∈ H2(Ω). Due to Aubin-Nitsche, see for example
[Braess, 2003, Lemma 7.6], the FE solution

Uh ∈ Vh : a(Uh, v) = l(v) ∀v ∈ Vh

satisfies the estimate

‖U − Uh‖0,Ω ≤ ch|U − Uh|1,Ω.

We apply this to the a-projection in the following way: For given ul ∈ Vl,
l > 0, we define a linear form l(v) := a(ul, v). Then

• U ∈ H1
0(Ω) : a(U, v) = a(ul, v)∀v ∈ H1

0(Ω) is solved by U = ul.

• Pl−1u ∈ Vl−1 : a(Pl−1ul, v) = a(ul, v)∀v ∈ Vl−1 is the a-projection
of ul.

And we have the estimate

‖ul −Pl−1ul‖0,Ω ≤ chl−1|ul −Pl−1ul|1,Ω.

3. The Pl are projections, i.e. P2
l = Pl. Moreover, for Pl−1Plu we get

a(Pl−1(Plu), v) = a(Plu, v) = a(u, v) ∀v ∈ Vl−1 ⊂ Vl

and on the other hand

a(Pl−1u, v) = a(u, v) ∀v ∈ Vl−1.

So we have
Pl−1Plu = Pl−1u.

As a consequence, for l > 0:

Pl−1ul = Pl−1(Plu−Pl−1u)

= Pl−1Plu−P2
l−1u

= Pl−1u−Pl−1u

= 0.

Combining that with 2. we obtain

‖ul‖0,Ω = ‖ul −Pl−1ul‖0,Ω ≤ chl−1|ul −Pl−1ul|1,Ω = chl−1|ul|1,Ω.
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4. Now back to 1.:∑
i∈Il

a(ul,i, ul,i) ≤ c

(
|ul|21,Ω +

1

h2
l

‖ul‖2
0,Ω

)

≤ c

|ul|21,Ω + (
hl−1

hl︸︷︷︸
=2

)2|ul|21,Ω


≤ c|ul|21,Ω
≤ c a(ul, ul) (Ellipticity).

5. Now sum over all levels.

a(u0, u0) +
L∑
l=1

∑
i∈Il

a(ul,i, ul,i)

≤ a(u0, u0) + c
L∑
l=1

a(ul, ul) (4.)

≤ c

L∑
l=0

a(ul, ul)

= c

L∑
l=0

a(u, ul) (Lemma 6.4)

= c a(u,
L∑
l=0

ul)

= c a(u, u) (Lemma 6.4)

Now we search the upper bound. Define the restriction operators

R0 : RIL → RI0, (R0)α,β := θ0,L
α,β = φ0

α(sβ),

Rl,i : RIl → R{i}, (Rl,i)i,β := θl,Li,β = φli(sβ)

and the Schwarz projection operators

A0 := R0ALR
T
0 , P0 := RT

0A
−1
0 R0A,

Al,i := Rl,iALR
T
l,i, Pl,i := RT

l,iA
−1
l,i Rl,iA.

Lemma 6.6. With the definitions above there exists c > 0 independent of the
mesh size h such that

〈(P0 +
L∑
l=1

∑
i∈Il

Pl,i)x, x〉AL ≤ (1 + Lc)〈x, x〉AL.
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Proof. On every level l there exists a coloring of the index set into at most Nc

colors

Il =

Nc⋃
c=1

Il,c, Il,c ∩ Il,c′ = ∅ ∀c 6= c′,

such that
〈Pl,ix, Pl,jx〉AL = 0 when c(i) = c(j).

Figure 6.7: Coloring of index set

Set P̃l,c :=
∑

i∈Il,c Pl,i. Then P̃l,c is also an AL-orthogonal projection.

〈(P0 +
L∑
l=1

∑
i∈Il

Pl,i)x, x〉AL

= 〈(P0 +
L∑
l=1

Nc∑
c=1

P̃l,c)x, x〉AL

= 〈P0x, x〉AL +
L∑
l=1

Nc∑
c=1

〈P̃l,cx, x〉AL

= 〈P0x, P0x〉AL +
L∑
l=1

Nc∑
c=1

〈P̃l,cx, P̃l,cx〉AL (Lemma 4.4)

≤ (1 + LNc)〈x, x〉AL.

In order to handle the multiplicative method a bound for ρ(E ) in the strength-
ened Cauchy-Schwarz inequality (assumption 4.2) is necessary. We will prove
this in the form of an optimal bound.
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Lemma 6.7 (Zhang [1992]). Let A ∈ Rm×n be a matrix with at most c nonzero
entries per column. Then

‖A‖2 ≤ c
1
2 max

i
(
∑
j

(A)2
i,j)

1
2 .

Proof. Recall the Raleigh quotient from observation 2.4:

‖A‖2 = sup
‖x‖2 6=0

‖Ax‖2

‖x‖2
.

Set

θij :=

{
1 (A)i,j 6= 0,

0 otherwise.

Then

‖Ax‖2
2 =

∑
i

(∑
j

(A)i,j(x)j

)2

=
∑
i

(∑
j

(A)i,jθij(x)j

)2

≤
∑
i

(
(
∑
j

(A)2
i,j)(
∑
j

θij(x)2
j)

)
(Cauchy-Schwarz)

≤ max
i

(
∑
j

(A)2
i,j)(
∑
i

∑
j

θij(x)2
j)

= max
i

(
∑
j

(A)2
i,j)
∑
j

(x)2
j

∑
i

θij︸ ︷︷ ︸
≤c

≤ cmax
i

(
∑
j

(A)2
i,j)‖x‖2

2.

Finally, combine this with the definition of ‖A‖2.

Lemma 6.8. Let T0 be shape regular and quasi-uniform. Tl is obtained from
Tl−1 through regular subdivision of each element into 2d elements. K is piecewise
constant on T0. Then there exist constants c1 and c2 independent of h and L
such that

1. a(u, v) ≤ c1 2−d|k−l|/2 a(u, u)
1
2a(v, v)

1
2 ∀u ∈ Vl,i, v ∈ Vk,j,

2. ρ(E ) ≤ c2.
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Proof. 1. Let u ∈ Vl,i, v ∈ Vk,j with k ≥ l.

a(u, v) =

∫
Ω

(K∇u) · ∇v dx

=

∫
Ωl,i∩Ωk,j

(K∇u) · ∇v dx

≤

 ∫
Ωl,i∩Ωk,j

(K∇u) · ∇u dx


1
2
 ∫

Ωl,i∩Ωk,j

(K∇v) · ∇v dx


1
2

≤

 ∫
Ωl,i∩Ωk,j

(K∇u) · ∇u dx


1
2

a(v, v)
1
2

In the last step we enlarged the integration domain for the second integral.
Further ∫

Ωl,i∩Ωk,j

(K∇u) · ∇u dx

≤ c

∫
Ωl,i∩Ωk,j

‖∇u‖2
2 dx

= c
∑

T∈Tl:T∩Ωl,i 6=∅

∫
T∩Ωk,j

‖∇u‖2
2 dx

= c
∑

T∈Tl:T∩Ωl,i 6=∅

‖∇u‖2
2

∫
T∩Ωk,j

1 dx (*)

≤ c
∑

T∈Tl:T∩Ωl,i 6=∅

‖∇u‖2
2 |T |︸ ︷︷ ︸

=|u|21,T

c′

2d|k−l|

 (**)

≤ c

2d|k−l|

∑
T∈Tl:T∩Ωl,i 6=∅

|u|21,T

=
c

2d|k−l|
|u|21,Ω (***)

≤ c

α
2−d|k−l|a(u, u)

For (*) we used that ∇u is constant on T . For (**) we used that Ωk,j

112



6.5 A Convergence Proof for Multilevel Methods

consists of up to c′ elements t ∈ Tk and that the volume of t ∈ Tk, being
a refinement of T , is |T |

2d|k−l|
. For (***) note that u = 0 outside of Ωl,i.

Finally take the square roots and use the symmetry.

2. Let u ∈ Vl,i, v ∈ Vk,j with k ≥ j, then

• Ωl,i ∩ Ωk,j = ∅ =⇒ a(u, v) = 0

• Ωk,j ⊆ T ∈ Tl =⇒ a(u, v) = 0 because

∫
Ωl,i∩Ωk,j

(K∇u) · ∇v dx =

∫
T

(K∇u) · ∇v dx

= −
∫
T

∇ · (K∇u)v dx+

∫
∂T

(K∇u) · nv ds

= 0

as ∇ · (K∇u) = 0 since u ∈ P1 or Q1 and v = 0 on ∂T since
suppφlk = Ωk,j ⊆ T .

3. The structure of E :
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l = 1

l = 2

l = 3

l = L

l = 1 l = 2 l = 3 l = L

nc nc nc c(2d−1)k−l

nc nc1

1

1

c(2d−1)1 c(2d−1)L−2

nc

a(φ2
i , φ

1
j) = a(φ1

j , φ
2
i )

Figure 6.8: Structure of E

As a consequence of 2. a(φli, φ
k
j ) 6= 0 for at most(

2d−1
)|k−l|

c = c 2(d−1)|k−l|

basis functions, where 2d−1 stands for the surface, |k− l| is the number of
refinements and c is the number of finitely many edges/faces of T ∈ Tl in
supp Ωl,i.
Introduce the level-wise block structure of E :

El.k ∈ RIl×Ik, 1 ≤ l, k ≤ L

with
(El,k)i,j = (E )i,j.
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El,k has the following properties:
• All entries have the size at most c1 2−d|k−l|/2.
• El,k = E T

l,k

• k ≥ l: at most c2 2(d−1)|k−l| entries per row are non-zero.
• k ≥ l: at most nc entries per column are non-zero.

So, together with Lemma 6.7 we obtain for k ≥ l

‖El,k‖2 ≤ n
1
2
c max

i

(
c2 2(d−1)|k−l|

(
c1 2−d|k−l|/2

)2
) 1

2

︸ ︷︷ ︸
independent of i

= n1/2
c c

1/2
2 c12

−|k−l|/2

= c 2−|k−l|/2.

4. Finally define E ∈ RL×L as

(E)l,k := ‖El,k‖2.

E is symmetric since El,k = E T
l,k and ‖A‖2 = ‖AT‖2 for any matrix A

([Hackbusch, 1991, Folgerung 2.9.4]).
Now we show

ρ(E ) = ‖E ‖2 ≤ ‖E‖2.

This follows from

‖E ‖2
2 = sup

‖x‖22=1

‖E x‖2
2

= sup
‖x‖22=1

L∑
l=1

(
‖

L∑
k=1

El,kxk‖2

)2

(exploit block structure x = (x1, . . . , xL)T )

≤ sup
‖x‖22=1

L∑
l=1

(
L∑
k=1

‖El,kxk‖2

)2

(triangle ineq.)

≤ sup
‖x‖22=1

L∑
l=1

 L∑
k=1

‖El,k‖2 ‖xk‖2︸ ︷︷ ︸
=:(z)k, z∈RL


2

(associated matrix norm)

= sup
‖z‖22=1

L∑
l=1

(
L∑
k=1

(E)l,k(z)k

)2

(‖x‖2
2 =

∑
k

‖xk‖2
2 =

∑
k

(z)2
k = ‖z‖2

2)

= sup
‖z‖22=1

‖Ez‖2
2

= ‖E‖2
2.
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5. Now combine 3. and 4.:

‖E‖2 = ρ(E) ≤ ‖E‖∞ = max
l
c

L∑
k=1

(
1

2
)
|k−l|

2 ≤ c

1− (1
2)

1
2

which is independent of L. For the last estimate we used the geometric
series.

6.6 Algebraic Multigrid (AMG)

The Need for AMG

Convergence of standard geometric multigrid (GMG) and many other methods
such as additive Schwarz is often not robust with respect to problem parameters
of the PDE. Consider the general elliptic problem

∇ · (bu−K∇u) + cu = f in Ω.

A method where the convergence rate does not depend on b, K and c is called
robust.

Typical problems are

• c < 0 and |c| large: indefinite Helmholtz problem

• ‖b‖ � ‖K‖: convection-dominated problem

• K = k(x)I where k(x) is discontinuous with large “jumps”

• K = QTDQ where max dii � min dii: anisotropic problem

• irregular/anisotropic meshes can have similar effects.

Typical remedies in GMG invented to solve these problems:

• robust smoothers: line and plane relaxation, ILU (anisotropic problems),
streamline ordering (convective problem)

• semi-coarsening (anisotropic problem)

• matrix-dependent prolongations and restrictions, Galerkin coarse grid prod-
uct (variable coefficient problem)

Complex geometries: generating coarse grids of good quality resolving complex
geometries is an enormous challenge.
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Software issue:

• many commercial simulators have matrix-vector interface to linear solver
and only a single grid.

• geometric multigrid requires grid hierarchy and solver is intertwined with
discretization.

AMG Introduction

AMG mimics the GMG method by

• Construct a hierarchy of linear systems Al, 0 ≤ l < L.

• Al is constructed using solely information from Al+1 (there are exceptions).

• Usually Al is obtained by Al = RlAl+1R
T
l where RT

l is a prolongation
operator (rectangular matrix, sparse, full rank).

• Then a usual multiplicative (V-, W-, . . . ) cycle is performed.

• Intentionally only simple smoothers such as Jacobi, Gauß-Seidel, SSOR
are used.

• All operations are local and parallelizable similar as in GMG.

Algebraic smoothness

Smoothing and coarse grid correction are complementary: coarse grid correc-
tion should reduce errors that are not reduced by the smoother. For the Pois-
son problem and standard FE this corresponds to low- and high-frequency sine
waves. In general elliptic problems this is not so easy. Alternatively define al-
gebraic smooth errors as those where Se ≈ e with S the iteration matrix of
the smoother. Theoretical investigations suggest a more rigorous definition. We
introduce the following scalar product and corresponding vector norms:

〈x, y〉0 := 〈Dx, y〉,
〈x, y〉1 := 〈Ax, y〉,
〈x, y〉2 := 〈D−1Ax,Ay〉,
‖x‖i :=

√
〈x, x〉i

where 〈·, ·〉 is the Euclidean scalar product, A a symmetric positive-definite
matrix and D := diag(A).
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Observation 6.9. The scale of scalar products and norms satisfies the following
relations:

〈x, y〉1 ≤ ‖x‖0‖y‖2,

‖x‖2
2 ≤ ρ(D−1A)‖x‖2

1,

‖x‖2
1 ≤ ρ(D−1A)‖x‖2

0.

Proof. The first inequality follows from the Definition and Cauchy Schwarz:

〈x, y〉1 = 〈x,Ay〉
= 〈D

1
2x,D−

1
2Ay〉

≤
√
〈D 1

2x,D
1
2x〉
√
〈D− 1

2Ay,D−
1
2Ay〉

= ‖x‖0‖y‖2.

For the second inequality holds

sup
x 6=0

‖x‖2
2

‖x‖2
1

= sup
x 6=0

〈D−1Ax,Ax〉
〈Ax, x〉

= sup
x=A−

1
2 y 6=0

〈A 1
2D−1A

1
2y, y〉

〈y, y〉

= ρ(A
1
2D−1A

1
2 )

= ρ(D−1A).

The third can be proven in the same way.

Definition 6.10. The smoother with iteration matrix S is said to have the
algebraic smoothing property if there exists σ > 0 such that

‖Se‖2
1 ≤ ‖e‖2

1 − σ‖e‖2
2.

From ‖Se‖21
‖e‖21

≤ 1 − σ ‖e‖
2
2

‖e‖21
we deduce that the reduction of the error is small

if ‖e‖2 � ‖e‖1 (provided σ is reasonably large). We characterize algebraically
smooth errors as those where

‖e‖2 � ‖e‖1.

Lemma 6.11. Provided 0 < ω < 2
ρ(D−1A) , the damped Jacobi iteration

S = I−ωD−1A has the algebraic smoothing property with σ = ω(2−ωρ(D−1A)).
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Proof.

‖Se‖2
1 = 〈Se, Se〉1

= 〈A(I − ωD−1A)e, (I − ωD−1A)e〉
= 〈Ae, e〉 − 2ω〈AD−1Ae, e〉+ ω2〈AD−1Ae,D−1Ae〉
≤ ‖e‖2

1 − 2ω‖e‖2
2 + ω2〈D−

1
2AD−

1
2D−

1
2Ae,D−

1
2Ae〉

≤ ‖e‖2
1 − 2ω‖e‖2

2 + ω2ρ(D−1A)‖e‖2
2

= ‖e‖2
1 − ω(2− ωρ(D−1A))‖e‖2

2

From the assumption 0 < ω < 2
ρ(D−1A) follows that ω(2− ωρ(D−1A)) > 0.

Interpretation of algebraic smoothness

e is algebraically smooth if ‖e‖2 � ‖e‖1. Since ‖e‖2
1 ≤ ‖e‖0‖e‖2 � ‖e‖0‖e‖1

this implies also ‖e‖1 � ‖e‖0.

Observation 6.12. Suppose A is a symmetric positive-definite M-matrix. Then

‖e‖2
1 =

1

2

∑
i

∑
j

−(A)i,j ((e)i − (e)j)
2 +

∑
i

(e)2
i

(∑
j

(A)i,j

)
.

Proof.

‖e‖2
1 = 〈Ae, e〉

=
∑
i

(∑
j

(A)i,j(e)j

)
(e)i

=
∑
i

∑
j

(
(A)i,j

1

2

[
(e)2

i + (e)2
j − ((e)i − (e)j)

2
])

((a− b)2 = a2 − 2ab+ b2)

=
1

2

∑
i

∑
j

(
−(A)i,j ((e)i − (e)j)

2
)

+
∑
i

(A)i,i(e)
2
i

+
∑
i

∑
j>i

((A)i,j(e)i + (A)j,i(e)j)

=
1

2

∑
i

∑
j

(
−(A)i,j ((e)i − (e)j)

2
)

+
∑
i

(∑
j

(A)i,j

)
(e)2

i
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i j

i

j (A)j,i(e)j

(A)i,j(e)i

Figure 6.9: The structure of matrix A

From the observation and ‖e‖1 � ‖e‖0 we conclude∑
i

(
1

2

∑
j

(
−(A)i,j((e)i − (e)j)

2
)

+

(∑
j

(A)i,j

)
(e)2

i

)
�
∑
i

(A)i,i(e)
2
i .

Assuming row sum zero in all rows (true if there is no zero order term) then
on average for every i (sufficient condition):∑

j

(
−(A)i,j((e)i − (e)j)

2
)
� (A)i,i(e)

2
i

⇐⇒
∑
j 6=i

|(A)i,j|
(A)i,i

((e)i − (e)j)
2

(e)2
i

� 1.

In the sum the term for i = j is zero and since A is a M-matrix (A)i,j < 0 for
i 6= j. Therefore all terms are nonnegative and

|(A)i,j|
(A)i,i

= O(1) =⇒ |(e)i − (e)j|
|(e)i|

small, and

|(e)i − (e)j|
|(e)i|

large =⇒ |(A)i,j|
(A)i,i

small.

From this follows: if |(A)i,j |
(A)i,i

= O(1) the errors in unknown i and j are about
equal and (e)i can be interpolated from (e)j.
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Algebraic Multigrid (AMG) Algorithm

1. Given Ah ∈ RIh×Ih a symmetric positive-definite M-matrix. Set

Si := {j ∈ Ih : j 6= i and
|(A)i,j|
(A)i,i

≥ α}

with, for example, α ∈ [1
4 ,

1
2 ]. Si is the set of strongly connected neighbors

of i ∈ Ih.

2. Partition Ih = IH ∪ (Ih \ IH) = C ∪ F such that

• ∀i ∈ F ∀j ∈ Si : j ∈ C ∨ (∃k ∈ Sj : k ∈ C).
Direct coupling: Si ∩ C 6= ∅.
• |IH | is not too large, preferably |IH ||Ih| ≈ 2−d.

3. Define interpolation as

(RT
He)i =

{
(e)i i ∈ C∑

j ωij(e)j i ∈ F

where ωij :=
(A)i,j∑

k∈Si∩C
(A)i,k

.

4. Set AH := RHAhR
T
H and proceed recursively.

A further objective is that AH is as sparse as Ah. This is ensured heuristically
in the partitioning strategy in step 2.

Agglomeration-based AMG

1. As above.

2. Build partitioning

Ih =
N⋃
i=1

Ci, Ci ∩ Cj = ∅ ∀i 6= j

such that for every 1 ≤ i ≤ N , Ci = {α1, . . . , α|Ci|} there exists a chain

αj1, αj2, . . . , αj|Ci|

such that αjk+1
∈ Sαjk , k < |Ci|.

Set IH := {1, . . . , N} and m : Ih → IH as m(i) = j ⇐⇒ i ∈ Cj.
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3. Define piecewise constant interpolation

(RT
He)i = (e)m(i).

4. Set AH := RHAhR
T
H .

Again it needs to be ensured that AH is as sparse as Ah and it needs to be
used within AMLI cycle or with coarse grid extrapolation

xnewh = xoldh + ωRT
HA

−1
H RH(bh − Ahx

old
h ).
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6.6 Algebraic Multigrid (AMG)

Table 6.1: Iteration numbers for various domain decomposition and multigrid
methods. The Laplace equation with Dirichlet boundary conditions
and C∞-solution is solved in a square domain with Q1 finite elements.
Weak scaling was employed with 7682 = 589824 elements per proces-
sor on the finest grid. The coarse grid was 32 = 9 elements per proces-
sor. We compare the single grid additive Schwarz method (SASM),
the single grid multiplicative Schwarz method (SMSM), the two-grid
additive Schwarz method, the multilevel diagonal scaling method (ad-
ditive multigrid with one step Jacobi smoothing) and the multigrid
method with one step of hybrid, symmetric Gauß-Seidel as pre- and
post-smoother. All domain decomposition methods used exact sub-
domain solves with SuperLU. The numbers behind the domain de-
composition acronyms denote the overlap in mesh cells on the finest
grid. Residual reduction was 10−6 with random initial guess.

√
P 1 2 3 4 5 8 10 15 16 20 32

SASM 1 1 67 83 116 131 186 221 310 328 391 -
SASM 2 - 48 58 81 94 133 156 221 235 278 -
SASM 4 - 34 43 58 68 95 112 154 168 200 273
SASM 8 - 26 31 44 48 69 81 114 120 142 196
SMSM 1 1 37 68 114 227
SMSM 2 - 30 49 81 197
SMSM 4 - 23 40 60 109
SMSM 8 - 17 29 45 78
TASM 1 1 36 38 39 39 38 37 37 37 36 36
TASM 2 - 27 28 28 28 27 27 27 27 27 27
TASM 4 - 20 21 21 20 20 20 20 20 20 20
TASM 8 - 15 16 16 16 15 15 15 15 15 15
MDS 15 15 15 15 15 15 15 15 15 15 15
MGC 3 3 3 3 3 3 3 3 3 3 3
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Table 6.2: Total computation time in seconds for various domain decomposi-
tion and multigrid methods. This table corresponds to the iteration
numbers given in Table 6.1. Computations were done on a cluster
consisting of 32 nodes with four 8 Core AMD Opteron 6212 proces-
sors at 2.6 GHz connected by an infiniband network (40G QDR). The
time given does not include the time for the factorization of the sub-
domain problem. Note that for the multigrid methods we provide two
digits after the comma!

√
P

1
2

3
4

5
8

10
15

16
20

32
SA

SM
1

21
2.
8

33
0.
9

40
7.
1

70
8.
7

11
05
.2

14
60
.7

20
73
.5

21
76
.9

26
16
.0

-
SA

SM
2

14
8.
5

23
7.
3

29
1.
6

51
9.
4

80
6.
8

10
24
.5

14
97
.6

15
89

.1
18
75
.8

-
SA

SM
4

11
0.
0

17
7.
4

20
7.
5

37
8.
9

58
5.
6

76
8.
2

10
62
.8

11
55
.8

13
77
.7

18
86
.2

SA
SM

8
81
.7

12
9.
6

16
0.
6

27
3.
3

42
6.
6

55
4.
0

78
6.
9

82
1.
1

97
1.
5

13
50
.5

TA
SM

1
11
6.
3

12
7.
4

21
8.
5

22
0.
1

23
4.
3

22
7.
9

26
1.
9

26
7.
0

25
1.
0

26
6.
6

TA
SM

2
85
.6

99
.5

16
2.
4

16
7.
5

17
2.
8

17
4.
3

20
4.
9

20
3.
8

20
2.
9

22
0.
4

TA
SM

4
66
.1

71
.7

12
1.
2

11
6.
4

12
7.
7

12
7.
7

15
0.
3

15
3.
4

14
2.
3

15
6.
1

TA
SM

8
48
.2

57
.6

98
.3

99
.0

97
.2

97
.2

11
6.
5

11
9.
9

11
4.
3

12
3.
8

M
D
S

2.
54

2.
88

3.
22

3.
29

3.
34

6.
78

7.
04

7.
19

7.
53

13
.6
4

M
G
C

1.
77

1.
91

2.
08

2.
12

2.
12

3.
57

3.
62

3.
64

3.
64

3.
80
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Chapter 7

Nonoverlapping Domain Decomposition
Methods

7.1 Introduction to Iterative Substructuring

We consider the case where Ω is subdivided into two non-overlapping simply
connected subdomains, i.e.

Ω̄1 ∪ Ω̄2 = Ω̄, Ω1 ∩ Ω2 = ∅.

We set
Γ := ∂Ω1 ∩ ∂Ω2.

Ω1 Ω2
Ω1 Ω2

Figure 7.1: model case (left) and general case (right)

Lemma 7.1. The weak formulation of the elliptic problem in Ω is equivalent to
the following two subdomain formulations

a1(u1, v1) =

∫
Ω1

(K∇u1) · ∇v1 dx = (f, v1)0,Ω1
∀v1 ∈ H1

0(Ω1) (7.1a)

a2(u2, v2) =

∫
Ω2

(K∇u2) · ∇v2 dx = (f, v2)0,Ω2
∀v2 ∈ H1

0(Ω2) (7.1b)

u1 = u2 on Γ (7.1c)
a1(u1, R1µ) + a2(u2, R2µ) = (f,R1µ)0,Ω1

+ (f,R2µ)0,Ω2
∀µ ∈ Λ (7.1d)
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Chapter 7 Nonoverlapping Domain Decomposition Methods

where
Λ = {η ∈ H

1
2 (Γ) : η = v|Γ for suitable v ∈ H1

0(Ω)}
and

Ri : Λ→ Vi = {v ∈ H1(Ωi) : v|∂Ωi∩∂Ω = 0}
are extension operators.

Proof. [Quarteroni and Valli, 1999, Lemma 1.2.1]

If Γ∩∂Ω = ∅ we have Λ = H
1
2 (Γ) and if Γ∩∂Ω 6= ∅, Λ is denoted by H

1
2
00(Γ).

Note that (7.1d) is a weak formulation of the strong interface condition

(K∇u1) · n = (K∇u2) · n on Γ

with n the normal to Γ.
The extension operator Ri is not unique. One particular choice is the so called

harmonic extension Hi : Λ→ Vi given as follows:

Hiλ = Riλ+ w

with
w ∈ H1

0(Ωi) : ai(w, v) = −a(Riλ, v) ∀v ∈ H1
0(Ωi).

This means that ui = Hiλ solves the weak formulation of

−∇ · (K∇ui) = 0 in Ωi,

ui = λ on Γ,

ui = 0 on ∂Ωi ∩ ∂Ω.

With this extension one can formulate an operator S : Λ→ Λ′, the so-called
Poincaré-Steklov operator, given by

〈S η, µ〉 =
2∑
i=1

ai(Hiη,Hiµ) ∀η, µ ∈ Λ. (7.2)

It can be shown that S is symmetric, continuous and coercive, i.e. systems of
the form

S η = ξ (7.3)

have a unique solution.
On the discrete level this procedure can be formulated as follows.

Discretize the domain with conforming finite elements such that the interface is
resolved by the mesh, as shown in figure 7.2.

Partition the index set into

Ih = Ih,1 ∪ Ih,2 ∪ Ih,Γ
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7.1 Introduction to Iterative Substructuring

Figure 7.2: Discretization in two subdomains with the mesh resolving the inter-
face

then the linear system exhibits the 3× 3 block structureA11 0 A1Γ

0 A22 A2Γ

AΓ1 AΓ2 AΓΓ

x1

x2

xΓ

 =

b1

b2

bΓ

 . (7.4)

Block-Gauß elimination of the blocks AΓi results in the block triangular systemA11 0 A1Γ

0 A22 A2Γ

0 0 S

x1

x2

xΓ

 =

b1

b2

g

 (7.5)

with

S = AΓΓ − AΓ1A
−1
11 A1Γ − AΓ2A

−1
22 A2Γ,

g = bΓ − AΓ1A
−1
11 b1 − AΓ2A

−1
22 b2.

(7.6)

A general procedure to solve (7.4) would consist of the following steps:

1. Compute S, g.

2. Solve SxΓ = g.

3. Backsolve (7.5) for x1 and x2.

The advantages are

• |IΓ| � |Ih|

• The backsolves can be done in parallel.
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Chapter 7 Nonoverlapping Domain Decomposition Methods

A disadvantage is that S is in general not sparse.
It can be shown that the matrix S is actually a discretization of the Poincaré-

Steklov operator S . Since S : H
1
2 (Γ)→ H−

1
2 (Γ) it is better conditioned than

the original system A : H1
0(Ω)→ H−1(Ω) and κ(S) = O(h−1) can be shown.

This suggests to solve SxΓ = g iteratively with the conjugate gradient method
which requires only matrix-vector products Sx. These products can be done
“on the fly” without explicitly assembling S and exploiting (7.6) instead. The
corresponding CG-method requires O(h

1
2 ) steps and efficient subdomain solvers.

Note that the subdomain solves Aiixi = bi − AiΓxΓ involve the harmonic
extensions into the subdomains.

A disadvantage of this iterative approach is that the subdomain problems
must be solved exactly. Consider for simplicity the Richardson-iteration for the
interface problem

xk+1
Γ = xkΓ + ω(g − SxkΓ) (7.7)

then g − Sy = 0 ⇐⇒ y = xΓ is a necessary condition for the iteration to
converge to xΓ.

An alternative formulation that overcomes this problem is based on the LDLT
decomposition of A given by

A =

 I1,1 0 0
0 I2,2 0

AΓ,1A
−1
1,1 AΓ,2A

−2
2,2 IΓ,Γ


︸ ︷︷ ︸

=:L

A1,1 0 0
0 A2,2 0
0 0 S


︸ ︷︷ ︸

=:D

I1,1 0 A−1
1,1A1,Γ

0 I2,2 A−1
2,2A1,Γ

0 0 IΓ,Γ


︸ ︷︷ ︸

=LT

.

(7.8)
Now iteratively solve the original Ax = b by using an approximation of A from
(7.7) as a preconditioner where A−1

1,1, A
−1
2,2 and S are replaced by approximations.

Remark 7.2. Setting

D̃ :=

A1,1 0 0
0 A2,2 0
0 0 IΓ,Γ

 and Ã := LD̃LT

yields the same iterates as (7.7) for the interface unknowns xΓ.

Proof. Straightforward calculation for the iteration matrix I − ωÃ−1A.

7.2 Two Subdomain Preconditioners

The iterative solution of the Schur complement system is not efficient enough for
larger problems due to the growth in condition number. Therefore, precondition-
ers for the Schur complement are required. In this section some preconditioners
for the case of two subdomains are introduced.
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7.2 Two Subdomain Preconditioners

J-Operator

For the model problem −∆u = f in Ω = (0, 2)× (0, 1), discretized on a struc-
tured quadrilateral mesh with h = (n + 1)−1 the Schur complement can be
explicitly diagonalized

S = FΛF

where F ∈ Rn×n is

(F )i,j =

√
2

n+ 1
sin

(
ijπ

n+ 1

)
, i, j ∈ {1, . . . , n}

and Λ ∈ Rn×n can be approximated by

Λ ≈ Σ, (Σ)i,i = 2 sin

(
iπ

2(n+ 1)

)
.

It can be shown that the preconditioner

J := FΣ−1F

is spectrally equivalent to S, for details see Chan and Mathew [1994].
In case of non-uniform grids mappings to/from the model region and mesh

are used. The quality of the preconditioner then strongly depends on the mesh
and the form of the domain.

The multiplication with F can be done with O(n log n) operations using FFT.

Neumann-Dirichlet Preconditioner

The matrix block AΓ,Γ from (7.4) can be split into

(AΓ,Γ)i,j = a(φj, φi) = a1(φj, φi) + a2(φj, φi) = (A
(1)
Γ,Γ)i,j + (A

(2)
Γ,Γ)i,j, i, j ∈ IΓ,

which gives rise to a splitting of the Schur complement S into

S = A
(1)
Γ,Γ − AΓ,1A

−1
1,1A1,Γ + A

(2)
Γ,Γ − AΓ,2A

−1
2,2A2,Γ =: S(1) + S(2).

In addition, S(i) occurs as the Schur complement of the 2× 2 block matrix

A(i) =

(
Ai,i Ai,Γ

AΓ,i A
(i)
Γ,Γ

)
(7.9)

when eliminating the block AΓ,i. Note that A(i) is a discretization of the varia-
tional problem with Neumann conditions on Γ.
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The Neumann-Dirichlet preconditioner is based on the idea that in the case
of symmetry of the domain, K, and mesh with respect to Γ, we have

S(1) = S(2) =⇒ S = S(1) + S(2) = 2S(1).

In that case BND = S(1)−1 is a spectrally equivalent preconditioner. Since S
is not directly available we apply the CG method directly to the (right) pre-
conditioned system SS(1)−1. This amounts to be able to compute matrix-vector
products

SS(1)−1
x = (S(1) + S(2))S(1)−1

x = x+ S(2)S(1)−1
x.

y = S(2)S(1)−1
x can be computed in two steps:

1. Compute v = S(1)−1
x.

2. Multiply y = S(2)v.

Realization of Step 1: For A(1) from (7.9) we have the LDLT decomposition:

A(1) =

(
I 0

AΓ,1A
−1
1,1 I

)(
A1,1 0

0 S(1)

)(
I A−1

1,1A1,Γ

0 I

)
from which the following representation of the inverse A(1)−1 can be obtained:

A(1)−1
=

(
A−1

1,1 + A−1
1,1A1,ΓS

(1)−1
AΓ,1A

−1
1,1 −A−1

1,1A1,ΓS
(1)−1

−S(1)−1
AΓ,1A

−1
1,1 S(1)−1

)

with R(1) : RI1∪IΓ → RIΓ the usual restriction (R(1)x)i = (x)i ∀i ∈ IΓ, we obtain

R(1)A(1)−1
R(1)T =

(
0 I

)(∗ ∗
∗ S(1)−1

)(
0
I

)
=
(
0 I

)( ∗
S(1)−1

)
= S(1)−1

.

So we can complete step 1 by

v = S(1)−1
x = R(1)A(1)−1

R(1)Tx

which involves the solution of a linear system of the form

A(1)w = R(1)Tx

involving the Neumann data x.

130



7.3 Many Subdomains

Realization of step 2:

y = S(2)v = (A
(2)
Γ,Γ − AΓ,2A

−1
2,2A2,Γ)v

involves the solution of the linear system

A2,2z = A2,Γv

involving Dirichlet data on Γ.

Comments:

• Left preconditioning can be done in the same way and leads to the Dirichlet-
Neumann preconditioner.

• Convergence is independent of h, but depends on how well the symmetry
condition is satisfied (domains, coefficients).

• One iteration of the CG method to the preconditioned system obviously
requires two subdomain solves that need to be executed sequentially.

Neumann-Neumann Preconditioner

Assuming again that S(1) = S(2), BNN := S(1)−1
+S(2)−1 is a good preconditioner

because

BNNS = (S(1)−1
+ S(2)−1

)(S(1) + S(2)) = I + S(1)−1
S(2) + S(2)−1

S(1) + I ≈ 4I.

The application of this preconditioner in the way described above requires

• the solution of two Neumann and two Dirichlet problems,

• but two problems can be solved in parallel at a time.

7.3 Many Subdomains

Let Ω be subdivided into p non-overlapping subdomains of each diameter O(H).
The interface in two space dimensions

Γ =

p⋃
i=1

∂Ωi ∩ Ω =
⋃
i,j

Ei,j ∪ V

consists of edges Ei,j = ∂Ωi ∩ ∂Ωj and vertices vk ∈ V where more than two
subdomains meet. The vk ∈ V are denoted as “cross points”.
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The variational problem is discretized using conforming finite elements of low-
est order, where the mesh resolves the interface Γ. Then the index set can be
partitioned as

Ih = II ∪ IΓ

into interior (II) and interface (IΓ) degrees of freedoms. This induces a 2 × 2
block structure on the FE system in the form(

AI,I AI,Γ

AΓ,I AΓ,Γ

)(
xI
xΓ

)
=

(
bI
bΓ

)
where

AI,I =

A1,1 0
. . .

0 Ap,p

 , AΓ,I =
(
AΓ,1 . . . AΓ,p

)
, AI,Γ = AT

Γ,I .

Eliminating the AΓ,I block results in the Schur complement system

SxΓ = g

with

S = AΓ,Γ −
p∑
i=1

AΓ,iA
−1
i,i Ai,Γ,

g = bΓ −
p∑
i=1

AΓ,iA
−1
i,i bi.

7.4 Hierarchical Basis for the Schur Complement System

As pointed out in chapter 6, the hierarchical basis method is an additive subspace
correction method based on the direct sum

Ψh = Φ0 ∪
L⋃
l=1

⋃
i∈Il\Il−1

{φli}.

Setting ψi := φli when i ∈ I0 for l = 0 or i ∈ Il \ Il−1 for l > 0 we observe
V h = V L = span ΦL = span Ψh.

The linear system
Âx̂ = b̂

with
(Â)i,j = a(ψj, ψi), (b̂)i = l(ψi)
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has the condition number

κ(Â) = O

(
H−2

(
1 + log

H

h

)2
)
,

see Smith et al. [1996].
Using the simple matrix

(D̂)i,j =

{
(Â)i,j i = j ∨ i, j ∈ I0

0 otherwise

results in a preconditioned system with condition number

κ(D̂−1A) = O

((
1 + log

H

h

)2
)

for d = 2.
Now we review how this method can be implemented with optimal complexity.

Since span Ψh = span ΦL there exist coefficients ωij such that

ψi =
∑
j∈IL

ωijφ
L
j .

Then

uh =
∑
i∈IL

(x̂)iψi =
∑
i∈IL

(x̂)i

∑
j∈IL

ωijφ
L
j

 =
∑
j∈IL

(∑
i∈IL

ωij(x̂)i

)
︸ ︷︷ ︸

=:(x)j

φLj .

By introducing H ∈ RIL×IL with (H)i,j := ωji,

x = Hx̂

transforms the coefficients w.r.t. the hierarchical basis into the coefficients w.r.t.
the standard Lagrange basis. The evaluation of a linear functional is transformed
by

(b̂)i = l(ψi) = l(
∑
j∈IL

ωijφ
L
j ) =

∑
j∈IL

ωij︸︷︷︸
(HT )i,j

l(φLj )︸ ︷︷ ︸
=(b)j

= (HT b)i.

Finally, the stiffness matrix in the hierarchical basis is related to the original
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matrix by

(Â)i,j = a(ψj, ψi)

= a(
∑
r∈IL

ωjrφ
L
r ,
∑
s∈IL

ωisφ
L
s )

=
∑
s∈IL

ωis
∑
r∈IL

a(φLr , φ
L
s )︸ ︷︷ ︸

=(A)s,r

ωjr︸︷︷︸
(H)r,j

=
∑
s∈IL

ωis︸︷︷︸
(HT )i,s

(AH)s,j

= (HTAH)i,j.

Therefore
Âx̂ = b̂ ⇐⇒ HTAHx̂ = HT b.

One iteration of a linear iterative method using D̂ as approximate inverse is then

x̂k+1 = x̂k + D̂−1(b̂− Âx̂k).

Transforming from hierarchical to nodal basis reads

xk+1 = Hx̂k+1

= Hx̂k +HD̂−1(b̂− Âx̂k)
= Hx̂k +HD̂−1(HT b−HTAHx̂k)

= xk +HD̂−1HT (b− Axk).

The multiplication with H, HT can be realized with O(nL) steps and is very
similar to a multigrid prolongation (H) and restriction (HT ).

Application to the Schur complement system

Partition the index set IL into interior and interface unknowns:

IL = II ∪ IΓ.

This implies a corresponding 2× 2 block structure on A, Â and H such that(
ÂI,I ÂI,Γ

ÂΓ,I ÂΓ,Γ

)
=

(
HT
I,I 0

HT
I,Γ HT

Γ,Γ

)(
AI,I AI,Γ

AΓ,I AΓ,Γ

)(
HI,I HI,Γ

0 HΓ,Γ

)
.

This is because in the transformation from hierarchical basis to nodal basis
(multiplication by H) the coefficients on the interface do not depend on interior
coefficients (as in multigrid prolongation). The 2× 2 structure of D̂ is then

D̂ =

(
D̂I,I 0

0 D̂Γ,Γ

)
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with D̂I,I a diagonal matrix and D̂Γ,Γ containing the coarse grid system.

Observation 7.3. Let A be a 2 × 2 block matrix w.r.t. the partitioning I =
II ∪ IΓ of the index set. By Schur(A) := AΓ,Γ − AΓ,IA

−1
I,IAI,Γ we denote the

Schur complement w.r.t. AΓ,Γ. Furthermore let

T =

(
TI,I TI,Γ
0 TΓ,Γ

)
be an upper triangular block matrix. Then

Schur(T TAT ) = T TΓ,Γ Schur(A)TΓ,Γ.

Proof. Straightforward calculation.

With respect to the hierarchical basis we solve the preconditioned system

D̂−1HTAHx̂ = D̂−1HT b,

which we can symmetrize to

D̂−
1
2HTAHD̂−

1
2 ŷ = D̂−

1
2HT b (7.10)

by setting x̂ = D̂−
1
2 ŷ and multiplying by D̂

1
2 from the left. Using the block

decomposition and lemma 7.3 we obtain

Schur(D̂−
1
2HTAHD̂−

1
2 ) = D̂

− 1
2

Γ,ΓH
T
Γ,Γ Schur(A)HΓ,ΓD̂

− 1
2

Γ,Γ.

Therefore (7.10) can be interpreted as a preconditioned Schur complement sys-
tem

D̂
− 1

2

Γ,ΓH
T
Γ,ΓSHΓ,ΓD̂

− 1
2

Γ,ΓŷΓ = D̂
− 1

2

Γ,ΓH
T
Γ,Γg.

Undoing the symmetrizing transformation by ŷΓ = D̂
1
2

Γ,Γx̂Γ we obtain

D̂−1
Γ,ΓH

T
Γ,ΓSHΓ,Γx̂Γ = D̂−1

Γ,ΓH
T
Γ,Γg.

With the transformation xΓ = HΓ,Γx̂Γ we obtain an iteration for the Schur
complement system in the nodal basis:

xk+1
Γ = xkΓ +HΓ,ΓD

−1
Γ,ΓH

T
Γ,Γ(g − SxkΓ),

i.e. the preconditioner is BHB = HΓ,ΓD
−1
Γ,ΓH

T
Γ,Γ.

In order to estimate the condition number we can utilize the result for the
original hierarchical basis method.
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Chapter 7 Nonoverlapping Domain Decomposition Methods

Lemma 7.4. Let A be a symmetric and positive definite matrix with 2 × 2
block structure as introduced above. Then

κ(Schur(A)) ≤ κ(A).

Proof. Set S := Schur(A). Any x ∈ RIL can be decomposed as

x =

(
xI
xΓ

)
=

(
ExΓ

xΓ

)
+

(
xI − ExΓ

0

)
=: x′ + x′′,

where E := −A−1
I,IAI,Γ is the discrete harmonic extension.

Then

〈x,Ax〉 =〈x′ + x′′, A(x′ + x′′)〉
=〈x′, Ax′〉+ 2〈x′′, Ax′〉+ 〈x′′, Ax′′〉

=〈
(
ExΓ

xΓ

)
,

(
0
SxΓ

)
〉

+ 2〈
(
xI − ExΓ

0

)
,

(
0
SxΓ

)
〉

+ 〈
(
xI − ExΓ

0

)
,

(
AI,I(xI − ExΓ)
AΓ,I(xI − ExΓ)

)
〉

=〈xΓ, SxΓ〉+ 〈xI − ExΓ, AI,I(xI − ExΓ)〉.

So

λmax(S) = sup
xΓ 6=0

〈xΓ, SxΓ〉
〈xΓ, xΓ〉

≤ sup
xΓ 6=0, xI=0

〈xΓ, SxΓ〉+

≥0 since AI,I s.p.d.︷ ︸︸ ︷
〈xI − ExΓ, AI,I(xI − ExΓ)〉
〈xΓ, xΓ〉+ 〈xI , xI〉︸ ︷︷ ︸

=0

= sup
x=(xI ,xΓ)T , xΓ 6=0, xI=0

〈x,Ax〉
〈x, x〉

≤ sup
x 6=0

〈x,Ax〉
〈x, x〉

= λmax(A)
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7.5 Bramble-Pasciak-Schatz Method (BPS)

and

λmin(S) = inf
xΓ 6=0

〈xΓ, SxΓ〉
〈xΓ, xΓ〉

≥ inf
xΓ 6=0, xI=ExΓ

〈xΓ, SxΓ〉+

=0︷ ︸︸ ︷
〈xI − ExΓ, AI,I(xI − ExΓ)〉
〈xΓ, xΓ〉+ 〈xI , xI〉︸ ︷︷ ︸

≥0

≥ inf
x6=0

〈x,Ax〉
〈x, x〉

= λmin(A).

Theorem 7.5. The Schur complement system preconditioned by the hierarchi-
cal basis method has condition number

κ(D̂−1
Γ,ΓŜ) = κ(D̂−1

Γ,ΓH
T
Γ,ΓSHΓ,Γ) = O((1 + log

(
H

h

)
)2).

Proof. Symmetrize and apply lemma 7.4:

κ(D̂−1
Γ,ΓŜ) = κ(D̂

− 1
2

Γ,ΓH
T
Γ,ΓSHΓ,ΓD̂

− 1
2

Γ,Γ)

= κ(Schur(D̂−
1
2HTAHD̂−

1
2 )) (Obs. 7.3)

≤ κ(D̂−
1
2HTAHD̂−

1
2 ) (Lemma 7.4)

= κ(D̂−1Â)

= O((1 + log

(
H

h

)
)2) (Result of Yserentant)

7.5 Bramble-Pasciak-Schatz Method (BPS)

The Bramble-Pasciak-Schatz is also referred to as BPS method or “iterative
substructuring”.

In d = 2 we may partition the interface index set as

IΓ = IE ∪ IV = IE1 ∪ IE2 ∪ · · · ∪ IEnE ∪ IV ,
where IV are the cross points and IEi are the interiors of the edges. Then the
Schur complement S can be block structured accordingly:

S =

(
SEE SEV
SV E SV V

)
=


SE1E1 . . . SE1EnE SE1V

...
...

...
SEnEE1 . . . SEnEEnE SEnEV
SV E1 . . . SV EnE SV V

 .
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Chapter 7 Nonoverlapping Domain Decomposition Methods

We switch to a partial hierarchical basis. In Observation 7.3 we saw that the basis
transformation of the Schur complement is independent from the transformation
in the interior which is not considered at all here. As transformation use

H̄ΓΓ =

(
IEE H̄EV

IV V

)
where H̄EV is the linear interpolation on an edge and IEE, IV V are identities.
Partial hierarchical basis means that

Ψ̄ = Φ0 ∪
nE⋃
k=1

⋃
i∈IEi

{φLi }.

Then the transformed Schur complement is

S̄ = H̄T
ΓΓSH̄ΓΓ =

(
SEE S̄EV
S̄V E S̄V V

)
.

As a preconditioner for S̄ we may use

D̄−1
ΓΓ =


S−1
E1E1 0

. . .

S−1
EnEEnE

0 S̄−1
V V

 .

Now what is S̄V V ?

Assume that edges of the subdomains are straight lines, the subdomains have
either quadrilateral or triangular shape and that permeability is scalar and con-
stant in each subdomain. Then, the harmonic extension of piecewise linear
boundary data is a function in VH = span Φ0, or, in terms of coefficients

RT
HxV =

(
−A−1

II AIΓ

IΓΓ

)
H̄ΓΓR

T
V xV

where

RH : RIh → RIH standard two-grid Schwarz restriction operator
RV : RIΓ → RIV is (RV xΓ)i = (xΓ)i ∀i ∈ IV ⊂ IΓ.
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7.5 Bramble-Pasciak-Schatz Method (BPS)

With this, we obtain

AH = RHAR
T
H

= RV H̄
T
ΓΓ

(
−A−1

II AIΓ IΓΓ

)
A

(
−A−1

II AIΓ

IΓΓ

)
︸ ︷︷ ︸0

S


H̄ΓΓR

T
V

= RV H̄
T
ΓΓSH̄ΓΓR

T
V

= RV S̄R
T
V

= S̄V V .

The BPS preconditioner can be written in the following form, due to the block
diagonal form of DΓΓ:

BBPS = H̄ΓΓR
T
VA
−1
H RV H̄

T
ΓΓ +

nE∑
i=1

RT
EiS

−1
EiEiREi. (7.11)

where
REi : RIΓ → RIEi , (REixΓ)j = (xΓ)j ∀j ∈ IEi.

Note that H̄ΓΓ transforms correction to standard basis, H̄T
ΓΓ transforms the

right-hand side into partial hierarchical basis and it holds REiH̄
T
ΓΓ = REi.

Interpretation as a subspace correction method

We assume that K(x) = kiI for x ∈ Ωi and denote by P : RIh → Vh the finite
element isomorphism

Px =
∑
i∈Ih

(x)iφ
h
i

on the fine mesh. Now define the following subspaces of Vh:

Ṽh := {u ∈ Vh : P−1u =

(
−A−1

II AIΓxΓ

xΓ

)
}

V̂h := {u ∈ Vh : P−1u =

(
xI
0

)
}.

Ṽh is the subspace of discrete harmonic functions and the two subspaces provide
a direct decomposition

Vh = Ṽh ⊕ V̂h. (7.12)

Lemma 7.6. We have
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Chapter 7 Nonoverlapping Domain Decomposition Methods

1. a(u, v) = xTΓSyΓ for u, v ∈ Ṽh and

u = P

((
−A−1

II AIΓxΓ

xΓ

))
, v = P

((
−A−1

II AIΓyΓ

yΓ

))
.

2. a(u, v) = 0 for u ∈ V̂h, v ∈ Ṽh.

3. a(u, v) = xTI AIIyI for u, v ∈ V̂h and

u = P

((
xI
0

))
, v = P

((
yI
0

))
.

Proof. Just insert:

1. a(u, v) = 〈A( −A
−1
II AIΓxΓ
xΓ

), ( −A
−1
II AIΓyΓ
yΓ

)〉 = 〈( 0
SxΓ

), ( ∗yΓ )〉 = 〈SxΓ, yΓ〉.

2. a(u, v) = 〈( xI0 ), A( −A
−1
II AIΓyΓ
yΓ

)〉 = 〈( xI0 ), ( 0
SyΓ

)〉 = 0.

3. a(u, v) = 〈A( xI0 ), ( yI0 )〉 = 〈AIIxI , yI〉.

Due to (7.12) we can split u, v ∈ Vh into

u = ũ+ û ũ ∈ Ṽh, û ∈ V̂h
v = ṽ + v̂ ṽ ∈ Ṽh, v̂ ∈ V̂h

and

a(u, v) = l(v) ∀v ∈ Vh
⇐⇒ a(ũ+ û, ṽ + v̂) = l(ṽ + v̂) ∀ṽ ∈ Ṽh, v̂ ∈ V̂h
⇐⇒ a(ũ, ṽ) + a(û, v̂) = l(ṽ) + l(v̂) ∀ṽ ∈ Ṽh, v̂ ∈ V̂h

⇐⇒

{
a(ũ, ṽ) = l(ṽ) ∀ṽ ∈ Ṽh (set v̂ = 0)
a(û, v̂) = l(v̂) ∀v̂ ∈ V̂h (set ṽ = 0).

So, the FE problem in this basis is split into two completely independent sub-
problems.

Due to Lemma 7.6 (1.) the problem in Ṽh corresponds algebraically to the
Schur complement, i.e. solving the Schur complement problem is equivalent to
solve the original FE problem in the space of discrete harmonic functions.

Due to (3.) the problem in V̂h corresponds to the p independent subdomain
solves.
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7.5 Bramble-Pasciak-Schatz Method (BPS)

With

u = ũ+ û

= P

((
−A−1

II AIΓxΓ

xΓ

)
+

(
A−1
II bI
0

))
= P

((
A−1
II (bI − AIΓxΓ)

xγ

))
we see that the summation corresponds to the back substitution.

Now the BPS preconditioner. As noted above we have VH ⊂ Ṽh, i.e. coarse
grid functions are discrete harmonic. From (7.11) we observe that the trans-
formation to partial hierarchic basis is irrelevant for the edges. Therefore, BPS
corresponds to an additive Schwarz method corresponding to the direct sum

Ṽh = VH ⊕
nE⊕
i=1

Ṽ Ei
h (7.13)

where

Ṽ Ei
h = {u ∈ Vh : P−1u =

(
−A−1

II AIΓxΓ

xΓ

)
∧ (xΓ)j = 0 ∀j /∈ IEi}.

Let us now turn to the convergence proof of the BPS method.
The upper bound is based on a coloring argument as usual:

Lemma 7.7. Assume there exists c > 0, independent of nE, such that

IE =
c⋃

k=1

Ck, Ci ∩ Cj = ∅ ∀i 6= j

and
∀k = 1, . . . , c ∀i, j ∈ Ck, i 6= j : REiEiSR

T
EjEj = 0.

Then
〈BBPSSx, x〉S ≤ (c+ 1)〈x, x〉S.

Proof. From

BBPSS = H̄ΓΓR
T
VA
−1
H RVH

T
ΓΓS +

nE∑
i=1

RT
EiS

−1
EiEiREiS

we see that the nE + 1 contributions are S-orthogonal projections. Also

Pk =
∑
i∈Ck

RT
EiS

−1
EiEiREiS

is S-orthogonal.
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Chapter 7 Nonoverlapping Domain Decomposition Methods

Note that in this method the edges are colored and the number of colors for
the model problem is c = 4 as in the Schwarz method.

1

1

1

1

1

2

2

2

2

2

1

1

1

1

1

2

2

2

2

2

3 3 3 3 3

4 4 4 4 4

3 3 3 3 3

4 4 4 4 4

Figure 7.3: Coloring of the edges

The lower bound is based on proving the existence of a stable splitting. The
following Lemma plays a crucial role in the proof.

Lemma 7.8. Let u be a piecewise linear FE function on a mesh of size h and
a domain Ω of diameter H. Let U be the value of u at any point in Ω. Then
there exists c > 0 such that

‖u− U‖2
L∞(Ω) ≤ c

(
1 + log

H

h

)
|u|21,Ω.

Proof. See Bramble [1966].

Lemma 7.9. Assume the subdomains Ωi are triangles and that the bilinear
form reads

a(u, v) =

p∑
i=1

ki(∇u,∇v)0,Ωi,

i.e. the diffusion coefficient ki > 0 is constant on each of the non-overlapping
subdomains Ωi. Then there exists c > 0 independent of h, H, p and the ki and
a decomposition RIΓ 3 xΓ = RT

V xv +
∑nE

i=1R
T
EixEi such that

〈RT
V xV , R

T
V xV 〉S +

nE∑
i=1

〈RT
EixEi, R

T
EixEi〉S ≤ c′〈xΓ, xΓ〉S

with c′ = c
(
1 + log H

h

)2.

Proof. This proof follows [Smith et al., 1996, Section 5.3.2].
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7.5 Bramble-Pasciak-Schatz Method (BPS)

1. First, we observe that the decomposition is unique due to (7.13). Moreover,
due to Lemma 7.6 we have equivalently

a(uV , uV ) +

nE∑
i=1

a(uEi, uEi) ≤ c a(uΓ, uΓ) (7.14)

where uV , uEi are the functions in the space of discrete harmonic exten-
sions Ṽh that correspond to xV and xEi.

2. Let
Ṽ i
h := {v ∈ H1(Ωi) : ∃w ∈ Ṽh : ∀x ∈ Ωi : v(x) = w(x)}

be the restriction of Ṽh to subdomain Ωi and ui ∈ Ṽ i
h the corresponding

restriction of u ∈ Ṽh.
Assume we could prove that for all Ṽ i

h 3 ui = uiV +
∑nE

j=1 u
i
Ej we have

(∇uiV ,∇uiV )0,Ωi +

nE∑
j=1

(∇uiEj ,∇uiEj)0,Ωi ≤ ci(∇ui,∇ui)0,Ω (7.15)

then we have (7.14) with c = maxi=1,...,p c
i.

Note that the functions in (7.15) are not necessarily zero at the boundary.
In particular, for a so-called “floating subdomain” ∂Ωi ∩ ∂Ω = ∅ we have
for ui a constant function that ∇ui = 0 and the right-hand side is zero.
But in that case the decomposition yields uiV = ui, uEj = 0 and the left-
hand side is zero as well and (7.15) is satisfied. This is called the “null
space property”.

3. Consider now ui ∈ Ṽ i
h . Since Ωi is triangular, we have uiV = I Hui|Ωi the

Lagrange interpolation of ui on the coarse grid. With uimax := supx∈Ωi u
i,

uimin := minx∈Ωi u
i we estimate

|uiV |21,Ωi ≤ c

uimax − uiminH︸ ︷︷ ︸
estimates ∇uiV


2

· H2︸︷︷︸
integration

≤ c(uimax − uimin)2

≤ c

(
1 + log

H

h

)2

|ui|21,Ωi

In the last step we used Lemma 7.8 with U = uimin.
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Chapter 7 Nonoverlapping Domain Decomposition Methods

4. We now need to consider uiEj , i.e. the discrete harmonic extension of data
on edge Ej in subdomain Ωi. Let us consider a triangular subdomain with
edges numbered E1, E2 and E3.

E2

E1

E3

Ωi

Figure 7.4: Triangular subdomain with numbered edges

uEj is difficult to handle and we want to estimate a simpler function.
We observe: For all FE functions with the same values on ∂Ωi the harmonic
extension has minimal energy.
Assume ui ∈ Ṽ i

h and wi ∈ V i
h (= Vh restricted to Ωi) with wi = ui on

∂Ωi. Then wi = w̃i + ŵi with w̃i ∈ Ṽ i
h , ŵi ∈ V̂ i

h (= V̂h restricted to Ωi).
Since wi = ui on ∂Ωi we have w̃i = ui. Therefore, due to Lemma 7.6 with
a(u, v) = (∇u,∇v)0,Ωi:

(∇wi,∇wi)0,Ωi = (∇ui +∇ŵi,∇ui +∇ŵi)0,Ωi

= (∇ui,∇ui)0,Ωi + (∇ŵi,∇ŵi)0,Ωi

≥ (∇ui,∇ui)0,Ωi.

To estimate the effect of the harmonic extension we define for each edge
Ej, j = 1, 2, 3 a finite element function on Ωi as follows:

zlj zrj1

0

1

0

1

0

1

0

0

0

0

tlj trj

Figure 7.5: Finite element function θj(sk)
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θj(sk) =


1 sk ∈ Ej (excluding end points)
0 sk ∈ ∂Ωi\Ej (includes z1

j , z
2
j )

ξl(sk) sk ∈ Ωj,l
i (see figure 7.5)

ξr(sk) sk ∈ Ωj,r
i (see figure 7.5)

0

0

1

1

0

1

∼
H

φ
(x

)

r(x)

l(
x

)

x

φl φr

Ωj,l
i

Ωj,r
i

Figure 7.6: Finite element function ξr(x)

ξr(x) = 1− φ(x)

φr(x)

∇ξr(x) ≤ c

l(x)

Since l(x) ∼ r(x) we also have

∇ξr(x) ≤ c

r(x)
.

5. Let
IΓi := {j ∈ IΓ : sj ∈ ∂Ωi}

and define Pi : RIΓi → Ṽ i
h , the FE isomorphism mapping degrees of

freedom on ∂Ωi to discrete harmonic functions on Ωi. Then, given any
ui ∈ Ṽ i

h we wish to analyze the decomposition

ui = uiV +
3∑
i=1

PiR
Γi
j P−1

i (ui − uiV )

where RΓi
j : RIΓi → RIEj , (RΓi

j x)k = (x)k ∀k ∈ IEj picks of the DOFs on
edge j.
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Now due to 4. we estimate wj = I h(θj(u
i − uiV )), i.e.

|PiR
Γi
j P−1(ui − uiV )|1,Ωi ≤ |I h(θj(u

i − uiV ))|1,Ωi
because they have the same boundary data.

6. First split off the two small triangles next to the end points of edge Ej:

|wj|21,tαj ≤ c

(
uimax − uimin

h

)2

h2 (similar to 3.)

≤ c

(
1 + log

H

h

)
|u|21,Ωi (Lemma 7.8)

7. Now for the rest T j := T (Ωi)\{t1j , t2j}.∑
t∈T j
|wj|21,t =

∑
t∈T j
|I h

(
θj(u

i − uiV )
)
|21,t

≤ c
∑
t∈T j
‖∇
(
θj(u

i − uiV )
)
‖2

0,t (θj(ui − uiV ) p. w. quadratic)

≤ c
∑
t∈T j

{
‖θj∇(ui − uiV )‖2

0,t

+ ‖(ui − uiV )∇θj‖2
0,t

}
For the first term:∑
t∈T j
‖θj∇(ui − uiV )‖2

0,t ≤ |ui − uiV |21,Ωi (θj ≤ 1, add t1j , t
2
j)

≤ 2|ui|21,Ωi + 2|uiV |21,Ωi (triangle)

≤ c

(
1 + log

H

h

)2

|ui|21,Ωi (3.)

and the second term:∑
t∈T j
‖(ui − uiV )∇θj‖2

0,t =
∑
t∈T j

∫
t

(ui − uiV )2‖∇θj(x)‖2 dx

≤
∑
t∈T j

(uimax − uimin)2

∫
t

c

r2(x)
dx

= c (uimax − uimin)2

∫
Ωi\{tlj ,trj}

r−2 dx

≤ c

(
1 + log

H

h

)2

|ui|21,Ωi,
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where we used again Lemma 7.8 and∫
Ωi\{tlj ,trj}

r−2 dx =

∫
Ωj,li \{tlj}

r−2 dx+

∫
Ωj,ri \{trj}

r−2 dx,

∫
Ωj,li \{tlj}

r−2 dx =

φl∫
0

c2H∫
c1 h

r−2r dr dφ

= φl [log r]c2Hc1 h

≤ c log

(
H

h

)
.

8. Combining 6. and 7. yields

|wj|21,Ωi ≤ c

(
1 + log

H

h

)2

|ui|21,Ωi.

Together with 5. and 3. we obtain

|uiV |21,Ωi +
3∑
i=1

|PiR
Γi
j P−1

i (ui − uiV )|21,Ωi ≤ c

(
1 + log

H

h

)2

|ui|21,Ωi

which is (7.15) from which the desired result follows.

BPS is historically an interesting method and it can be analyzed relatively
easily. In practice, however, it is seldomly used now. The reasons are:

• It needs to be modified to cover 3D applications.

• It requires too many subdomain solves, e.g. 4 solves per subdomain for the
model problem with quadrilateral subdomains and the Dirichlet-Neumann
method as edge preconditioner.

7.6 Outlook: Balancing Neumann-Neumann and
FETI-DP

Notation for many subdomains is extended by:

IΓ : DoFs on Γ

IΓi := {j ∈ IΓ : sj ∈ ∂Ωi ∩ Γ} ⊂ IΓ DoFs on Γ being part of ∂Ωi

I0 := {i ∈ 1, . . . , p : ∂Ωi ∩ ∂ΩD = ∅} ⊂ {1, . . . , p}
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and restrictions

RΓi : RIΓ → RIΓi , (RΓix)j = (x)j ∀j ∈ IΓi

R0,i : RIΓ → RI0, (R0,ix)j =

{∑
k∈IΓi

(x)k j = i

0 j 6= i.

IΓi corresponds to tearing apart the subdomains.

Ω1 Ω2

Ω5

IΓ5

Figure 7.7: Example for IΓi

Then we need diagonal scaling matrices per subdomain:
∀i = 1, . . . , p : D(i) : R±Γi → RΓi such that

∀j ∈ IΓ :
∑
i∈N(j)

(D(i))jj = 1

where N(j) := {i ∈ {1, . . . , p} : j ∈ IΓi}. Examples for D(i) are:

(D(i))jj =
1

|N(j)|

or
(D(i))jj =

kγi∑
l∈N(j) k

γ
l

, γ ∈ [
1

2
,∞)

and ki is the diffusion coefficient.
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Coarse grid correction (balancing step)

Define RT
0 : RI0 → RIΓ as

RT
0 :=

∑
i∈I0

RT
Γi
D(i)RT

0,i

and
R0 :=

∑
i∈I0

R0,iD
(i)RΓi.

Then define the subspace correction on the Schur complement system via

S0 := R0SR
T
0

and
xk+1

Γ := xkΓ +RT
0 S
−1
0 R0(g − SxkΓ)

which has the error propagation

ek+1
Γ = (I − P0)e

k, P0 = RT
0 S
−1
0 R0S.

P0 and I − P0 are S-orthogonal projections.

Subdomain corrections

As before A(i) =

(
A

(i)
I,I A

(i)
I,Γ

A
(i)
Γ,I A

(i)
Γ,Γ

)
is the matrix arising from

ai(u, v) =

∫
Ωi

(K∇u) · ∇v dx

on subdomain Ωi partitioned w.r.t. Ii (subdomain interior DoFs) and IΓi. A(i)

has the Schur complement

S(i) = A
(i)
Γ,Γ − A

(i)
Γ,IA

(i)
I,I

−1
A

(i)
I,Γ

and

S =

p∑
i=1

RT
Γi
S(i)RΓi.

Note that S(i) is singular for i ∈ I0 and ker(S(i)) = span{1i}.
Now a preconditioner for S is constructed by solving local problems with S(i)

in the following way:

xk+1
Γ = xkΓ +

p∑
i=1

RT
Γi
D(i)S(i)−1

D(i)RΓi(g − SxkΓ) (7.16)
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with error propagation

ek+1 = (I −
p∑
i=1

Pi)e
k, Pi = RT

Γi
D(i)S(i)−1

D(i)RΓiS.

Here application of S(i)−1
ri is understood as one solution of a system

S(i)vi = ri. (7.17)

In order to make vi well-defined we must ensure that ri ∈ range(S(i)).
Then the Balancing Neumann-Neumann (BNN) method is given by

EBNN = (I − P0)(I −
p∑
i=1

Pi)(I − P0)

which, exploiting EBNN = I − PBNN , results in

PBNN = P0 + (I − P0)

p∑
i=1

Pi(I − P0).

Note: In practice, since (I − P0)
2 = (I − P0) only one coarse grid solve for

iteration is needed.
How do we ensure that the local problems (7.17) are solvable?

The following observation is helpful.

Lemma 7.10. Given some matrix A ∈ Rn×n with dim(ker(A)) ≥ 0.
Then Ax = b has a solution if and only if

〈b, v〉 = 0 ∀v ∈ ker(AT ).

Proof. Set U = Rn and V = range(A) ⊂ U . Then

V ⊥ = {u ∈ U : 〈u, v〉 = 0 ∀v ∈ V }
= {u ∈ U : 〈u,Aw〉 = 0 ∀w ∈ U}
= {u ∈ U : 〈ATu,w〉 = 0 ∀w ∈ U}
= {u ∈ U : ATu = 0}
= ker(AT )

Then
Ax = b ⇐⇒ 〈Ax, v〉 = 〈b, v〉 ∀v ∈ U

split
b = bV + bV ⊥, bV ∈ V, bV ⊥ ∈ V ⊥.
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〈Ax, v〉 = 〈b, v〉 ∀v ∈ U = V ⊕ V ⊥

⇐⇒

{
〈Ax, v〉 = 〈bV , v〉 ∀v ∈ V (1)
〈Ax, v〉 = 〈bV ⊥, v〉 ∀v ∈ V ⊥ (2)

Now (1) has a unique solution x ∈ U/ker(A) due to the fundamental theorem of
homomorphisms.
In the second equation, since Ax ∈ V , the left-hand side is zero for all v ∈ V ⊥.
Therefore (2) is equivalent to

〈bV ⊥, v〉 = 〈bV + bV ⊥, v〉 = 〈b, v〉 = 0 ∀v ∈ V ⊥.

Since V ⊥ = ker(AT ) we have

〈b, v〉 = 0 ∀v ∈ ker(AT ).

Now we apply this result to the subdomain problems in BNN.
From (7.16) we see these problems are:

RIΓi 3 zi := D(i)S(i)−1
D(i)RΓiSe

⇐⇒ D(i)−1
S(i)D(i)−1

zi = RΓiSe

⇐⇒ 〈S̃(i)zi, v〉 = 〈RΓiSe, v〉 ∀v ∈ Ui = RIΓi , (7.18)

since ker(S(i)) = span{1i}.
We have S(i)D(i)−1

D(i)
1i = 0, i.e. ker(S̃(i)) = span{D(i)

1i}. Since a balancing
step is applied before the subdomain solve we have e = (I − P0)ẽ. Accordingly
to Lemma 7.10 one needs to check the right-hand side of (7.18) on ker(S̃):

〈RΓiS(I − P0)ẽ, D
(i)
1i〉 = 〈S(I − P0)ẽ, R

T
Γi
D(i)

1i〉 = 0

since (I − P0)ẽ is S-orthogonal to

range(P0) = range(RT
0 ) = range(

∑
i∈I0

RT
Γi
D(i)RT

0,i)

and RT
Γi
D(i)

1i =
∑

j∈I0 R
T
Γj
D(j)

1jδij.
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