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Chapter 1

Recapitulation of the Finite Element Method

In this chapter we want to give a short summary about the Finite Element
Method, a numerical technique for finding approximate solutions to boundary
value problems for partial differential equations. Introductions to the finite
element method can be found in Eriksson et al. [1996]; Braess [2003]; Ciarlet
[2002]; Ern and Guermond| [2004]; Brenner and Scott [1994]; Rannacher [2006];
Bastian| [2014].

Elliptic Model Problem: "Strong Formulation”

Now we consider linear elliptic problems that are commonly found in mechan-
ical and physical partial differential equation models. The aim is to introduce
the notion of a weak formulation that gives access to existence and uniqueness
results for the solutions and that is well suited for the numerical approximation
of such problems.

In the theory of partial differential equations, elliptic operators are differential
operators that generalize the Laplace operator. An elliptic differential equation
of second order has the form

=V (K(2)Vu(z)) + c(x)u(z) = f(z) reQCR
u(z) = g(x) relp CoN (1.1)
K(z)Vu(z)-n(z) = j(z) v €y =00

with the coefficient functions K and ¢

We assume €2 to be open, connected and bounded. An important assumption
on the coefficient K is that for all £ € R" we have

kol < €K (x)¢ Ve e
which is called uniform ellipticity and that
K ()¢ < Koll€]? Ve e

which is boundedness. Furthermore K(z) is assumed to be symmetric and
c(z) > 0.



CHAPTER 1 RECAPITULATION OF THE FINITE ELEMENT METHOD

Regarding the Problem ((1.1)) we can investigate the following questions:
e For the problem to be well-posed we have to guarantee that
— the solution exists,
— 1t 1s unique
~ and stable: [|u]| < ¢ (1] + gl + I]).

data
e For a numerical solution producing an approximation u; on would like to

guarantee an priori error estimate of the form
lu — up]| < ch¥[|ul]

where h is a mesh size parameter.
e Guaranteed error control of the numerical solution requires an posteriori
error estimate of the form

[ = unll < n(un)

with an 7 that is effectively computable.
Note that || - || means a “generic” norm in these lecture notes. More over, the
strong formulation requires very restrictive demands placed on the data
(f,g,7) to answer these questions. For this reason we consider the weak /varia-
tional formulation.

1.1 The Variational Formulation of Elliptic Partial

Differential Equations

We describe the general abstract framework for elliptic problems with homo-
geneous Dirichlet data, 02 = I'p and g = 0. To get the variational form we
multiply the equation by a “test function” v(z) and do integration by parts:

/[—V-(KVU) + culvdx = /(KVU)-Vv+cuvdx+/(KVu) -vvds

) Q o9
:/(KVu)-Vv+cuvd:L' (v =0 on 09)
)
=: a(u,v).

This relation holds true for all test functions v(x) € C1(Q) N C%(Q). The idea is
now to reverse the argument and to define the function u by requiring

a(u,v) =1(v) := /fv dx

Q



1.1 THE VARIATIONAL FORMULATION OF ELLIPTIC PARTIAL
DIFFERENTIAL EQUATIONS

for “sufficiently many” test functions v.
Put in an abstract way, the problem reads as follows. Given suitable function
spaces U and V' (see below) define the function u by the variational formulation:

FindueU: a(u,v)=1v) YveV. (1.2)

Here, a(-,-) € L(U x V,R) is a so-called bilinear form and I(-) € L(V,R) is a
linear functional.

Remark 1.1. £(U x V| R) is the space of continuous bilinear forms and £(V, R),
is the space of continuous bilinear functionals. L£(V,R) is also abbreviated by
V' and is called the dual space of V. Il

The following two theorems ensure the existence, uniqueness and stability of the

solution given by ((1.2)).

Theorem 1.2 (Banach-Necas-Babuska). Let U and V' be Banach spaces (com-
plete, linear, normed spaces), let V' be reflexive and a € L(U x V,R), [ €
L(V,R). Then (1.2) is well-posed if and only if

Ja > 0 : inf supM > a, (1.3)
well yey ||ulloflvllv
VoeV:(VuelU:a(u,v)=0)= (v=0). (1.4)
Furthermore, the following stability estimate holds:
1
Jully < ~ Il 0

Additional Comments
e The dual space V' is equipped with the norm
[(w
il = sup 1)

wev [[wllv

w0

a(u,-) € V' for given u € U.

The linear operator A : U — V' is defined by Au := a(u, ).

& Au = . In that sense eqrefl.2 is a linear equation in function
spaces.

1.3) < A is injective.

1.4) < A is surjective.

f € L*(Q) implies that [(v) = [, fode = (f,v)2q) € V.




CHAPTER 1 RECAPITULATION OF THE FINITE ELEMENT METHOD

Theorem 1.3 (Lax-Milgram). Let V' be a Hilbert space, a € L(V x V,R),
(U = V!, and Il € V' ie. af(:,-) is a continuous bilinear form and I(-) a
continuous functional. If the bilinear form a(-,-) is coercive ( also called V-
elliptic), i.e.

Ja>0,Yu €V a(u,u) > alullf,

then there exists a unique solution to model problem (1.2)) and the following
stability estimate holds

1
[lly < =|[I]}v. O
«

Remark 1.4.

e The Lax-Milgram theorem is proved with the help of the Riesz represen-
tation theorem (which requires V' to be a Hilbert space) and the Banach
fixed-point theorem.

e One can show that Lax-Milgram theorem[1.3|implies Banach-Nec¢as-Babuska
theorem [1.2], but not vice versa.

e Note that we do not assume a(-,-) to be symmetric in order to proof
well-posedness.

e For our model problem Lax-Milgram theorem is sufficient. Banach-Necas-
Babuska theorem is needed in more complex situations. It is used to
proof well-posedness to parabolic equations or even more complex systems
of partial differential equations (e.g. Stokes equations).

Sobolev Spaces

In order to prove the well-posedness with the help of Lax-Milgram theorem, we
have to find an appropriate Hilbert space. Such spaces are given by so-called
Sobolev spaces that consist of weakly differentiable functions.

Definition 1.5 (L*(Q2)). Sobolev spaces are based on the space of functions
which are square integrable in the sense of Lebesgue, i.e.

LX) =< u : /uQ(x) dr < 00

Functions in L?(Q) are equipped with the scalar product and norm

(u,v)00 = /uv dx, ||

Q

0,Q = (U, U)O,Q- [

10



1.1 THE VARIATIONAL FORMULATION OF ELLIPTIC PARTIAL
DIFFERENTIAL EQUATIONS

L? functions are not differentiable in the classical sense and one needs an
alternative notion of differentiability. The idea is to use integration by parts to
transfer derivatives to a function that is differentiable in the classical sense.

Definition 1.6 (Weak Derivative). Let a € N& be a multi-index, that is

d
a:=(ag,...,aq) and |a|; = Zai.
i=1

Considering a function u € L?(€2), we say that u is called weakly differentiable,
if a function g € L*(Q) exists, so that for all test functions ¢ € C§°(Q) the
following condition holds

/g(x)gb(x) dr = (—1)|a1/u(l‘)g%gb(az) dx.

Such a function g is called the a-th weak derivative of u in the L?(€2) sense and
Hled

we define 0%u := g=u := g. Here the multi-index notation
6‘041 6\041
Ox u(z) = oxi* - 6:cgdu(x)
has been used. [

Definition 1.7 (Sobolev space H*(Q)). The Hilbert space of all elements u €
L*(Q)) with square integrable weak derivatives 0“u € L*(Q) for all a with |af; <
k is called Sobolev space of order k and will be denoted by H*(Q), i.e.

HMQ) :={u € L*(Q): 0"u e L*(Q) Y0 < |a]; < k}.

The Sobolev space H*(Q) is equipped with the inner product
(u,v)pq = Z /(80‘u) (0") dx
and the induced norm

ullk0 == 1/ (W, u)i0. O

Definition 1.8. The space of all linear continuous functionals u* : H*(Q2) — R
is denoted by

H™(Q) = L(H"(Q),R) = (H*(Q))

and is also called the dual space of H*(Q). Ol

11



CHAPTER 1 RECAPITULATION OF THE FINITE ELEMENT METHOD

According to the Riesz representation theorem any continuous linear func-
tional [ € H*(Q) can be represented by an element u; € H*(Q) via

l(v) = (ul,v)k,g. (1.5)

Since we consider Dirichlet boundary conditions in this lecture the following
subspaces of Sobolev spaces will be of importance.

Definition 1.9 (Sobolev space HY(€2)). The Sobolev space of all functions van-
ishing in a weak sense on the boundary of €2 is given by

HY(Q) == {u € H"(Q) : ulsq = 0 “almost everywhere”}. O

Remark 1.10 (Subset relations). By Definition [1.7 the identity H°(Q) = L(2)
follows. Moreover, we have the following relations

> HYQ) D LX) > HY(Q) D> H*(Q) D
U U
HNQ) > H2(Q) >

where the dual space L*(2)’ has been identified with the space L?(12) itself.
Regarding equation the dual space of a Sobolev space is even bigger than
the space itself. [

Remark 1.11 (Construction of Sobolev spaces). An alternative way to define
Sobolev spaces is to think of them as the completion of a certain function space
with respect to a certain norm. These spaces are often labeled as W*(Q).
It can be shown that W*(Q) = H*(2) holds.

e For k > 0 the Sobolev space H*(Q) is given as the completion of C¥(€)

with respect to || - ||
e For k > 0 the Sobolev space HF(€) is given as the completion of C§°(9)
with respect to || - ||z O

A relation between classical function spaces and Sobolev spaces is given by
the following

Proposition 1.12 (Sobolev embedding theorem). For dimension n, k € Ny and
k — 4 > m there exists a continuous embedding

WEP(Q) — C™(Q) C C(Q). O

Application of Lax-Milgram-Theorem [1.3]

Now, we want to apply Lax-Milgram Theorem to our model problem in order
to proof the well-posedness of the problem. To do so, we have to determine

12



1.1 THE VARIATIONAL FORMULATION OF ELLIPTIC PARTIAL
DIFFERENTIAL EQUATIONS

an appropriate Hilbert space V' and show that the bilinear form af(-,-) is coer-
cive and continuous with respect to the norm of the Hilbert space. Moreover,
continuity of the linear functional [ is required which we will presuppose in the
considered examples and can be easily achieved since f € L*(2) already implies
(v) = [, fvdz € V'. The following examples differ only in the given boundary
conditions.

Example: Homogeneous Dirichlet boundary conditions Let us consider-
ing Problem [1.1|with I'p = 012, g = 0, so called homogenous Dirichlet boundary
conditions.

We take the Hilbert space V' = HJ(f) equipped with the inner product
(-,-)1.0. In order to prove continuity and coercivity of the bilinear form with
respect to V', we need Friedrich’s inequality, which can be proved by the funda-
mental theorem of calculus and the Cauchy-Schwarz inequality.

Theorem 1.13 (Friedrich’s inequality). For every function v € H}(Q)

lvllo.e < salv)ia = sallVvlloa

holds with the diameter sq = diam(2) of the domain 2 and the semi-norm

kO = ( > /(a%)def Yo € H}(Q). O

la|=Fk ¢

v

Using Friedrich’s inequality one can show that |.|; o is a norm on V and this
norm is equivalent to |[|.|[1,0-

Example: Pure Neumann boundary conditions Now we consider the
problem with pure Neumann boundary conditions, i.e. I'p = () and I'y = 9.

Here we use the Sobolev space V = {v € H'(Q) : [,vdx = 0} with inner
product (+,-)1 to guarantee the well-posedness of the regarded problem. Note
that this space does not explicitely include a boundary condition as it has been in
the previous case. Instead we expect all functions to have a mean value equal to
zero in order to assure the uniqueness of the solution. For the proof of coercivity
and continuity we need:

Theorem 1.14 (Poincaré’s inequality). There exist positive constants ¢y, c;
such that

2
[ollfa < alvliq+ @(/vdw) Vo € HY(Q). O
0

13



CHAPTER 1 RECAPITULATION OF THE FINITE ELEMENT METHOD

Theorem 1.15 (Trace Theorem). Assume €2 is bounded and has Lipschitz
boundary. Then there exists a bounded linear operator v : H'(Q2) — L*(09)
such that

Lo Vv e HY(Q).

In the original version the existing operator is even stronger: v : H'(Q2) —
H %(89), but the above formulation is sufficient for our purposes. [

[rvllosa < dlv

Example: Inhomogeneous Dirichlet boundary conditions As in the first
example, we assume I'p = 02 but with the difference that now we have g # 0.
In this case we decompose our solution into a homogeneous ug € H}(Q) and
non-homogeneous part u, € H'(Q), i.e.

U = Uy + Uy

and we further assume the inhomogeneous part to be an extension of the bound-
ary values yu, = g with the operator v : H'(Q) — Hz(Q) from the trace
theorem. Note that this requires g € Hz ().

With the help of this decomposition we can treat the problem similar to the
homogeneous Dirichlet example:

Find ug € Hy(Q) :  a(ug,v) = 1(v) — aluy,v) Vv € Hy(S).

Mixed boundary conditions Regarding mixed boundary conditions I'p C
0Q,T'p # () we can use the Hilbert space

V ={ve H(Q):v=0onIp “almost everywhere”}
in order to prove well-posedness. The proof of coercivity then requires a variant
of Friedrich’s inequality.
1.2 Conforming Finite Element Method

Definition 1.16 (Conformity). Let V' be an adapted Sobolev space to the vari-
ational problem ((1.2)) and V}, be the finite-dimensional Finite Element ansatz
space. Then the discretization V}, is called “conforming”, if

V,CcV
or else it is called “non-conforming”. ]

An important characterization of finite-dimensional subspaces of Sobolev spaces
can be deduced from the following theorem.

14



1.2 CONFORMING FINITE ELEMENT METHOD

Theorem 1.17. Let 2 be a bounded domain, {wy,...,wy} a partitioning of
) into a finite number of subdomains and V}, a space of functions such that
for v € Vj, we have v|,, € C*. Then V;, C H¥Q), k > 1, if and only if
Vi, C Ck_l(ﬁ) U]

In our applications we need £ = 1. From the theorem we conclude that a
piecewise infinitely differentiable function, e.g. a piecewise polynomial, is in H*
if and only if the function is globally continuous. The conforming finite element
method comprises a specific way to construct the finite-dimensional space V},
using piecewise polynomial functions that are globally continuous.

The Lax-Milgram theorem immediately establishes the solution of the varia-
tional problem

Find up, € Vi1 a(up,v) =1l(v) Yo eV, (1.6)

in the subspace V},.
Any finite dimensional vector space is spanned by a set of basis functions

Vh = Span{@?a ey 907\7;1}

Using the basis, for every u;, € V), we have the representation

Np,

h h

Un = sz%'-
Jj=1

Inserting the basis representation into the weak discrete problem ({1.6]) results in
a linear system of equations:

Find up, € Vy: a(up,v) =1(v) Yv eV,
Nh
& a (Z z;-‘gpz-‘, go?) (M) i=1,...,Np
j=1
Nh,
& z]}-‘a(@?, o) = 1(eh i=1,...,N,
j=1
& Alzh = ph,

with the unknown vector 2" € R the stiffness matrix A" € RV*M and the
load vector b" € R which are defined by

(A" = alel, o), (") =1(e]).

The matrix A" is sparse because of the small overlap of the basis functions and
its elements can be computed by an element-wise evaluation of the integral.

It can be shown that A" is symmetric and positive definite, if the bilinearform
a(-, ) is symmetric and coercive.

15



CHAPTER 1 RECAPITULATION OF THE FINITE ELEMENT METHOD

Finite Element Mesh

An important prerequisite for the practical construction of the space V}, and its
basis is the partitioning of the domain €. This partitioning is called a mesh or
grid in finite element terminology consists of so called elements or cells:

Tn={t1, .., tm}

Each element ¢; is an open, bounded and connected subset of R". The parti-
tioning property is expressed by

Ut=2. tint;=0  Vi,j€{l,..,m},i#j]

i=1
hy = diam(t) is the diameter of an element and

h := max h;
teTh
denotes the mesh size.

In order to speak of convergence of the finite element approximation we actu-
ally need a sequence of meshes with A — 0.

The individual elements ¢; of the mesh typically have simple shape and in
order to simplify the calculations ¢; is given by a transformation from a reference
element. In figure shows different types of reference elements ¢ in different
space dimensions that are used in practice: the simplex and the cube family.

Proposition 1.18 (Reference transformation). Every element t; C R" i € T,
can be obtained from the reference element ¢ C R" by using an invertible affine-
linear transformation (shifting, rotation, scaling...)

Wi - Sn or Qn — fi, ti = ,ul(f) = Bﬂg—F Zi,
with B; € RdXd, det B; > 0 and z; € R, U
As a consequence we have

Corollary 1.19. Q is a polyhedral domain (polygon in two space dimensions)!

In general, nonlinear transformations g can also be considered which then
allows one to handle domains with curved boundaries but this will not be con-
sidered in this lecture.

It turns out that the mesh 7j, has to satisfy the following additional properties:

1. Regularity of structure: Two cells have at most one vertex or one edge
(or one face in 3D) in common (no “hanging nodes”).

16



1.2 CONFORMING FINITE ELEMENT METHOD

n=>0 n=1 n=2 n=3
(071) (0,1,0)
(0,0,1)
0 0.0) (10) (0.0) @0 000  (L00)

(a) S,: n-dimensional unit simplex with n 4 1 vertices

n=0 n=1 n=2 "
(0,1,1) (1,1,1)
(0.1) (1,1) 0.10) (1.10)
SOOI Lo
0 (0,0) (1,0) (0,0) (1,0) (070’/0) (-00)

(b) Qn: n-dimensional unit cube with 2" vertices

Figure 1.1: Examples for reference elements on simplices and cubes

2. Regularity of form: For every cell it holds
der >0 he < cipr
with the apothem p; and the circumscribed radius A;.

3. Regularity of size: Every cell is of the same size.

deo > 0: maxh; < comin hy.
teTh teTh

Remark 1.20. This only make sense if we have a sequence of grids 7, and
v € N such that h, — 0 and all constants ¢;, i = {1, 2}, are the same for every
V. ]

Finite Element Spaces

Using the mesh we now we can construct Finite Element ansatz spaces and deal
with questions about the practical realization of the method. €2 is a polygon
domain with the decomposition 7j in triangles or rectangles (triangular pyramid
or hexahedron in 3-D) and all the properties given above are satisfied.

17



CHAPTER 1 RECAPITULATION OF THE FINITE ELEMENT METHOD

Generally we define the following multivariate polynomial spaces of degree k
or smaller:

po={ue CPR") :u(zr) = Z Ca™},

0S|Oé|1§k‘
pi={ue C*MR") :u(x) = Z Cax™}
0<]a|oo <k
with |a; = a1 + ... + ay, |a]e = max;—;_, ; and 2% = 2% - ... - 2%, In R?

this looks like

P2 .= {u € C*(R?) : u(x) = Z i)},

0<i+j<k
Qr ={uecCR”) :u(x) = Y  cjria)}
0<i,j<k

With that we may define the following function spaces:
Pi(Th) == {u e C'(Q) : Vt € Tj, : ul; € P}Y,

Qr(Th) ={{u e Co(ﬁ) Vte Ty, : u‘f = {; 0 ,ut_l,’&t c Qr}.

It can be checked that this definition is in fact proper, i.e. the requirement of
global continuity does not contradict the polynomial form within each element.

The next step is to construct a basis for the finite element space. In particular,
for the finite element spaces considered here, a so-called Lagrange basis can be
found which is characterized by the property

QOZ}L(S]) - 52]7 ] - 17 "'7Nh7

for certain points s;. In the lowest order case k = 1 the points s; are the vertices
of the mesh 7},

Approximation Properties of FE spaces

Definition 1.21 (Lagrange-Interpolation). Given a Lagrange basis we can de-
fine the Lagrange interpolation operator acting on continuous functions:

Np,
T:C%Q) = PLTh), Tv=> v(s)el O
i=1
Remark 1.22. Note that [v, = vy, for every vy, € P} (Th). n

18



1.2 CONFORMING FINITE ELEMENT METHOD

Remark 1.23. In order to define Lagrange interpolation for Sobolev functions

we need k > 2 for H*(Q) C C°(©2). Then the Sobolev embedding theorem

ensures that functions are continuous and pointwise evaluation is well-defined.
This means for n = 1 that k¥ > 1 and for n = 2,3 that £ > 2. O

A cornerstone of the finite element a-priori error estimate is the following
approximation property of finite element functions:

Proposition 1.24. For £ € N, k£ > min(1,n/2) and Lagrange interpolation
T : H*Q) — P (Th) (note the polynomial degree is k — 1!) and m € {0, 1}
we have the estimate

lu = Zullma < ch*™"uly0

with a constant ¢ = c(n, k,,7;,). In particular, the constant depends on the
size of the angles of the triangulation. 0

As an example consider n = 2 and k > 1 (required to make Lagrange inter-
polation well-defined), i.e. the smallest k is 2 and the corresponding polynomial
degree is 1 (piecewise linear functions). Then we have ||u — Zu||1.0 < ch|ulsq.
However, the Lax-Milgram theorem establishes only a solution in H'. Thus one
has to assume that a solution with “additional regularity” exists.

Regularity Assumptions

We now discuss briefly under which assumptions solution in higher-order Sobelev
spaces actually do exist.

Example 1.25. For domains with smooth boundary or convex polygonal do-
main (2 it has been proved that u € H*(Q).

Example 1.26. ) has a C* boundary 0f2 (s times continuously differentiable
parameterized), then one can show u € H*(2).

The regularity of solutions of problem ([1.2)) can be also “very low”. For this
discussion fractional order Sobolev spaces are required, i.e. H*(2) with s € R.

Example 1.27. Consider the problem —V-(K (x)Vu) = f (in weak form) where
the coefficient K (x) > 0 is discontinuous and has the following “checkerboard”
form:

19



CHAPTER 1 RECAPITULATION OF THE FINITE ELEMENT METHOD

Then one can show that for 0 < K; < K> the solution satisfies u € H! T

with a = % QK—VflKKf ~ éw/% which approaches zero for K; < K.

arctan (
™

Correspondingly, the convergence of the finite element method is h* which is
extremely slow and is observed in practice. 0

A-priori Error Estimates

We start with a very important property of the finite element solution.

Proposition 1.28 (Galerkin orthogonality). Suppose u € V solves (1.2) and
uy, solves ([1.6)), i.e.
a(up,vp) = l(vy) Yo, € Vi, (1.7)

Then it follows that the error e = u — wy, satisfies
ale,vp) =0 v, € V.
Proof. Since V;, C V', we can use vy, as the test function in the original equation
a(u,vy) = l(vy) Yo, € Vp.

Subtracting from this equation ((1.7]), we get the Galerkin orthogonality relation
for the error u — uy,:

a(u — up,vp) = alu,vp) — alup,vp) = UWvp) — Uvp) =0 Yo, €V O

If a(-,-) defines a scalar product on V', which it does in the symmetric case,
then we can conclude that the error is orthogonal (w.r.t. the scalar product
a(-,-)) to all functions in V.

An important consequence of Galerkin orthogonality is

Lemma 1.29 (Céa’s lemma). The bilinear form a : V x V — R, V = H}Q),
fulfills the properties
e continuity: |a(v,w)| < Cllv
v,w € V and
e coercivity: a(v,v) > al|v||? , for some constant a > 0 and all v € V.
Then the error satisfies ,

1.0 ||w|]1.o for some constant C' > 0 and all

C .
|lu—up|li0 < — inf [Ju—wvll10 Yon € V.
X vpEV)

The infimum term characterizes the best approximation of u in the subspace V},
with respect to the H!-norm. O

Céa’s lemma together with the approximation property gives the a-priori es-
timate.
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1.2 CONFORMING FINITE ELEMENT METHOD

Theorem 1.30 (A priori error estimate). For the error u—u;, between the exact
solution u € V and the FE solution u;, with the ansatz space Vj, C H}(Q) of
order k > 1, the polynomial degree of the ansatz functions, it holds the a priori
error estimation

lw —upl|1.0 < ch* Hulra,

whereby the dimension n < 3 and the solution is required to be in H*(Q). O
In the L%norm one can show
lu = unllog < ch*[ulao

for polynomial degree 1.

Practical Implementation of the matrix A"

In this section we want to present a systematic way to compute the entries of
the stiffness matrix A" € R¥»*Nr for the elliptic problem

(KVu,Vov) = (f,v) YveV.

This process is called “matrix assembly”. To assemble the linear system of equa-
tions,
Al ="

)

we use a cell-wise computation of the necessary integrals. The definition of the
matrix entry is

(A7) = a(gl, o) = / (KV ) - Vil d.
Q

Now we split the domain into elements to arrive at

(A" = Z/(KW??) - Vi da.

teTn +

We calculate the contribution of one element with the help of the reference
transformation g from [1.18) On element ¢ we have the relation

0(2) = v(p()) (1.8)

between the finite element function v on the element t € 7, and the correspond-
ing function on the reference element. Recall that for affine transformations we
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CHAPTER 1 RECAPITULATION OF THE FINITE ELEMENT METHOD

have () = By +2 and By = V(&) (the hat on the gradient operator means
differentiation with respect to ). The transformation formula for integrals

/v(x) dr = /@(:ﬁ)\det Bl di

¢ t

then establishes that we can calculate the required integral on the reference
element.
In addition, from the chain rule applied to ([1.8]) it follows

Vo(u(#)) = By TV(2).

Using all these relations the matrix entry can be computed as
—T& A 2 o N-TES A S g
/ K (@) (Viae(@)) V8500 - (V@) " V(@) det V(@) i

In practice the computations are organized such that all integrals on the element
t contributing to different 7, j are computed consecutively so that the (expensive)
evaluations of p; (Jacobian and determinant) can be reused. Moreover, the
evaluations of (gradients of) the basis functions @ on the reference element can
be computed once and stored.

A posteriori error estimation

An important role in partial differential equations is error control. Of interest
is to estimate the error between an approximate solution u;, and the exact solu-
tion u. For this purpose we have the “a posteriori error estimator”, which only
depends on calculated quantities and the data f. The a priori error in the previ-
ous section is not useful to control the error, because the necessary information
about higher-order derivatives of the exact solution u are not available.

Theorem 1.31. For the error u — wuy, there holds the psteriori error estimate
2
2 2 2
o= wlho < e SRIRE+ 3wl |
teTh yeFIUFN
with the strong formulation of the elliptic operator

R=f+ V- (KVu,) —cuy,
—_———

=0 for P;-elements
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1.2 CONFORMING FINITE ELEMENT METHOD

the jump terms over the edges v € F; and the error in the Neumann boundary
condition v € F}¥

r(z) = [—(KVuy) - v reyeF
—(KVu)-v—3j zevyeF

The constant ¢ depends on the mesh and the polynomial degree and is hardly
computable in practice. Il

Interpolation of non-smooth functions

The Lagrange interpolation requires enough regularity of the Sobolev function.

In certain situations, such as for the a-posteriori error estimate given above, on

requires a finite element interpolation that can work directly on H! functions.
One possibility is the local “Clement” interpolation [1.32}

Definition 1.32 (Clement interpolation). For every function v € H*(Q) exists
the “Clement” interpolation Cpv € Vj:

Ch: H'(Q) — Vi, D P(Th),

which is a combination of the Lagrange interpolation and the following L*
projection. [l

Remark 1.33. The Clement interpolation is not a projection, i.e. C,Chv #
C’hv. U]

Another option is the “L?-projection” [1.34 which is orthogonal but not local.

Definition 1.34 (L*-projection). The L*-projection @y, : L*(2) — V}, is defined
by
(Qnv,wp)oo = (v,wp)on Yw, € V),

with the estimate
lv — Qnvlloa < chlv|ia. O
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Chapter 2

Classical Iterative Methods

2.1 Linear Iterative Methods

The regular linear system
Az =10 (2.1)

is solved by constructing a sequence z°, z!,... with arbitrary initial guess z"

that converges towards the solution x. One way to construct linear iterative
methods is via defect correction. For arbitrary z* define the error as

e =a — 2" (2.2)
Due to linearity we have
Ae* = Az — Az = b — AzF = dF (2.3)

which is called defect. Note that d¥ = b — Ax* can be readily computed while
the underlying error e* is usually not available.

In order to arrive at an iterative method A on the left hand side of is
replaced by some approximation W, i.e. we solve Wo¥ = d¥ and v¥ = W—1d*
approximates e*. This gives us the generic form of a linear iterative method:

" =P L Wb — Axh), (2.4)
Particular choices for WW are
Whie = w T w € R, Richardson
Wiae = diag(A) Jacobi
Was =L+ D A= L+ D+ U, Gauk-Seidel
Analysis of linear iterative methods is based on the error propagation equation
e W

=2 — 2" — WAz — AzF)
= (z—2") = W A(x — )
= — W ACk

= (I —W A" =: Se*

The matrix S = I — WA is called iteration matriz.
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CHAPTER 2 CLASSICAL ITERATIVE METHODS

Definition 2.1.
o(A) :={\ € C: \is eigenvalue of A}
is called the spectrum of A and
p(A) i= ma{[A] : \ € o(4)}
is called the spectral radius of A.

Theorem 2.2. AW regular matrices. Then the iterative scheme ([2.4)) con-
verges if and only if p(5) < 1.

Proof. See Hackbuschl [1991]. Idea: e* = S*¢e” and show S* — 0. For diagonal-
izable matrices this is easy to see as S¥ = TD*T~1 and D* = diag(\}, ..., Ak)
a diagonal matrix. The argument can be extended to non-diagonalizable matri-
ces. L]

In general it is difficult to determine p(S). One option is to use a norm
estimate

< (T — WLA)ek
= [l < (1L = WA e
for any submultiplicative matrix norm. Since p(S) < ||S|| for any norm and
|S|| < 1 is required for convergence, the norm needs to be chosen carefully.

A special case are symmetric positive definite matrices where the spectral
radius can be computed exactly and related to the condition number.

Theorem 2.3. A, B symmetric and positive-definite matrices. Then the itera-

tion
1
k+1 k k
T x +)\max(BA) ( z")
converges with the rate
1
—1—
P x(BA)
where
Amaz(BA)
BA) = ————=
MBA) = 3 (BA)

is the spectral condition number and A (BA), Apin(BA) are the extreme
eigenvalues of BA.
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2.1 LINEAR ITERATIVE METHODS

Proof. A is symmetric positive definite, so there is an unitary matrix ¢) such
that A = QDQT with D = diag(\1,...,\y) with \; € o(A) C R,. Set
D2 = diag(v/A1,...,vAy) and Az = QD2QT. Then we have o(BA) =
o(A2BAA 2) = o(A2BA?). Since T := A2BA: is symmetric and positive
definite all eigenvalues of BA are real and positive. Now T’ is also diagonalizable
and has a complete set of eigenvectors. Since o(S) = o(I — 2T) = {p; : p; =

1—2 for \; € o(T) = o(BA)}, setting w = Apar(T) we get p; € [0,1— ;\mn((:TF))]

Sop(S):l—ﬁ. O

For B = I we obtain the Richardson iteration W = ﬁ[. For B = A"!
we have k(BA) =1 and p(S) = 0.
The matrix B is supposed to reduce the condition number of A and is therefore

often called a preconditioner.
Now what is the condition number of A?

Observation 2.4 (Raleigh Quotient). Let A € R"*" be symmetric and positive
definite. Then the extreme eigenvalues can be characterized by

Amin(A) = inf (Az, x}) Amaz(A) = sup (Az, 7)
x#0 <.CE,.CU> x#0 <37,$>

Y

where (.,.) is any scalar product in R".

Proof. 1. Let (.,.) be the Euclidean scalar product. There exists () with
A=Q"DQ and QQT = I. Then

(Av,z) _ (DQw,Qz) _ o1, \i(Qx)?
(r,7) — {Qr,Qr) —  (Qz,Qu)

From A\ (Qx, Qz) < 22{1 Ai(Qr)? < Apae(Qz, Qx) we conclude the
result.

2. Extend to (u,v)y = (Mu,v) = (Mzu, Mzv). [

Lemma 2.5. Let A;, be obtained from a Finite Element discretization of the
Poisson equation, i.e. (Ap)i; = a(¢;, ¢i), using Lagrange basis functions of P,
on a mesh of size h. Then there exists a constant ¢ such that

k(Ap) < ch™?
and the estimate is sharp.

Proof. Let (.,.) be the Euclidean scalar product. We write €2;; := supp(¢;) N
supp(¢;).
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CHAPTER 2 CLASSICAL ITERATIVE METHODS

Ny Np,

<Ah33, $> = Z Z l“z'ﬂ?ja(ﬁbja ¢z‘)

i=1 j=1

Ny
Qij

i.j=1

Ny,
= mw; Y /(Bt_Tngj) (B, "V¢i)|det B,| di )

1,j=1 tGQij i
Ny, Ny,

< g T E T g chd=?
=1 7=1 IfEQij

= ch" (B, x)

< ch"?|| Bx|| |||
< h 2| By |||
= ch'?|| B (2, )

where

0 otherwise.

B {1 €2jj = supp(¢;) N supp(¢;) # 0
iy o

Note that |[|E||s < K when E symmetric and ||El| = K. In (*) we used the
estimates

3 1
HBt TH <c

7o ldet B < ch’ and ||Véi]| < 1.

Dividing by (z, x) and taking the supremum then shows

Amaz(Ap) = sup ————
( h) x#0 <$,l’>

Now we give an estimate for A,,;, and recognize that based on the Lagrange
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2.2 BLOCK ITERATIVE METHODS

: : : N,
basis functions we have for any function uy = > ;" x;¢;:

(Apz, z) = alup, up)

2
1,0

= a(]|ua] gQ + [un %Q)
1

SQ + _2HUhH(2) o) (Friedrich inequality: assume I'p # 0)
b S b

> o)

> a(([un]

1+ 52

> 0—
> a—5"

1+ 52
S

2
0,0

> o hi(x, x) (not shown here)

and thus
(Apz, x) 1+ s?

Amin(Ap) = inf > K
(4n) ;I;éo (x, 1) =T
Together we obtain
)\max(Ah) —9
A)) = 5 ehe ]
K( h) /\mm(Ah) =

2.2 Block lterative Methods

These are precursor to overlapping Schwarz methods.
The following notation is handy when displaying block methods and describing
the parallel implementation of iterative methods.

Index sets

An index set I is a finite subset of Ny. In particular index sets need not be
consecutive or starting with 0 or 1. z € R? is the vector having components (z);
for all i € I. Alternatively identify a vector x € R! with the map = : I — R.

Analogously, for any two index sets I, J C Ny: A € R/ is the matrix with
entries (A); ; for all (¢,7) € I x J. Alternatively: A: I x J — R.

Subvectors and submatrices

Let I C I and J C J. Then, for z € RY, 27 is given by (27); = (z); forall i € T
and for A € RI*/, Az jis given by (Aj 7)i; = (A); for all (z,5) € IxJ.

Displaying a representation of a vector or matrix requires an ordering of the
index sets, e.g. the lexicographic ordering. Also, certain iterative methods, e.g.
Gauk-Seidel, require an ordering of the index set.
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CHAPTER 2 CLASSICAL ITERATIVE METHODS

Partitioning

Block methods are based on a partitioning of the index set I C Ny. Let P =
{1,...,p} be the index set of the blocks and choose I; C I for i € P such that

U]i:] and I;N1; =0 for all i # j.

ieP
Block-Jacobi and Block-GauR-Seidel
Then the Block-Jacobi and Block-Gaufs-Seidel methods are defined by
(A)z,] 1f2,] Elk forake P

0 else,

(A);,; ifielyjelforl<kandkleP

0 else .

(WBJac)ij = {

(Waas)i; = {

Assume that the index set [ is ordered such that ¢ < j whenever
block(7) < block(j) where block(i) = k :< i € I. Then

A, 0 ... 0 Ann 0 ... 0
0 Ans : Ann, Anr :
Wgiae = 2 . , Whas = p
0 ......... A[p’[p AIle ......... A[p’[p

Both methods require the solution of the p smaller systems Ay, r,.

Algorithmic Formulation

Define the rectangular restriction matrix
R R - RY (Rpw)y = (z)o Vo € I

Ry is a |I;| x |I| matrix with exactly one 1 per row. All 1s are in different
columns, so rank Ry, = |[;|.
With this we can write
Ar.1, = R, AR},

and get for the Block-Jacobi method

=2+ Y T RTAY Ry (b — Aa)
el
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2.3 DESCENT METHODS

where the computations can be done in parallel. In case of the Block-Gaufs-Seidel
method we get

Fori=1,...,p: " = M 4 R%Ali,lhR[i(b — Az,

Without further assumptions on I; and A these corrections have to be computed
sequentially!
For the convergence of the block variants one can prove:

Theorem 2.6. A let be symmetric positive definite.

1. 2Wgjee — A be symmetric and positive definite then ||Spuclla < 1.

2. [|SBas|la < 1 where ||S||4 is the matrix norm associated to the energy
norm ||z||4 := /(4z, z).

Proof. See [Hackbusch|, 1991, Satz 4.5.4 and 4.5.6]. ]

2.3 Descent Methods

These are nonlinear iterative methods based on minimizing the functional
1
F(x) = §(Aaz,x> — (b, x).

Theorem 2.7. A symmetric and positive definite. Then the unique minimum
x* of F' coincides with the solution of the linear system Ax = b.

Proof. For any x = z* 4+ v show F(z) = F(z*) + $(Av,v) > F(z*) if v # 0.

Uniqueness is proven by contradiction. [

1D-minimization

Given an iterate 2 and a “search direction” p* one can easily solve the problem
Find o € R such that F(z* 4+ ap®) — min

by
_ ()b - Ash)
()T A
Gradient descent method: Choose p* = —VF (%) = b — Az".

(2.5)

Theorem 2.8. A symmetric and positive definite. Then, with x being the
solution of Az = b, the gradient descent method satisfies

k(A) —1

k-1
el

lz — 2*]la <
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CHAPTER 2 CLASSICAL ITERATIVE METHODS

Algorithm 2.1 Gradient Descent Method

Given: Initial guess x, right-hand side b and tolerance € < 1
d:=b— Ax

d =&y = ||d|

while 6 > edy do
q:= Ad > matrix vector product
a:=(d,d)/{d,q) > scalar products
r:=z+ ad > x update
d:=d—aq >d=b—A(x+v)=b—Ar — Av=d — Av
0 :=||d|| > recompute norm

end while

Proof. See [Hackbusch|, 1991, Theorem 9.2.3|. O

The convergence factor can be written has

AA) -1 1
R(A)+1 k(A)+1

So for large k(A) the convergence factor nearly the same as that of the damped
Richardson method.

Preconditioning

Idea: Choose M regular and multiply Az = b to the left with M ~! to obtain the
equivalent system M 1Az = M~1b (left preconditioning). If k(M 1A) < k(A)
then the convergence of the gradient method applied to this system is better.
However, in general, M ~'A is not symmetric even when M and A are sym-
metric. Assume M and A are symmetric and positive definite. Then M 2 is well

defined and
o(MA) = o(M2M"AM %) = o(M 2 AM2).

Now transform Az = b from left and right by

Ar =0b
o M 2AM :Miz = M 2b
o A =1b

with A := M_%AM_%, T = M%:UAand b:= M~2b.
Obviously o(A) = o(M~1A), A is symmetric and positive definite and the
gradient method can formally be applied to this transformed system.
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2.3 DESCENT METHODS

Unfortunately, the matrix Aisin general not sparse and performing operations
with A is too costly. Instead of transforming the linear system once at the
beginning, we transform instead every single step of the method. This means

d=b— A" = M~3b— M2 AM *M32" = M3 (b— Az*) = M~2d,
G=Ad=M2AM M :d= M *AM 'd = M~ Av,

. {d.d) (M~2d, M~ d) (d, M~d) (o) _
= == — — — ,

(d,q) (M—2d,M—2AM-'d) (M~'d,AM~td) (v, Av)
F=2+ad=Mz+aM >d= M3 (z+aM 'd) = M?(z + ),
d=d—6G=M"72d—aM Av=M"3(d — aAv).

where v := M ~!d is the result of the preconditioner.

Ultimately we are interested in x = M _%i", so the transformed quantities need
never be computed.

Algorithm 2.2 Preconditioned Gradient Descent Method
Given: Initial guess x, right-hand side b and tolerance ¢ < 1

d:=b— Ax

d:=0p := ||d||

while § > edy do
procedure SOLVE

Mv=d
end procedure
q:= Av

a = (d,v)/{v, Av)

x:=x+ av

d:=d— aq
6 := |||l
end while

Conjugate Gradient Method

The conjugate gradient method is very similar to the gradient descent method.
It ensures in addition that the search directions are A-orthogonal:

(Ap*,p"y =0 Vi< k. (2.6)

The convergence rate can be estimated by

k K(A) — 1 —
o =0 < Y e =t 27)
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Proof. See [Hackbusch|, 1991, Theorem 9.4.12]. O

Algorithm 2.3 Conjugate Gradient Method
Given: Initial guess x, right-hand side b and tolerance € < 1

d:=b— Ax > initial defect
p:=d > initial search direction
d =&y = ||d| > initial norm
while 6 > edy do
q:=Ap > matrix vector product
a:= (p,d)/{p,q) > optimal step length, see
r:=x+ap > solution update
d:=d— aq > defect update
B=1(d,q)/{p,q)
p=d— Pp > new orthogonal search direction
0 :=||d|| > recompute norm
end while

The conjugate gradient method is given in Algorithm [2.3] Preconditioning
can be applied in the same way as for the gradient descent method.

There exist also extensions of descent methods applicable to nonsymmetric
matrices, e.g. the BiCGStab method and the GMRES method. All these meth-
ods also go under the name of Krylov methods

2.4 Parallel Implementation

Block-Jacobi without Convergence Test

We consider first the implementation of the Block-Jacobi method with the fol-
lowing assumptions:

e as many processors p as there are blocks and
e 1o termination criterion.
Assume partitioning
p
LcI, |JL=1 LNnI=0Vi#j
i=1

Partitioning is (usually) done on mesh level, i.e. a partitioning of 7, induces
that of 1. Data decomposition: Every process i € P = {1,...,p} stores all rows
of A corresponding to I;.
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I;
L
..... : ‘,.32/;” ’....' .
I’L A -:"“"‘{f:’,‘?‘l-(._. ‘.. ...... AIZ7I _ RI1A
- ~% Ty o
]p

Figure 2.1: Data Decomposition for Block-Jacobi Method

Note that A is sparse with only few non-zero elements off the block diagonal,
see fig. 2.1} In order to compute Ay, ;x process i does not need the whole z but
only z; with

Li={jel:(A)y,;#0forkel}
Consequently, all non-zeroes are contained in A 1.1, Note also, that
L CI
since (A);; > 0 for A symmetric and positive definite.
We also define the restriction R; ; : R — R% inthe usual way by
For z € R : (Rj ;x);=(z); Vjel.

The parallel Block-Jacobi Method is then given by algorithm 2.4 The com-
munication step involves the exchange of messages with (or access to memory
of ) only a few other processes for each process p.

Algorithm 2.4 Parallel Block-Jacobi Method without Convergence Test
for all i € {1,...,p} do in parallel

Tj o= Rfixo > set initial guess
by, := Rrb > right-hand side
for k=1,... do
dr, :=br, — A jx; > local defect
vj 1= Rz [iA;:Iid[i > local solve
vp = vp + Z#i’fimj#@ RI}R%U@ > communication!
T o= Tj +Uf > local update
end for
end for
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CHAPTER 2 CLASSICAL ITERATIVE METHODS

Parallel Preconditioned Gradient Descent Method

The preconditioned gradient descent method (and also the (preconditioned) con-
jugate gradient method) can be parallelized along the same ideas.

Algorithm 2.5 Parallel Preconditioned Gradient Descent Method

for all i € {1,...,p} do in parallel
Tj o= Rjimo
in = R]Z.b
dli, = in, - AIi,fixfi
0= 08" = ||d|| = /327 llds,
while § > €/° do
v; = prec(dy,) > involves communication of v}
qar, -= AIz‘jiUfi
a = {d,v)/{v, Av) =
Tp = Tj v
dy, := dy, — aqy,
0 := /i ldn,
end while
end for

2 > global communication

Zf:l <divai,Ii”fi>
Zf:l <Rii’livii 7QI1->

> two global communications

2 > global communication
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Chapter 3

Overlapping Domain Decomposition Methods

3.1 Overlapping versus Non-overlapping Methods

Let us start with some basic ideas and two subdomains. Consider the Poisson
equation with homogeneous Dirichlet boundary conditions for simplicity:

—Au=f in Q c RY,

u=>0 on 0f). (3-1)

Non-overlapping Methods

Assume {2 is partitioned into two non-overlapping subdomains
Q:QlUQQ, QlﬂQQZ(Z), I' = 00 N oDy

and measure(0€; NON) > 0, measure(022NOQ) > 0 and €2y, Qs have Lipschitz-
continuous boundaries, for example as in figure [3.1]

Under suitable assumptions on f (more than f € H~1(Q)!) and the €; (e.g.
Lipschitz boundary is sufficient) problem (3.1]) is equivalent to

—Auy = fin Qq, up =0o0n 0 \ T (3.2a)
—Auy = f in Qo, ug =0 on 00 \ T (3.2b)
Uy = ug on I, —Vu,-v=—-Vus-vonl (3.2¢)

04 I Qs

N

Figure 3.1: Decomposition of €2 in two non-overlapping subdomains
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CHAPTER 3 OVERLAPPING DOMAIN DECOMPOSITION METHODS

where v is the normal on I" (selected in either way) and is meant in the
Lo-sense. are called interface or transmission condition. The proof is done
in the variational framework, see Quarteroni and Valli [1999]. The continuity of
uw on I' is a consequence of the trace theorem.

One possible algorithm to solve is the Dirichlet-Neumann procedure:

Given uf on the boundary I" one iteration reads

AT in O
W= on 90, \ T (3.32)

IIH% = ul on I'

—AU;JF% =f in {2
u];r% =0 on 0 \ T (3.3b)

—VuIQH% V= —Vulfj% 7 on I’
ubtt = Hu;H% +(1—=0)uf onT (3.3¢)

with 6 € (0, 0,4,). This is an iteration for the values on I'. After convergence
the solution inside the subdomains can be recovered by solving two Dirichlet
problems.

We will treat non-overlapping methods in chapter |5| of the lecture.

Overlapping Methods

One problem in the analysis of the non-overlapping case is that the restriction
of v € H}(Q) to , ie.

oi(z) = v(z) forx €
0 for z ¢ €,

is not in Hg (). This difficulty is overcome if overlap is added. Assume Q1, Qs
are domains (i.e. open, connected subsets of R?) such that Q; UQy = Q.

Set I'] = 8@1 N QQ, I'y .= E)Qg N Ql as in figure [3.2l Then the Schwarz
alternating method reads as follows. Given u* defined on the whole domain €2
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Figure 3.2: Decomposition of €2 in two overlapping subdomains

with «* = 0 on 0 compute

—Au]f+5 =f on €
k+3 -
u, > =0 on 0 \ I'y (3.4a)
ulf+§ — uf on I'y
—Au§+§ =f on €
u§+§ =0 on 8522 \ FQ (34b)
k+3 k+3
Uy * = Uy on I'y

1 N
2 on €2

41 ~ ? ~ ~ (34C)
u, 2 on Ql\(QlﬂQQ)

This procedure was used by H. A. Schwarz in 1870 to prove the existence of
solutions of the Laplace equation in regions with non-smooth boundaries.

We will later show that for a variational formulation of (3.4]) there exists p < 1
such that

lu = u" o < pllu = u'[lq.

The convergence factor p depends on the form of the subdomains, in particular
the overlap of the subdomains. This can be easily seen in one space dimension.
Consider

d?u ,
—@:Oan:(O,l)
uw(0) =u(l)=1

and set Q; = (0, % + a), Qy = (% —a,1)for0<a< % Obviously u = 1 is the
exact solution.
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v — uzlloo 4R

lv — u1lloo

N
|
IS}
N
N
_l’_
IS}
—

Figure 3.3: Graphical error determination for example problem

For the Schwarz alternating procedure we choose the initial guess

1-2 0<zx<e
u’(z) =<0 e<r<l—c¢
-1 1—e<z<1

with € < % — a. The error can be determined graphically as in figure 3.3 We
analyze the error in the infinity norm and observe

1

lu = u*lloe = "]l = ek(i —a).
Then
k+1 k+1 1
He Hoo:e (——a)
2
1
_6]1€+1(§_a)
1
— §+a€l§(§+a) evaluate in (O,§+a); %i—aeg(§+a)
1 1
3 —agy—a ;.1 .1 11—z ;1
= ——ej/(z—a) evaluatein (z —a,1): ——ej(z —a
it+asz+ta 1<2 ) (2 ) lta 1(2 )
= (1220 ey
1+ 2a o0
So here we have in the infinity norm p = (1133)2
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3.2 OVERLAPPING SCHWARZ METHODS WITH MANY SUBDOMAINS

3.2 Overlapping Schwarz Methods with Many
Subdomains

Now we turn to a more general construction of Schwarz methods that allows us
to extend it to

1. more than two subdomains and to

2. solve the subdomain problems by the finite element method.

Step 1: Decompose the domain €2 into p non-overlapping subdomains
— p —
Q=%  QnQ=0i+#j
i=1

In practice this could be done by constructing a mesh 7y with at least p elements.
and choosing {2; as a union of mesh elements.

Step 2: Add overlap around every ();
Q; = {z € Q: dist(z, Q) < BH}

with H = max; diam(€2;).
In practice this could be done by refining the mesh Tp into a mesh 7, and
choosing €2; to be a union of elements from 7.

Concerning the finite element discretization there are two options:

1. “Partition, then discretize”. Construct subdomains Qi, then discretize sub-
domains individually as in figure |3.4}
e Advantage: mesh can be individually adapted to subdomains.
e Disadvantage: complicated interpolation between subdomains.

2. “Discretize, then partition™ First discretize €2 into Tx. The make T, a

refinement of T and choose €; to be a union of elements from 7Tj, as in
figure |3.5]

e Fasy interpolation.

e Ty will play an important role later.
We follow the second approach now. Assume 2 is polygonal.

1. Construct a coarse conforming and affine triangulation Ty = {4, ..., Q,}.
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Figure 3.4: Partition, then discretize
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Figure 3.5: Subdomain decomposition using a grid hierarchy



3.2 OVERLAPPING SCHWARZ METHODS WITH MANY SUBDOMAINS

2. Refine Ty uniformly m times to obtain fine triangulation 7y.

3. Add overlap, i.e.
Qi :={ecT,:ecQ}U{ecT,:dist(e, Q) < SH}.
Note that )
Thi ={ee€Th:eC}
provides a conforming and affine triangulation of Q.

Then the Schwarz method can be formulated in variational form as follows.
For V = H}(Q) let
ueV: a(u,v) =1lv) YveV
be the variational formulation of (3.1)). With the extension operator & : H}(Q;) —
V' given by
0 else

we define the subspaces

V.= {U eV .iu= ((:ZUZ,UZ c H&(QZ)} cV.

Then the alternating Schwarz method for many subdomains is given by algo-
rithm [3.1} In the algorithm we had to solve

Algorithm 3.1 Alternating Schwarz Method for many subdomains

for k=0,1,... do
fori=1,...,pdo

w; € V;: a(u“% + w;,v) = l(v) Vv €V,
W = uk+% T w;
end for
end for
w; €V a(uk+% +w;,v) =1(v) YveV. (3.5)

Note that the solution of (3.5]) involves solving only local problems

a(w;,v) = /sz- -Vovdr = [ Vw; - Vodzr = a;(w;,v)
Q 3

Qi

i—1

= /fv dr — /Vu“i;l Vode = 1;(v) — a; ("7 ) Yo e HY(Q),

since v = 0 and Vv = 0 outside QZ
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CHAPTER 3 OVERLAPPING DOMAIN DECOMPOSITION METHODS

3.3 Discrete Variational Formulation of Schwarz
Methods

In order to apply in practice we solve the variational problems approx-
imately by the conforming finite element method. So assume V;, C V is a
finite-dimensional subspace equipped with a local basis, i.e. PZ(Ty) or Q¥(Ty).
Then we set

Vii=A{v eV, :v(x) =0z € Q\ U} CV, CV =HH Q).

Here we exploit that Q; is given by the construction in 3.2} i.e. {2; is polygonal
and the mesh resolves 0€2;.

Algorithm 3.2 Discrete Schwarz Method

for k=0,... do
for:=1,...,pdo

i—1

w; € Vit ai(w;,v) = i(v) — ai(u]:;r?,v) Vv e Vi,

k+r kR
U, U= Uy + w;
end for
end for

In order to derive the algebraic formulation one needs to insert a basis repre-
sentation of the discrete function spaces:

Vi, :=span @y, @, :={¢r:kel}, Vy;:=span®,;, Pp;:={¢p:k¢€ fz},
where
I = {k € I :supp ¢ C QZ} cl, I:= {k € I : supp ¢y N, # 0},

Hereby we assume that a Lagrange basis has been chosen and that the Lagrange
basis functions have local support. Now the local problems read

i—1

w; € Vit ai(w;i,v) = 1;(v) — a(uh+ "Lu)Vu e Vi,

= ai(d (2005 6m) = li(dm) — a:(D_ (T )65, dm) ¥m € I,

jel; jel;
=Y (205085, dm) = Lildm) = D> (@5 ) ai( b5, m) ¥m € I,
jel; jel;
= A e = b~ Ap e (3:6)

with Afi7ji = RL‘AR%; and bfi = Rfib'
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3.3 DISCRETE VARIATIONAL FORMULATION OF SCHWARZ METHODS

The right hand side can be written equivalently as

) o p_ ksl ) Tp . k+=t
bj — A jRrx™ " v —Rfib_RIiARLRIix g

7

= R;b— RLA:UH% (adding zeros)
= R; (b— Az"7). (3.7)
The algebraic version of the update step is
htL k=t
u, " =u, "+ w;
ki feg izl
= ) (@) 0= (@) 05+ D (2);0;
jel jel jel,
e M = T szz (3.8)

So we arrive at the algebraic formulation of the alternating Schwarz method
given in algorithm[3.3.  We observe that this is identical to the block Gauf-Seidel

Algorithm 3.3 Algebraic Formulation of the Alternating Schwarz Method

for k=0,... do
for:=1,...,pdo

i (3.8) i-1 _ i-1
M= MY 4 RIATL Ry (b~ Az (3.9)
end for
end for

A

method with the only difference that the index sets I; are now overlapping!
In complete analogy we can formulate a method that corresponds to the block
Jacobi method with additional damping

p
M =af +wd RIATL Ry (b— Ad) (3.10)
i=1 ’
which is the algebraic version of

Algorithm 3.4 Variational Formulation corresponding to the block Jacobi
method with additional damping
for k=0,1,... do
for:=1,....,pdo

w; € Vi : a;(w;,v) = ;(v) — a;(uf, v) Vv € V; (3.11)
uF T = w ST wy
end for
end for

Clearly, in this version all corrections w; can be computed in parallel. The
damping factor needs to be sufficiently small to make the method convergent.
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CHAPTER 3 OVERLAPPING DOMAIN DECOMPOSITION METHODS

Error propagation operators

For the ease of writing let us introduce the abbreviations
RZ‘ = Rji and Az = Afi ji'

Setting ety = 1 — 2" as usual, we obtain for one substep of the alternating

Schwarz method with these abbreviations
" = (I - RTAT'R AT = (I - Pt

where we defined the projection operator P, = R?Ai_lRiA. Consequently, for
one complete step we obtain

=1 —-P)---(I-P)e = (ﬁ([ — PZ-)> e”.

1=1

The alternating Schwarz method is therefore also called multiplicative Schwarz
method.

Remark 3.1. Note that in each individual substep the matrix RI A;'R; does
not have full rank and therefore can not be written as the inverse of some W;.

Remark 3.2. Note also that z; = PZ-BH% is the correction computed in substep
. Below the projection operator P; will play an important role in the analysis.

Remark 3.3. The multiplicative method needs to be symmetrized to be used
as preconditioner in CG.

For the block Jacobi inspired variant we obtain the error propagation

p p
eftl = (1 —wy R;TAilRZ-A> ek = (I —wy B) ek
1=1

1=1

Due to this form the method is called additive Schwarz method.

It turns out B = Y P, RiTAi_ IR, is a symmetric positive definite precon-
ditioner and therefore, according to Theorem 2.3, w < m is sufficient
for convergence. In practice, however, one would rather employ the additive
Schwarz method as a preconditioner in the CG method. Then the damping step
can be omitted.
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3.3 DISCRETE VARIATIONAL FORMULATION OF SCHWARZ METHODS

Ji = {1,3,9,11}

Js = {5,7,13,15}
J, = {6,8,14,16}

Figure 3.6: Coloring of a structured mesh in 2D

Independent corrections

The multiplicative Schwarz method can be parallelized with the following trick.

Observation 3.4. Provided RiARf = 0, the order of computation of the two
corrections in subdomains ¢ and j is irrelevant.

Proof.

(I-P)(I—P;)=(—R/A7'RA)I — R A;'R;A)
=1 —R/A'R,A— R A;'RjA+ R/ A7 RAR] AJ'R;A
N——

0
—I—P— P, O

Now suppose that J = {1,...,p} can be partitioned into

C

J=Jd  JNL=0,i#]

n=1

such that RiAR;F = 0 for all 2,7 € J,. Then all corrections in J, can be
computed in parallel.

For an appropriate decomposition of €2 into subdomains Q); and sufficiently
small overlap the constant ¢ is independent of the number of subdomains p. An
example for the unit square is given in figure [3.6] For a structured mesh in 2D
(3D) four (eight) colors are sufficient.

An algorithm for computing the partitioning into the .J,, is called a coloring
algorithm and c is the number of colors.

The error propagation operator of the algorithm is then

(i)
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CHAPTER 3 OVERLAPPING DOMAIN DECOMPOSITION METHODS

3.4 Coarse Grid Correction

We will prove below that the condition number of the system preconditioned by
the additive or multiplicative Schwarz method defined so far is

k(BA) < c(1+ %)H‘Q.

Since H ~ diam(2)/ pi this is not acceptable for large p. The reason for this is

that smooth errors are not reduced well: Consider an interior subdomain, i.e.
0, N O = 0 and an error ¢¥ = 1 on ;. Then

R;Ae" =0

since ) ;(A); = 0 for [ € I; and consequently the correction computed in the

subdomain €); is zero. The remedy is to add a so-called coarse grid correction
which is constructed as follows.

Let Vi be a conforming finite element space equipped with a Lagrange basis
on the coarse mesh 7y used to construct the subdomain decomposition. Due to
the hierarchic construction we have Vi C Vj,. Then for a given «* compute the
correction

w e Vp: a(uf +w,v) =1(v) VYo e Vy.

Setting Vj := Vj the variational formulation of the (damped) additive Schwarz
method is given by algorithm [3.5

Algorithm 3.5 Additive Schwarz Method with Coarse Grid Correction
for k=0,... do
for:=0,...,pdo
w; € Vi : a(w;,v) = 1(v) — a(uF,v) Vv €V
end for
W=+ 0 S w
end for

The algebraic formulation of the additive Schwarz method with coarse grid
correction is given in algorithm [3.6]

The entries of Ry there are obtained from the representation of the coarse
grid basis functions in terms of the fine grid basis functions. If

Vir = span{ét : k € Iy} C V), = span{o! : k € I},}

then
Cbg = Z T’mnﬁbz = Z Cbg(sn)(bz

nelp nely
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Algorithm 3.6 Additive Schwarz Method with Coarse Grid Correction (Alge-
braic)
for k=0,... do
P i= 2k 4+ w S  RTATTRi(b — Azh)
end for

where we extend the definition of the restriction matrices

Ri{Rf? ifie{l,...,p}

Ry otherwise
A; = R,ART.

and

(RH)mn = Tmn-

In the same way the multiplicative version can be extended by a coarse grid
correction. Algorithm [3.7] gives a symmetrized version.

Algorithm 3.7 Multiplicative Schwarz Method with Coarse Grid Correction

for k=0,... do
fori=1,...,pdo

2P = e RFATR; (b — :Uk+2iz>_+11)
end for
2R = 2" 4 RTAS Ry (b — o)
fori=p,...,1do
k+2§ﬁ11 ) k+2’2’pi11 R;A;lRi(b k+2§jj1’)
end for
end for

We will prove below that these algorithms correspond to K(BA) < ¢(1 + %)
when used as preconditioners.

3.5 Complexity Considerations and Speedup

Before we analyze the Schwarz methods we present some general considerations
about the parallel scalability of the method.

Reduction of sequential complexity

We first consider the Schwarz method as a sequential method, i.e. all corrections
are computed sequentially on one processor. We make the following assumptions:
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e Subdomain problems are solved with a direct solver having a complexity
O(N®) with a > 1.

e We assume the computation time is dominated by the factorization phase.
This is justified mainly if « is large.

e We assume a structured mesh in d dimensions discretizing the domain
Q= (0,1)? with N =n?, n =1 and ny = +.

e Overlap is 6 = SH.

Then the time for the factorization phase is

. H—f— o da
Ts(n,ng) = nf + % Tﬂ>

coarse grid  # subdomains

= ng + niy (n (1 Hf))da (3.12)

nda
= nf} +an (14 B)™
T

= nd + ndH(l_a)ndo‘(l + B)%.

How should ng be chosen? Minimize with respect to ny:

iTg(n nH)—domdo‘ 1—|—d(1—a)dH( )ldo‘(l—i—ﬁ) oLy
8nH
da—1-d(1—a)+1 d(l—Oé) do da
= T Y pdag
= ny T (1+p)
a— 1)@
== () w4

Inserting the optimal ng into (3.12)):

ad(l—a)

))2a 1+c O (n(14 8)) 2 (n(1+ B))™

Ts(n) = c(n(l +
—a da?
= c{n(1 + B))F5 4 0= (n(1 + )5
= C(l + ﬁ) 171;25y 1
= O(nziaq)_
d‘ « ‘doz‘;é 1‘Remark
2| 2 | 4 | 8/3 | Banded Gauf
213/2] 3 | 9/4 | Nested Dissection
31 2 16 4 | Nested Dissection
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3.5 COMPLEXITY CONSIDERATIONS AND SPEEDUP

So

da?
200 — 1
In the case d = 3, a = 2 (nested dissection) this means

<do <= o> 1.

4
3

Ts(n) = n* = (n*)s = N3

which is close to optimal with regard to N and much better than the direct
method which is O(N?).
Optimal Coarse Grid in Parallel Case

We make the same assumptions as in the last section.

Now reserve one processor per subdomain and one additional processor for
the coarse grid. All corrections are computed in parallel (this is optimistic as
the coarse grid correction requires global communication). Then

Tp(n,ny) = max(nfy, <%<1 +8))™).

The optimal coarse grid size is obtained when the computation is balanced, i.e.
n
nf = (—(1+8)™
ng
<~ ng =+/n(l+05).
d |

Note that this fixes the number of processors to p = nf!
The optimal run-time is then

nde = (n(1+ )%

Speedup of additive Schwarz without Coarse Grid
Assumptions:
e p = nf processors.

e Complexity of subdomain solver is n%,

e We consider the speedup of one iteration with respect to the Schwarz
method used as a sequential solver.

e We analyze the influence of the communication cost.

e We consider only the communication with the nearest neighbors in coor-
dinate directions (i.e. the overlap mus be sufficiently small and communi-
cation to diagonal neighbors is ignored).
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CGEEa (2L A (o

(1+8)" ) tw

diam. of overlap

TV
# dof in overlap region

15 200 (& (15 A T
p
1+ 2d5(1 + 5)d(1foz)fl(i)d(lfa) tw

ng tf
p

1+ 2dB(1 + B)i0-e) 1 (2t ydle1) Le

where t; is the time for one floating point operation and ¢,, is the time needed
to communicate one floating point number.
Two cases need to be considered:

e o > 1, ie. subdomain solver has more than linear complexity. Then

lim S(n,p) =p

n—oo
since 2 — 0 and d(a — 1) > 0.

e a=1. Then d(a — 1) = 0 and the speedup is fixed to

S(nvp) - P

B tw®

Scalability

We now investigate the case p — oo.

e No coarse grid:
As shown above any speedup for one iteration can be achieved for n suf-
ficiently large provided a non-optimal subdomain solver is used. However
the number of iterations increases as pél

e With coarse grid:
When the subdomain size Njyeq; := (%(1 + B))? is fixed and p = n% is
increased the number of iterations stays constant, the problem size N =
PNioear increases, but also the coarse problem size Ny = n¢, = p increases
and eventually needs to be parallelized. Possibility: recursive application

of the Schwarz method on fewer processors.
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3.6 NUMERICAL EXAMPLES

3.6 Numerical Examples

Now let us illustrate the behavior of the overlapping Schwarz method for a
concrete example. Throughout this section we solve the Poisson equation on
Q) = (0, 1)% with Dirichlet boundary conditions on a structured, axiparallel and
equidistant mesh with ); finite elements. The number of iterations is given
for 1079 reduction of the relative Euclidean norm of the residual and a random
initial guess. The preconditioners are always used within a conjugate gradient
method unless noted otherwise.

Strong Scaling Single Grid Additive Schwarz

This means we fix h = 1/512 and overlap § = 4h and vary the subdomain size
H and consequently the number of subdomains H 2. Since the method is used
as a preconditioner we expect an asymptotic behavior like #I7T ~ H~! which
is not quite confirmed yet.

H[1]1/2]1/3]1/4]1/5]1/6
Pl1] 4] 9] 16| 25| 36
(AIT 1] 26| 27] 29| 36| 41|

In the next experiment we fix h = 1/512, H = 1/4, i.e. P = 16 and just vary
the size of the overlap. The results show a good improvement initially and then
a saturation.

| 0/h] 1] 2] 3] 4] 8[16
| #IT [58]4633[29]25]19|

Weak Scaling Single Grid Schwarz

Now we scale the problem size linearly with the number of subdomains, i.e. we
fix H/h = 256 and the overlap 6 = 4h. The expected behavior is the same as
for the first table above, i.e. #IT ~ H~'. The number of iterations should not
depend on h.

We compare four different methods: additive Schwarz (AS), multiplicative
Schwarz with lexicographic ordering f the subdomains (MS) used as precondi-
tioner in restarted GMRES, symmetrized multiplicative Schwarz with lexico-
graphic ordering (SMS) used with CG and symmetrized multiplicative Schwarz
with coloring (SMSC) used with CG.
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H[1/2]1/3]1/4]1/5]1/6
Method | P | 4| 9| 16| 25| 36
AS AIT| 26| 32| 38| 44| 50
MS #IT| 15| 23| 28| 33| 38
SMS | #IT| 11| 14| 17| 19| 22
SMSC | #IT| 11| 14| 17| 19| 22

We observe that the multiplicative version needs fewer iterations but shows the
same asymptotic behavior with the number of subdomains. The symmetrized
versions still need less iterations than the nonsymmetric version but each iter-
ation is twice as expensive. Interestingly, the non-parallel version with lexico-
graphic ordering shows the same convergence rate as the version with coloring
which can be executed in parallel.

Weak Scaling Two-level Additive Schwarz

Now we add the coarse grid correction. Again weak scaling with H/h = 256
is investigated. The coarse mesh size was H/hyg = 2 as our implementation
does not allow for one cell on the coarse grid for one subdomain. The iteration
numbers are expected to be robust in A and H and should only depend on the
overlap. This is nicely confirmed by the results.

1/2[1/3]1/4[1/5]1/6

4] 9] 16| 25| 36
ZIT
28] 31] 32 32] 23
22| 23| 24| 24| 24
16| 17| 17| 17| 17
13| 13| 13| 13| 13

<
0 B o —|| =T

Additive Schwarz versus Direct Solver in 3D

In this section we look at run-times for a 3D problem and investigate whether
additive Schwarz indeed leads to a reduction in computational complexity and
run-time. All tests here have been carried out on an 2.6 GHz Intel Core i7
processor with four cores on a mesh with 40% elements using an overlap § = 4h.
As a direct solver SuperLU was employed.

| pl 1] 2] 4] 8]
sequential time | 149.8 | 100.4 | 145.6 | 199.6
wall clock time | 149.8 | 48.1| 36.0| 28.0
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The table shows a reduction in computing time for 2 subdomains when both
subdomains are processed sequentially. A substantial reduction in wall-clock
time is achieved when all four cores of the CPU are used.
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Chapter 4

Abstract Schwarz Theory

This chapter is based on [Toselli and Widlund|, 2005, chapter 2|.

4.1 Subspace Correction Methods

The methods considered so far (and many more) can be written in an abstract,
unified way. Let the following ingredients be given.

1. A conforming finite element space V;, C H}(2) (non-homogeneous Dirich-
let boundary conditions and Neumann boundary conditions can be treated
as well).

2. A variational formulation
ueVy: alu,v)=1lv) YveV,
with a symmetric and coercive bilinear form a(-, -).
3. A subspace decomposition V;, = > F Vj,; with V},; C V.
Introducing a basis for the (sub-)spaces
Vi, = span{gbZ ke 1y} Vhi = span{¢2’i ck € Iy}
we arrive at symmetric positive-definite linear systems

up € Vi o alup,v) =1(v) Yv eV, — Az =1,
w € Vit alu,v) =10(v) Yv eV, — Ax; =b;.

We do not analyze inexact subdomain solvers here. In that case a(-, -) is replaced
by a;(-,+) in the local problems.

The prolongation operator RI : R — RIn describes the change of basis
from V3, to V3, i.e.

Vh,i DU = Z (ch)k(ﬁZ’Z = Z(RZsz)kaZ

I{ZEI}L,Z‘ kel
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The matrices of the local problems are then given by A; = R;ARI. Then the
additive and multiplicative subspace correction methods are given by

p
P =af +w )  RIATRi(b— Axh),
i=0
2P = gt 4 RTAZIR; (b — Az™ o) i=0,...,p.
As shown above, the corresponding error propagation operators are given by

p

p
Ead:IerZH-, Emu:(]—PO)...(I—Pp):H(]—Pi)
i=0 1=0

where
P, = RIA7'RA.

The analysis of the additive case is based on analyzing the condition number
k(D PiA), i.e. the method is used as a preconditioner. Since the multiplica-
tive method is not symmetric (of course it could be symmetrized) we will directly
analyze the norm of the error propagation operator

AFE,.x, )
Eull? :sup—< ULCS R
H HA 20 <A$,Z’>

The analysis will be based solely on the following two assumptions.

Assumption 4.1 (Stable splitting). There exists a constant ¢y > 0 such that

for all x € R’ there exists a splitting z = o RIx; with z; € R™i and
p
Z(R?fﬁi, Rl2)a < co(m, ) a.
i=0
Here (x,y)a = (Ax,y) is the A-scalar product. O

Assumption 4.2 (Strengthened Cauchy-Schwarz Inequality). There exist con-
stants 0 < ¢€;; <1 for 1 < 4,5 < p such that

1 1
(R} xi, R} xj)al < €i;(R] i, R} x:) (R} xj, R 1)
for all z; € R and Tj € R, Let & € RP*P bhe the matrix with coefficients

(€)ij = €i; and spectral radius p(&). Note that & does not include the index
¢ = 0 which is assumed to be a coarse grid space. [l
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Obviously the second assumption holds trivially with €;; = 1. Moreover, the
constants ¢y and €;; should be as independent as possible of the mesh size h, the
number of local problems p and possibly other problem parameters (such as the
diffusion coefficient).

Assumptions and need to be verified individually for the different
schemes and then can be plugged into the general theorems proven in this chap-
ter.

4.2 Additive Case

As mentioned, the analysis of the additive case is based on estimating the spec-
tral condition number x(C') = i\\m—ng))

Observation 4.3. Any scalar product can be used in the definition of the
Raleigh quotient in Observation [2.4]

Proof. Let C, M be symmetric and positive definite matrices. Then

 (Ca, ) _(CMzy, My)

min = min T i
240 <l‘,$> ();éa::M%y (Miy,MEZD

MiCM-3 M3y, M3 ! !

i M) (o0) - staricar

The same argument can be applied for the maximal eigenvalue. ]

In particular we will in the following use the scalar product induced by the
stiffness matrix A itself.
Setting w = 1 in the additive Schwarz iteration we identify the preconditioned

system as
p p
BAz = <Z RZ-TAZ.IRZ») Az =)  Pax = Bb.
1=0 i=0
According to the considerations in Section (set M~1 = B) we are led to
analyze the condition number of the preconditioned system

p

K(BA) = k() _P).

1=0
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Using observation if suffices to obtain constants «y, I' such that

p
Yz, a)a <O Pa,xya < Tz, z)a
i=0

which implies
p

K(ZP)S

1=0

= |

Lemma 4.4 (Properties of P;). P; = RI' A;*R; A is an orthogonal projection in
the A-scalar product and we have

1. P2=P,

7

2. AP, = PI'A. This implies (x, Py)a = (P, y)a, i.e. P; is self-adjoint
with respect to the A-scalar product.

3. (Px, Py)a = (x, Py) 4 for all z,y € R,

4. (Pix,(I — P)y)a = 0 for all z,y € R,

5. el = 1Pl + 1 — Pyal? for all = € R
6. [|[ P4 < [lfla

Proof. 1. P2=RIA;' RyART A7'RA = RTAT'RA = Py
A

2. AP, = ARTA7'R;A = (RTA;'R,A)TA = PFA
3. (P, Py)a = 2" PT APy = 2T AP, Py = 2" APy = (z, Py) a
4 (P, (I — P)y)a = (Pa,y)a — (P, Py)a =0
l2l% = | Pix + (I — P)a|%
= (Biw + (I = Pz, e + (I = P)x)a
= (P, Px)a+ (I = P, (I = P)x)a
=[P ]h + (1 = Pzl
5.
6. [[Pi% = =% — (1 = P)alli < |l -
Lemma 4.5 (Estimate of largest eigenvalue). From assumption follows

ZPx )4 < (14 p(&))(z,z)a.

1=0
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4.2 ADDITIVE CASE

Proof. 1. Since assumption |4.2] does not involve F, we split it off:

(ZH:I;,$>A = (Poac,:c>A+<ZHx,:c>A < <x,x)A+<ZPZw,x>A

=0 1=1 1=1

Here we used

N

14 @

44 (8)
(Pox,x) A :)<P0$,P0$>A <

(x,x) 4.

2. We have

Dividing by (3-8, Pz, > 7, Px)2 gives

p p

SIS WE

< p(&)(w, x)3

[N

Note that we used

| &2 = sup I€all; _ sup sup iéw. )l
270 |2 270 y#0 [z[2][yll2

which implies
(x| < [I€ 20l 2]yl

(z € RP)

(Def. of 2)
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3. Finally
b cs. L b 1 1
O Pa,aya < O P,y Pa)i(zx)i
=1 =1 =1
< p(&)(w,7) 4
Now combine [Il and Bl to conclude. ]

Remark 4.6. In overlapping domain decomposition each subdomain overlaps
only with a maximum number N of other subdomains. Setting

1 otherwise

{o RiART = 0 (when 99 N 99, = 0)
iy —

this means

1€ ]loe = max[{(Z, 7) : e; # 0} =

Since p(&) < ||€]|o we can conclude that the largest eigenvalue is bounded by
N + 1 independent of p.

Lemma 4.7 (Partitioning Lemma, Lions’ Lemma). The stable splitting from
assumption [4.1] implies

p
¢y (a, x)a < <Z Pix,x)a
i=0

i.e. ¢y’ is an estimate of the smallest eigenvalue.

Proof.

1=0 1=0 1=0
p p p
= > @"APR[w; = (Pa)"AR[w; = (P, Rl z;)a
1=0 1=0 1=0
p
< D I1Pwlall Bl (Cauchy-Schwarz)

N

IA

P
(Z |P$|A> (Z ||RTxZ|A> (Cauchy-Schwarz)
i=0

For (*) we used that P? = P; and range(P;) = range(RY).
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4.3 MULTIPLICATIVE CASE

Squaring both sides and inserting assumption [4.1:

(@)} < (Z |mi> (Z RM%)

1=0

< (Z(Pix, Pﬂ‘}A) colx, T) 4.

i=0
Dividing through and using [3| from Lemma [4.4]
p
cg Mz, )4 < Z(Bx,x)A. O
i=0

Theorem 4.8 (Condition number of additive Schwarz). Assumptions and
imply

R(Z b)) < co(p(&) +1).

Proof. Use Lemma [4.5 and [4.7] O

Note that from Remark 4.6 follows that the upper bound p(&)+1 for overlap-
ping Schwarz methods is independent of p and h under very mild assumptions.
So the main difficulty is to ensure assumption 4.1

4.3 Multiplicative Case

We now aim to estimate || Ep,,|| 4 directly as E,,, is not symmetric. Let us start
with a technical lemma.

Lemma 4.9. Assume a strengthened Cauchy-Schwarz inequality holds. Then
we have for 0 < 7,5 < p and all z,y € R™

(Px,y)a < (P, x)i(P,-y, y>1%4 (Note the P; in the second factor.)
(Pir, Piy)a < € (Pix, )3 (Pjy, y) 3

Proof. Using Lemma [4.4) we have

N

Since range(P;) = range(RT) we can use the strengthened Cauchy-Schwarz
inequality:
(Fiz, Piy)a < €j(Pix, Pix) 3 (Pyy, Piy) i = €i(Pr, x) 3 (Py, ). O
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The main theorem for the multiplicative subspace correction method then
reads:

Theorem 4.10. Let assumptions [4.1] and [4.2) hold. Then

1
Epulli <1 - < 1.
Il <1 = @)
Observe that p(&) > 1 since €;; = 1 for 1 <4 < p and ¢y > 1 since x = Rl x;,
x; = 0,1 # 7, gives a contradiction to ¢y < 0.

Proof. The proof is carried out in several steps.

1. Some definitions:

E_1 =1
J
Ej:=(I-P)-..-(I-P)=]]d-P) for0<j<p.
k=0

Obviously Ey, = E,.

2. We need to cope with the fact that £ is not symmetric. This is achieved
by introducing the adjoin E* of E with respect to the A-scalar product:

(Bx,y)a = (x,E*y) 4 Va,y € R,
(Observe that E* = A"'EA). Then we have the following recursion:
Ej\Ej1 — EjE; = Ef \PiEj1 0<j<p. (4.1)

In order to prove this, first observe that P; = P; since (Pjz,y,)a =
(z, Pjy,)a according to Lemma [4.4]2). Therefore

EE; = E'\(I-P)(I-P)E (Definition of E;)
= Ej (I - P/ =P+ FjP)Ej
=FE_ (I — Pj)E;j (P; = P}, P} = P))

This holds also for 7 = 0 since £ = 1.
3. Now use eq. (4.1)) in a telescoping sum:

p p
Z E;flijj—l = Z(E;LIEJ'—I — E]*EJ) = ESEO - E;Ep
j=1 Jj=1
=1-P-EE,
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4.3 MULTIPLICATIVE CASE

which results in the additive representation
[-EE,= Z \PE;_,

where we used the fact £ = 1.

Since the P; are positive semidefinite we have

p
(I-EE Z L PEjx,x)a=> (PEjx, Ejz)a > 0.
7=0

If we could show an estimate of the form

(I = E Bz, 1)a > (T, ) A (4.2)
with a > 0 this implies

(1 —a)(r,2)a > (B, Epyx, 7)a
and thus

Ex, E EXEx, x
1Bl = 1By = sup o0 Botba o EBrttia
w40 (T,7)a w£0 (T, 7)A

So our goal now is to show (4.2)).

. From the definition of the error we get the following recursive relation:

J
Ej:I_ZPkEk—la 0<j<p
k=0

which we show by induction:

0
EO:]—PO:]—ZPOE_l
kO
E ([ P]>E]1 PEjl
-1

= ([— PkEk—l) PE] 1 =1—- ZPkEk 1.
k=0 k=0
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4.4

Wlthl in the form I = F;_; + Zi;%) P.E;_1 we get using Lemma

. 1 i
and [4.9

j—1
<Pj£L“, ZE>A = <PJZE, (Ejfl -+ Z PkEk,1>l’>A
k=0
j—1
(P, Ej1x)a + (Pjx, Pox)a+ > (Pjx, BBy 1) 4
k=1

1 ; 1
< (Pjx, x)i((P Ei 1z, E;_yx)% + (PjPyx, Pox)?

-1

.

Q'Llo\»—‘
N——

+ > € <PkEk 139 E_1z)

=~
I

NO[—=

k=1

1 e
.\ j
(Pjx,x)?% ((PjPox, Pyz)’ + Z ejkck>

Squaring both sides, dividing by (P;x, x) 4 and estimating with (a4 b)

2a? + 2b? yields:
2

J
<P-x ZIZ)A < 2<PjP0x, P0$>A + 2 (Z ejkck>
k=1

2(P; Py, Pyr)a + 2(@%)3

(Note: €k, ¢ > 0)
Now sum j = 1,...,p and add (Pyz,x)4 to both sides:

ZPJ z,2)a < (Pox, z A*Z (P;Pyz, Pyx) s +2(&¢)?)
< (14 2p(8))(Pox, ) 4 + 207 (E)Ie||” (*)

(PrEg—12, Ey_17) 4

= (14 2p(8))(Pow, x)a + 2p*(8)
k=1

p
< max(1 +2p(&),20*(6)) Y (PrEp_12, Br_17) 4
k=0

p
(1+20°(& Z PyEy 17, By _17) 4
k=0
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4.3 MULTIPLICATIVE CASE
For (*) we used that

p
(O Py)Pox, Pyx)a < p(&)( Py, )
j=1

according to Lemma [4.5] and that
p p
D (Ee)f =) (&c (&e,&c) = FETEe < p*(&)]|¢))*.
j=1 j=1

The last step is due to p(&) > 1 since & = I + & where & is symmetric
positive semi-definite.

Using the lower bound for the ASM from Lemma [4.7 we obtain

051@5‘7 $>A < <(Z PJ)J}? x>A

< (14 20%&)) Z(E;_lpkEk_lx, ) 4
k=0
= (1+20*(ENI — EXE,)w, )4 (from [3})

From this we get

S
w1 27°(8))

(I — B Ey)r,0) 0 > T,T)A.

From this we conclude as in . withl —a=1— m. []
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Chapter 5
Convergence Theory for Overlapping Schwarz

This chapter follows the presentation in [Toselli and Widlund| [2005]. The goal
is to verify the stable splitting assumption for the two-level Schwarz method
presented in the previous chapter. We will restrict ourselves to exact subdomain
solvers. On the other hand, the theory will allow for the more general case where
the fine mesh 7}, is not a uniform refinement of the coarse mesh 7g.

5.1 Technical Preliminaries

In order to verify the existence of a stable splitting (assumption a specific
splitting is constructed and then analyzed. The splitting is

p
Up = fhjﬂuh + Z fhei(uh — fthuh)
=1

where #1 Vi, — Vg = V0 maps into the coarse grid space, . his the standard
Lagrange interpolation operatorl| and 6; is a partition of unity.
We recall the Friedrich and Poincaré inequalities.

Lemma 5.1 (Friedrich Inequality). Suppose  C R? is a bounded domain with
Lipschitz-continuous boundary? 92 and T' € 9Q has non-vanishing (d — 1)-
dimensional measure. Then for all u € H*(Q)

lullg.0 < arluliq + eallullgr
with constants c;, co only depending on §2 and T'.
Proof. [Toselli and Widlund, 2005, A.14] O

Lemma 5.2 (Poincaré Inequality). Let Q@ C R be a bounded Lipschitz domain.
Then we have for all u € H*(Q)

Hu”gg < Cllulig + ¢ /ud;z:
)

!Note that it is only applied to finite element functions — no regularity issue here.
2That is in the vicinity of a point on the boundary it can be expressed as the graph of a Lipschitz-continuous
function.
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!
/Fl
T
| ur
D
> -1 >,
Hr

Figure 5.1: Scaling argument used in proof of Cor. [5.3

where c1, co only depend on 2.
Note that for @ := [, udz we have

lv = alloo < verlulio.

Moreover, the dependence of ¢, ¢y on € can be made more explicit. We use a
scaling argument here to show this (but also a direct proof is possible).

Corollary 5.3. Let €2 be a bounded Lipschitz domain with diameter H. Then
there exist constants ¢; and ¢ only depending on the shape of Q (but not its
diameter) such that

lullie < etH?|uli g + e H lullg .

Proof. Consider the map u(z) = HZ + zp such that Q is contained in a box

IT—X

with side length H and origin zy. The map p~'(z) = L5 maps Q into the unit
cell, see figure [5.1 We set 4(Z) := u(u(2)), then

ou .. Ou(u(z)) ou, .
a—@(x) =0, oz, (w(z))H
— Vi;u = HV, u
— V,u=H 'V;i

and

Vu(z)=HI <+—= Vu'(z)=H'I
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5.2 COARSE GRID CONTRIBUTION

o= [weyde = [ (e i as = Yl
Q Q
< Hi(&lal] o + élla) ;)

= él/wa-v@adﬁwzfa?(g) ds

\ 5 P

[
= H \ /(HV w(p(@))) - (HVu(p())) dx+62/ u(pr(s)) ds

= H? clHQ/Vmu : (x)H~ dx+02/ Q(S)H*(dfl) ds
T

= e H?|uli g + c2H |[ulf5 -

For the second term write the surface integral as a volume integral:

/ﬂﬁwzlﬂﬂQMO% riE T, TCRC
/f s:/fﬁAéA‘“ f ST SCmi

Now diam(X) = diam(I"), diam(3) = dlam(F) and all the scaling is contained
in the map up : ¥ — X with £ = ,up(f) HE+0pand €, € R As a result

() = d(ur(£)). O

5.2 Coarse Grid Contribution

The interpolation to the coarse grid space Vg = V}, is defined as follows.

Definition 5.4 (Quasi—lnterpolatioq Operator). Let Vi be the P or @ finite
element space on Tg. Then define .Zy : H&(Q) — Vi as

0 S; € of
! fw u(x)dr otherwise

(jHu)(sl) = {

|w5i

where s; is a vertex in the mesh Ty, s, is the union of all elements T' € Ty
having s; as a vertex and |wg,| = fw 1dz is the volume of w,.
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“We now prove some important properties of the quasi-interpolation operator

.

Lemma 5.5. Let Ty be a shape regular mesh. Then there exists ¢ > 0 such
that for all T € Ty

lu = Frullor < cHrlulyw, (5.1)
| Irulir < cluliw, (5.2)
where (wp is a union of elements including 7T itself such that
* Urery mnrzo € ©r,

e cither dwr NI = 0 or dwr N I has non-vanishing (d — 1)-dimensional
measure and

e the number of elements making up wy is finite and independent of H.

Estimate (5.1)) is an error estimate for the coarse space interpolation operator,
while the estimate ([5.2) provides the stability of the interpolation operator in
the H'-norm.

Proof. We restrict ourselves to P; finite elements in three dimensions (of course
the argument can be transfered to other cases).

1. Let {¢f : i € Iy} be the Lagrange basis of Vi and let i € Iz be the index
of any vertex of T' € Ty. Then since ¢;(z) < 1 we have

I6/or = [ 16¥ @)Pds < [ 10 < cH.
T

T

2. For T' € Ty let s; be a vertex of T such that s; & 0€2. Then

[(Frru) (s0)] = |, || /U(fv) dz| (Def.

[
=

Ws;

< |ws, |7 /\u(x)|2dx /1dx (C.S.)

1

2

= |lu |0,ws,; Ws;

N o

< llullow, cHy*

For the last inequality we used the shape regularity of the mesh which
implies |ws,| < cH3 (we need to know the diameter of the neighbors).
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5.2 COARSE GRID CONTRIBUTION

3. Let A, B,C, D be the indices of the vertices of T". Then

ITauldr =11 > (Fuw)(s)of 157
i€e{A,B,C,D}

<4 Z |(jHU)(Sz)‘2H¢{{HgT (triangle ineq.)
ie{A,B,C,D}

<4 S ulR,, cH P H}
i€{A,B,C,D}

< cllullf.,-

So we have shown the stability in the L2norm || Zgullor < c||ullo.w,.
Note that all constants are generic, i.e. ¢ may have different values at
different occurences.

In the first estimate we used in addition to the triangle inequality the

estimate
N 2 N
(Z) <23}

i=1 =1

for any numbers a; € R. 214N is the smallest power of two greater or equal
to N. Let us proof this. From the binomial formula (a—b)* = a® —2ab+b?
follows 2ab < a? + b? and together with the other binomial formula we
get the well-known estimate (a + b)? = a® + 2ab + V* < 2a” + 2b?, i.e. we
have proven N = 2. Now assume the estimate has been proven up to size
n € N and let N = 2n —m where m € {0,1}. Then

2 n N 2
B £
i=1 i=1 i=n—+1
n 2 N 2
<2(Zai> +2<Z az-)
1=1 1=n-+1

n N
< 2. oMdn] Z a2 + 2 . 2ldm=m)] Z a?
i=1 1=n+1
N N
i=1 1=1

For the last estimate 2 - 2017l < oldNT ¢ongider first the case N = 2n.
Then N =2n <= IdN =1d(2n) =1+ldn <= ldn =1d N —1. Now
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2 . ofldn] — gl+fldn] — oI+lANT-1 _ 9[lANT where we used that [z + k] =
[x] + k for k € Z. Now consider the second case N = 2n — 1 <=
2n = N + 1. Then ld(2n) = 1d(N +1) <= 14+1dn = 1d(N +
1) < Ildn =1d(/N+1)—1. Taking the ceiling of the last equality gives
[ldn] =[ld(N +1)—-1] = [ld(N+1)] =1 = [Ild N| — 1. The last step
follows from the fact that 1d V is not integer since N is odd and therefore
not a power of two. Now we can conclude 2 - 211471 = 9ldNT 44 in the case
N even.

Finally observe that all natural numbers N > 2 can be generated by a
unique sequence of doubling or doubling and subtracting one.

. First consider the case Owr N O = 0, i.e. an interior subdomain. Set

u(x) = u(r) — Jwr|™" [, wdz on wr. Now we have

Ju— Tl = u = ol [ wde+ borl [ wde = Sl
wr wr
= |}t = it} )
< (Jallor + |-G
(E))

< el
S CH%|/LAL|%,WT

- CH%|U|%,(UT'

01)?

For (*) we used that . reproduces constants as long as we are away from
0€). For the last equality note that the 1-semi-norm of a constant is 0.

Now to the case OwrNI§Y # 0. Through enlargement of wy, I' = dwr N OS2
has non-zero (d — 1)-dimensional measure. By construction Zgu is zero
on I for u € H}(2). Therefore

lu = Frullsr < cllull,, < cHplul?,,.

Here we used the Friedrich inequality.

. Now we are in the position to prove the estimate eq. (5.2]). Here we need

to use a so-called local inverse inequality. It states that for a finite element
function v € Vi there exists a constant ¢ depending only on the mesh such
that for all T € Ty

wlir < cHp'|vllor
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Now consider first again the case dwr N O = 0:

|f~Hu\%T = | Igu — |wp| ™ /udxﬁT (constant has zero seminorm)
wr
- |me%,T
< CHEQHijLH(Q)I (inverse ineq.)

= cH:?|| It — G+
< cH X (|[i — Fgiljor + |[illor)®  (triangle ineq.)
< cH;*(dHF|ali,, + "H7lali,.) ((5-1) and Poincaré)

0.7

< clufi,, (ll1wr = lul1wr)
And for the boundary case dwr N IN # B we get
|f~Hu]%T < cH:FQHjHuHaT (inverse ineq.)
< cHp*[[ullf
< cHT_ZH%|u|%7wT (Friedrich, shape reg.)
< c|u|in.

[]

Now let {¢” : i € I} be the Lagrange basis for Vj,. For u € C°(Q) we define
the Lagrange interpolation operator as usual:

BURTRES Z u(s;) ol
1€l

where s; is the Lagrange point associated with the basis function ¢;.
The next lemma investigates the fine grid interpolation operator applied to
coarse grid functions.

Lemma 5.6. There exists ¢ > 0 independent of h and H such that

fug — Fhunl2, < chi" gl (5-3)
for all t € T, ug € Vi and s € {0,1}. Note that |v|o; = ||v
Proof. 1. Consider t € T, such that t is completely inside some T € Tg.

[or

Figure 5.2: t € T;, such that t is completely inside some T € Ty
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Then the Lagrange interpolation on t is exact, i.e.
Uuyg — ﬂhuH = 0.

If Vi C Vj (which is true when 7}, is a refinement of 7z ) then the proof
of (5.3)) is complete. The remaining part is only necessary when Vi & Vj,.

We consider again the case of P; in 3D, i.e. tetrahedral elements.

. For ¢!' € V}, we have

d
6717, = / > (056])* dx < chy*hi = chy
¢ J=1

(needs shapre regularity p > chy).

. With that we get

|jhUH|%t = | Z UH(Sz)dL %,t
ie{A,B,C,D}
N N
<c Z lum(s:)*|9}3, (as before (Z @)’ <N)Y a)
ic{A,B,C,D} i=1 i=1
< chy Z g (s:)]?.
ic{A,B,C,D}

Now we need to estimate |ug(s;)|.

. Consider t € T;, with corner indices i € {A, B,C, D}. Then for any pair

(t,7) we can find a tetrahedron ¢, not necessarily an element of T; (!),
such that:

t: has s; (i.e. one of the vertices of tetrahedron ¢) as one of its corners.

t; has diameter hy < ch; and py > by (shape regularity).
o t; Cw
o i CT, €Ty (ie. it is completely inside one T' € Ty).

This is due to the shape regularity of Tg.



5.2 COARSE GRID CONTRIBUTION

Figure 5.3: tetrahedron ¢

Without loss of generality consider now one corner ¢ = A of t € T.
Then choose t; with properties as described above and vertex positions
{za,2p,xc,xp}. Let p be the map that transforms the reference tetra-
hedron ¢ to t, and set fi(Z) := uy(p(2)) as usual. Then, on the reference
element, we have with z4 = u(Z4)

lur(za)l = la@)l < Y Jal#)]

1€{A,B,C,D}

4 [ 1 A

T (Y 7@ ] :/1de3
i€{A,B,C,D} :

= c/ |a(z)| dz (quadrature rule)

t

3 2
<c / [a(2)*dz / 1dz (Cauchy-Schwarz)
t t

< c||a |0,£

Now use a scaling argument to transform to the real element:
HuHOt /|u )|? di —/\u z)) | det B~ dx
_’LLH .T

< chtz3 / lug (z)*de < Cht_3||UHH(2)¢; (assumption on t})
t

< ch; *|lupl[§,. (enlarge domain of int.)
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5. Going now back to [3 we have

[ Fhurlt, <che Y un(s)) (result from [3])
i€{A,B,C,D}

<chy Y, hPlluall,,
i€{A,B,C,D}

= chy " |lun 5.,

6. Now again we use either the Friedrich or Poincaré inequality:.

In the case that dw; N 02 = I' has non-zero measure, we have

urr — iy < 2unli, + 2| Ahunli,
< 2Junli; + chyum i, (using [5)
< 2lugli, + chy *hilugl?, (Friedrich)

S C|uH|%7wt

For the case Ow; N 0N = ) the operator .#, reproduces constants and we
set uy to the average of uy on wy. Then

lug — Fhunli; = lug + (g —un)|i, (since Vay = 0)
<2lupgli, + 2| A (ur — un)li,
< Sfunll, + chi?lan —unll,  (using)
< 2lugli, + ch; *hi|ug — ugli,, (Poincaré ineq.)
< clunli, (Vug =0)

This proves (.3)) for the case s = 1.

7. Now the case s = 0 in (5.3). We use the Ly-norm in [3:

1 Furllge =11 Y un(s)dl 3,

i€{A,B,C,D}

<c D lun(s)Pllerls,

i€{A,B,C,D}

<ch > fum(s)

i€{A,B,C,D}
< cllunl?,, (using [)

Now we can proceed as in [}
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First we consider Ow; N 0€) = I' with non-zero measure:

lurr — Fhunlo; < 2llumlls, + 2l A i,
< clugllg, (7l and enlargement)

< ch?|u Hﬁt (Friedrich ineq.)

In the case Ow; N I = () we have

0.4
+2|| In(an — un)llo,

< dlug — g, (use[7], enlarge first, combine)

lurr — Fnunlls, < 2lun — am

< chilug — unli,, (Poincaré ineq.)

= chiluuli,, (Vug =0)

This ends the proof of Lemma [5.6 O

5.3 Localization to the Subdomains

For up, v, € Pi(Th) the product function upvy is a piecewise quadratic finite
element function.

Lemma 5.7. Assume uy, is a P, finite element function and .#, is the Lagrange-
interpolation operator into P, on the same grid. Then there exists ¢ > 0 inde-
pendent of h such that

| Inunlre < cluplie VE € Ty
Proof.

| Pl = [ Thun — wp + i,
< 2luy, — Fupli, + 2lunli,

< chilunl3, + 2lunlt, (approximation error)
< chihy |unl?, + 2lualt, (inverse ineq., u, € P)
< C‘uh‘%,t

[]

Next we look in detail at the Lo-norm of a function in the vicinity of a sub-
domain boundary.
Let ; denote one of the (overlapping) subdomains, §; the overlap of this

A

subdomain and H; = diam(€2;). Then set
Qis, = {x € Q; : dist(z, 0\0N) < &}
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Figure 5.4: Interior (left) and boundary subdomain (right)

Lemma, 5.8. There exists ¢ > 0 such that for all u € H'(€):

H, 1
ol <o (14 Mg, + gzl ).
Proof. 1. According to the trace theorem there exists
v HY(w) = L*(0w)

such that [|vullosw < cllu|liw. Through a scaling argument we make
explicit the dependence on the size of the domain (refer to corollary |5.3):

Julf s = [ fulo) ds (@ is of size 1)
Oow
= [la@)Pr as (H = diam(w)
ow
< eHH|a 1o (trace thm. on W)

— ¢H! / a2 di + / Vi - Vi de

w

= ¢H! / w?H 4dy + / H?V, u-V,uH dx

w w

(1
= (Gl + )

ie. [ull o, < Fllulld, + Helult .

2. Now assume there exists a triangulation 7;, of Qz‘,@ into shape regular
patches of size ¢;: -
Qs= | &

kG'E,g,

(3
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5.3 LOCALIZATION TO THE SUBDOMAINS

Note that the patches don’t need to be simplices or cubes since we will
not construct finite element functions.

Moreover set I'; = 8@\89. Then

lullia,, = >

ké'ﬁygi

< Z c (67 ) (Friedrich ineq.)
/€€7;75i

=c <5?\uﬁ o, T 0i Hu”oag ) (enlarge I'; — 0)

1
<c ((522|u|f9“S + 0;¢ (H HuH T H; |u| )) (using [1}.)

H; 1
<o ((1+5) B, + gl )

Next we need two assumptions that let us prove properties of the partition of
unity.

[]

Assumption 5.9 (Minimal Distance). Let {Q;}?_, be a decomposition of Q into
overlapping subdomains. Then we require that for i € {1,...,p} exists ; > 0
such that

Vo e Fjx) € {1l,...,p}:  a € Qy Adist(z, 09;)\0Q) > §;

This means that = € ; is away from the (interior) boundary in at least one
subdomain. (Note: j(x) = i is possible).

Figure 5.5: Example

Assumption 5.10 (Finite Covering). For {{;}*_, exists a coloring with at most
N¢ colors in the following sense:

ci)=c(j) = 4uNQ=0
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CHAPTER 5 CONVERGENCE THEORY FOR OVERLAPPING SCHWARZ

where ¢: {1,...,p} = {1,..., N} is the coloring map.

From Assumption we can deduce that any x € €2 is contained in at most
N¢ subdomains:
Set J, ={j€l,....p:x¢€ Qj}. Then for all 4,5 € J, we have x € QiﬂQj,
ie. NQ;#0 = c(i) # c(h).
Since the number of colors is N¢ we have |J,| < N°.

Note also that assumption does not bound the number of neighbors of a
single subdomain.

N AN o

Figure 5.6: Only 3 colors are needed but €2y overlaps with all subdomains

Finally we need some properties of the partition of unity:.

Lemma 5.11 (Partition of Unity). Let {€;}*_, a decomposition of € into over-
lapping subdomains such that assumptions[s.9 and are satisfied. Then there
exist functions {6;}}_; from W1>°(Q) such that

(a) 0<Bi(x) <1, z€,

(b) supp(6;) = {z € Q: 0;(z) # 0} C 52.7
(c) >0 0i(z) =1 Yze

(d) [|V6illw < £ or rather [|[VO;(2)]lo < £ Vi=1,...,p.

W1o0(Q) is the space of functions with bounded derivatives almost everywhere
(i.e. up to a set of zero measure).

Proof. [Toselli and Widlund, [2005], Lemma 3.4] The proof is constructive.
For all i € {1,...,p} set

i = 0

else
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5.3 LOCALIZATION TO THE SUBDOMAINS

and d~( )
)= S ey

d;(x) and 0; are well defined on Q and 6; € C°(Q).

S

Figure 5.7: Example of d;(x)

Clearly,
° éiZOSincedZ-ZO
> ~z(ﬂf) =D i Zgiil(fzi(x) =1
o Oi(z)=1— D ket 0(x) < 1 since (z) > 0.
So the only difficult property to prove is (d)) which we do in several steps.

1. We aim to show that 6; is Lipschitz continous, i.e.
~ ~ c

10i(z) — 0:(y)| < g’x — |
1

provided |z —y| is sufficiently small. This would bound the gradient since
10,0i(x)] < 5.

2. Abbreviate for ease of writing 0x(z,y) = di(x) — di(y) for 1 < k < p.
Now we show

[0k (2, y)| < |z —yl.

Case Il x,y € Qk Then choose z € 5Qk\89 such that
di(y) = dist(y, 0%,\09) = |y — 2|

i.e. z is a closest point to the boundary for y.
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CHAPTER 5 CONVERGENCE THEORY FOR OVERLAPPING SCHWARZ

Figure 5.8: Case I in proof of Lemma |5.11

Then

di(z) = dist(x, 9 \0Q)

< |z — 2] (since z € O \IQ)
=z —y+y—z|

< e —yl+ly -2

= |z =yl + dr(y)

= O(z,y) = dp(x) — di(y) < |z —y|

In the same way choose 2z’ € ;\09 such that
di(x) = dist(z, 0\IQ) = |z — 2.
The same argument shows

di(y) = dist(y, 92\00)

and therefore |0x(x,y)| < |z —yl.

Case Il z,y & 6k i.e. x,y are outside Q. Then we have

|di(7) — di(y)] =0 0] =0 < |z —y|.
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5.3 LOCALIZATION TO THE SUBDOMAINS

Figure 5.9: Case II in proof of Lemma |5.11

Case IIl = € GQk. We need to consider two subcases.
a) o € O0\IN. Let y € Q.
1) z € 9\ such that dist(y, 0 \IQ) = |y — 2|

di(x) =0< |z —z|=|z—y+y—2z <|z—y|+di(y)
= —di(y) < |z —y|

2.) di(y) = |y — 2| < |y — x| since z was the closest point on
the boundary from y.

Since dy(x) = 0 we get from [2(11I)al| and 2(111)a2;

[0k(2, y)| = |di () — di(y)| = [di(y)] < |2 —yl.

b) x € 8Q,NAQ: This is very similar to 2 above. Let y € Q.
1.) And z € 0\ such that di(y) = |y — z|:

di(z) < |o — 2| < |z —yl+ |y — 2| =[x —y| + di(y)
= iz, y) <o —yl.
2.) And 2/ € \0Q such that dy(z) = |z — 2/|:
di(y) < ly =2 <y —af + |z — 2| = |y — 2| + di(2)
= —0p(z,y) <z -yl

3. From the minimal distance assumption [5.9| we get

di(z) > dj)(x) > 6; (one distance is at least ¢;).

=
Il S
—
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CHAPTER 5 CONVERGENCE THEORY FOR OVERLAPPING SCHWARZ

4. Now we are able to estimate

10:(2) — 0i(y)| = ZCZ(TZZ o ii(gli @)‘ (insert definition)
— dif®) Doy diy) — dily) Yjey () (common denominator)
(X ke (@) ho di(y))
- di(z) kyézdk‘( ) — di(y) Zi#dk(ﬂf) (2)d, FODS Ol
T R Ay | ) drops o)
di(z) k;«éz de de k#ld’“( z)
. k#i k#i
B (D oy di(2) Q2% di(y))
2 Z#i dy. ()
= de(y) de —d(x)(d‘(il?)—dz‘(y))j
&i,_/ - k# 5k($ y) + di (;;?J)
>0 0i(x) ] 1-0;(x)
1 3 P
< = |0i(@) ) [0(z,y)[+ (1 —0bi(z)) [6i(z,y)]
o (Lo )i
(use ) SN‘?I;—yI -
<N + oy
]

5.4 Proof of Assumptions of Abstract Schwarz Theory

First consider the strengthened Cauchy-Schwarz inequaltiy [4.2] This enters into
the upper bound for k(P,4) as well as in the bound for ||E,,,||4. In the latter

the spectral radius p(&) is required. Remark {.6/ shows that

pE) < |6l = N°
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5.4 PROOF OF ASSUMPTIONS OF ABSTRACT SCHWARZ THEORY

where N¢ is the maximum number of subdomains with wich a single subdomain
overlaps (including itself).

This is generally not the same as N from assumption which allows a
direct estimate on the upper bound of the additive Operator.

Lemma 5.12. Let assumption hold. Then

(O P,w)a < (N +1) (&, ).

Proof. Set Jy:={i e {l,...,p}:c(i) =k} for 1 <k < N°

p Ne
(Z Px,x)s = (Pyx,x)s + <ZZB$,$>A

k=1 1eJy

Ne
= (Pyx,x)4 + Z Z(Bﬂc, T) A

k=1 ieJ;
= (Pox, )4
NC
53 STV SR
k=1 1eJy Ea-B  jer.gFi
——
QimQj:@
NC
= (Pow, x)a + Z(Z Pz, Z Pix)a
k=1 ieJ, ey,
NC
< (r,r)a+ Z(x,x>A (sum of orth. proj. = orth. proj.)
k=1

= (N“+1){x,x)4
[]

In general assumption does not deliver a satisfactory upper bound for
p(&).

Lemma 5.13. Let Ty, 7; be shape regular, quasi-uniform triangulations and
let assumptions 5.9 and [5.10| hold. Then for every & € R there exists a decom-
position z = Y ?_ RI'z; such that

p

H
(RiTxi, RiTxZ)A <c <1 + g) (x,2) A

1=0

with ¢ > 0 independent of H, h and ¢ := min d,.
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Proof. 1. With each RIx; we identify a finite element function
Vi D Viidui =Y (Rlz);¢

Jely

and u = ) jelh(x)j(b? is the function to be decomposed. We construct
u; € V3 by setting

Uy 1= fh(jhu),
ui::jh(ei(u_u()))a 22177p7(92:jhéz

By construction the u; are in the correct subspaces such that they can
be represented by the appropriate coefficient vectors (i.e. the equation

ui = Y icp (R ;)¢ can be solved for z;). Obviously
p p
Z(RiTxi, Rlzi)a = Z a(u;, u;)

1=0 1=0

and the rest of the proof we consider only finite element functions.
2. . We consider ug first. Set uy := jHu, le. uy = Fuy.

a(Fhun, Spun)
c|Ihup |%Q (continuity of BLF)

a(uo, uo)

IA

c| Ahug —ug + uHﬁQ

c (\UH — Shupli g+ |uH|iQ)

c (Z lug — JhuHﬁt + uH'?Q)

teTh

IA

<c (CZ |uH|iwt + uHﬁQ) (Corollary 5.3 s = 1)

teTh
< cluy ?Q (t appears in finitely many wy)
_ 2
=c fHu‘l 0 (“finite covering argum.”)
<clu %Q (6-3| (5-2), finite covering arg.)
< ca(u,u) (coercivity of BLF)
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5.4 PROOF OF ASSUMPTIONS OF ABSTRACT SCHWARZ THEORY

3. Now we look at the subdomains i € {1,...,p}.

a(u;, u;) < cluifi g (continuity)
2
=c| I | 0; (u—up) (Definition)
——
=w 1,0
< clbwlf g, 5.7 6w € Py(Th), supp(fiw) C )

= c/ V(Ow) - V(Ow)dx
Qi

<c [ (Wbl -+ [0Vwl} ds

q =) =:(2)

Product rule:

(05(6i))*

B

V(Ow) - V(fw) =

1

<.
I

E

((9;60;)w + 6;0;w))°

1

<.
I

S 2 (ajeiw)Q + 2 (Qiﬁjw)Q

B

1

.

We will estimate the two terms (1) and (2) later.

4. For s = 0,1 we have

\w\ig = |u — JhuH@Q (Def. w)
= \u —UuUg + UH — jhuH'i,QZ

S 2|u — jHU‘i,Qz + Z‘UH — jhuHE,Qz

lu — jgu\ig = Z lu — jHU@T
TE T TN, #£0

< Z CHJ%(l_S)‘U

TETH,TﬂQﬁ'é(b

in (Lemma‘
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ug — Fhupl? o = > lun — Fuul,
tETh tNC#D
< D> ek lunliy,
teTh,tNEY %0
<c Z h (1_S)|uH|it (reorganize, enlarge possibly)
tETh N #D
<c Y HMIguRy (he < Hp VENT #0)

TETw, TN, 20
N— —

larger
<c Y HUNE,  (Lenmaf)
TETu, TNQ#0

Figure 5.10: Ty and 7T, shape regular, quasi-uniform triangulations

Therefore we have for s = 0, 1:

2
1wr®

‘w‘in <ec Z Hz%(l—s) |u
TETu TN A0

5. Now we continue with [3l
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5.4 PROOF OF ASSUMPTIONS OF ABSTRACT SCHWARZ THEORY

Term (2):
Jlevelgds < [ Vel
= |u — uo\iﬂi
S ¢ Z ‘U/’in
TeTu, TN 20
Term (1):

/ V8 s - / o IVe I do

(&)

c H;
< (= 2 il 2
B ((52) O <<1+ 5¢) “ha,

Sc(l—l—?—;)c Z

TeTu , TNQA0

-i—cHt(Sic’ Z

TeTu TN, AD

|u|1,wT

(0; <1)

(h

1
H(5

H%‘U"%,MT

above s = 1)

(V6; = 0 interior)

HwH ) (Lemma

(using [4)

Use that H; C Hy C H;, i.e. Ty is quasi-uniform with Hy ~ H; (the
subdomain diameter). So we get in continuation of 3|

|u|17wT'

alu;, u;) < ¢ (1 + ?-) >

TETh, TN, 20
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6. Finally, sum over subdomains and coarse grid.

Satwaw<ed |(145) X | G~

TETH,TQE#Q)
H ) = | .
<cl1l+ 5 Z |7 o (T'NQ; # 0 finitely many €;
TeTy
H ) |
<cl1l+ 5 Z |uly 7 (T N wr for finitely many)
TeTy
H 2
<c(1+—=)[ulig
5 :
H .
<c (1 + ?> a(u,u) (coercivity)

Together with . and the fact that % > 0 we get

Zzp;a(ui,ui) <c (1 + %) a(u, u)
(14

This ends the proof for the additive and multiplicative two-level Schwarz
method.

[]
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Chapter 6
Multigrid Methods

6.1 Multilevel Finite Element Spaces

In this chapter we consider a hierarchy of finite element spaces that are obtained
on a sequence of nested meshes obtained by uniform refinement of an initial mesh
Ta = Ty as shown in figure [6.1]

The mesh levels are denoted by

TH:7E)7717"'77.L:77L7

and the corresponding lowest order (bi-, tri-, ...) linear finite element spaces
are

Ve=WcCcWViCc---C V=V, (6.1)
The spaces are spanned by the corresponding Lagrange basis functions:
V; = span{¢ : i € I;}, 0<I<L.
The index sets [; = {1,..., N;} are chosen in such a way that
ich ANgl(s)=1 = VE>IAk<L:¢l(s) =1,

i.e. the basis functions ¢ correspond to the same vertex position s; at all levels
k > 1 when i € 1.

Since V; C Vj, for all k£ > [ any basis function on level [ can be represented on
all finer levels, i.e. there exist coefficients Qif such that

o= "0kt ienl<k<L

jel
7>
T
To
To T T2
1D 2D

Figure 6.1: Uniform refinement
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(V1
(Y,

T~

Figure 6.2: Basis functions on multiple levels

As an example consider the 1D case in figure 6.2]

Remark 6.1. The coefficients 95? are given by

Lk
ei,j = #(Sj)

and therefore «955

dimensions we have at most (
level k > 1.

# 0 if and only if s; € supp ¢t. On a cube mesh in d space

of—li+l _ 1)d nonzero coefficients to represent gbi- on

As a consequence the interpolation (restriction) of v; € Vj to level [+1 (I —1)
can be done in O(1V;) operations. We will see below that in fact the interpolation
to any level £ > [ can be done in O(N}) operations.

6.2 Multilevel Subspace Correction Methods

Jacobi and GauB-Seidel as subspace corrections

Consider V}, = span{¢! : i € I} and set V; := span{¢!} for i € I;,. Then
V,cV,and V), = EBfV:hl Vi (direct sum of vector spaces), meaning that there is
a unique representation of any u;, € V), as a sum of elements from the V;’s.

In that case the additive subspace correction method reads in function space
formulation

k+1 k (f, ¢?)0,9 — a(uﬁ, ¢
U =uy + ¢;
" " ;; af zhv gb?)
since the subspace problem is
a(uy, + zi!, ) = (f, 6! oo
— Zia( zh? Cb?) = (f7 gb?)O,Q - CL(U;{;, Qﬁ?)

This corresponds to the Jacobi Method.
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6.2 MULTILEVEL SUBSPACE CORRECTION METHODS

The multiplicative method (aka Gaufk-Seidel) reads

: , k+i
by _ ke (f 8loo — alu, )

U oy
" " a(¢h, ol

¥

Hierarchical Basis (Multigrid)

In this method Vj, = V7, is decomposed as a direct sum by

L
Vi=Vio P €@ span{ei}.

=1 ’L‘GIZ\Ilfl

Again V! := span{¢!} is one-dimensional and the additive version reads

Do — kool
u L= b g+ Z > [ #i)os al(uh’ % )qbﬁ. (6.2)
I=1 i€\, ( z?¢z)

where v solves CL(U;CL—FU(), w) = (f,w)a Yw € Vp, i.e. the standard coarse grid
solution. The method given by is called Hierarchical Basis Method and
was introduced in [Yserentant| [1986]. The corresponding multiplicative version
is known as the Hierarchical Basis Multigrid Method introduced in Bank et al.
[1988].

The multiplicative method requires the fixation of an ordering of the indices
and is typically symmetrized in order to use it as a preconditioner. This involves
visiting some subspaces more than once, for example in the order

—_— e~

Ip\ Iy, Ipa \ Ip—o, ..., i\ Lo, Lo, 11 \ Lo, ..., I \ Ir—1 (6.3)

where tilde means that the ordering is reversed within the set.

Finally, the efficient implementation of the sum (6.2)) requires some thought
because in a(uf,@!), uf € Vi is a fine-grid function and ¢! is a coarse-grid
function.

The convergence properties of these methods are

O(logZ) d=2
O(4) d=3,
L d=2

1 1
|Erpmella < {1 B O(logf)
0(;5)

K(BHBA) = {
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True Multigrid Methods

True multigrid methods work with a non-unique decomposition of the subspaces:
L
0=t YV
=1 i€l

Obviously the representation

L
uh:u0+ZZué, UOEVg,u EVl

=1 €l;

is not unique.
The additive version is then very similar to (6.2) and reads

—alub &
k! —uh+vo+zz (f 6b)os ;Z() b ¢)¢§ (6.4)
=1 i€l

Due to the non-uniqueness of the decomposition the method needs to be used
as a preconditioner and is known as Multilevel Diagonal Scaling. A simpler
version where a(¢!,¢!) ~ h{"? (valid on quasi-uniform grids for the Laplace
operator) is known as the BPX-Method introduced by Bramble et al.| [1990].

The appropriately symmetrized version, e.g. using the ordering from (6.3), is
a special case of the standard multigrid method using a V-cycle (v = 1), one
forward Gauls-Seidel step as pre-smoother and one backward Gaufk-Seidel step
as post-smoother. The multigrid method was introduced in Brandt| [1977] and
Hackbusch| [1978].

The convergence properties of these methods are

I{(BMpsA) S C
and

| Expslla < ¢ <1
with ¢, ¢ independent of H, h. The first proofs of this have been given by Oswald
[1991] and [Dahmen and Kunoth| [1992], see also [Yserentant, [1993].
6.3 Sequential Implementation

We now consider the implementation of (6.4]) on a sequential machine.
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First, observe that the sum

1 1 1 -
WL—ZNZ NL1+n+n—+ +n—L)§NLZn‘l:O(NL) (6.5)
=0

when n~! < 1. Since n = 29 for uniform refinement this is the case. This
motivates that we would like to implement with work proportional to Ny,

However, a naive implementation of either (f, ¢!) or a(uf, ¢!) requires O(n*~")
operations which yields

N
> It =3 Ny =O(NyL) = O(Nlog Np)

L-1
=0 d [=0

since N; = Non'.
An optimal implementation requires to compute the numbers

vy = (fn, &}) — a(uy, ¢7)

recursively proceeding from fine to coarse:

V - (fh ¢) (uh7¢l)
— (fu, Z 91 z+1¢1+1 Uh> Z 91 l+1¢l+1

J€lif J€lif
I, 1
_ Z 0" + ¢l+1) —a(uh,qblﬂ)) (6.6)
J€li1
_ Z 91 I+1 z+1
Jeli1

The computation of for all v!, i € I has complexity O(N;) and conse-
quently the computation of v{ for all i € I;,0 < I < L takes O(Ny) according
to (63).

As a consequence only a level-wise computation of as in the standard
multigrid method is computationally efficient.

This implies the following sequential algorithms (0.1} in terms of coeffi-
cients. By A; and b; denote the stiffness matrix and right-hand side on level [
and R; : RiT! — R ig the restriction matrix given by

(Ro)iy =05 (6.7)

as in section 3.4l
The multiplicative algorithm can be extended by visiting subspaces multi-

ple times in different order. By S;. and S);., we denote two generic iterative
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Algorithm 6.1 Multilevel Diagonal Scaling
Given: z%
dL = bL — AL.IE
for(=L—1,...,0do
dy := Rydi
end for
Vo ‘= Aaldo
for(=1,...,L do
V] = D;ldl > D)= diag(Al)
v =+ RlT_lvg_l
end for
hti= a2k fog

schemes applying vy (1) iterations. Typically Spre, Spest are either symmetric
O Spost © Spre 18 symmetric (but this is not required). The method introduced in
section assumes Sy, and Spye to be the forward and backward Gaufs-Seidel
method. Other choices are SSOR or ILU.

Algorithm 6.2 Recursive version of the multiplicative algorithm with param-
eters vy, 15 and v

function Mcc(l, x;, b) > by input, x; input/output parameter
if 1==0 then
Ty = A(;lb()
end if
xp = Spte(z1,b) > apply vy iterations on Ajz; = by with initial guess x;
dl = bl — Al$1
di—1 = Rj_1d;
V-1 ‘= 0
for =0,...,7v—1do
function MGC(l — 1,v1,b;_1)
end function
end for
X i=x + RlT_lUg_l
1 = Spost (1, b1)
end function

The value v =1 is called V-cycle, v = 2 is called W-cycle.
The cost of one iteration is optimal, i.e. O(Ny) if v < n, where 7 is the growth
factor from level to level.
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6.4 Parallel Implementation of Multigrid Methods

The parallelization is based on the following ideas:

e The coarse grid problem is either solved sequentially or in a distributed
fashion as in the two level Schwarz method.

e The solution of the one-dimensional subspaces in the additive scheme is
trivially parallel.

e In the multiplicative scheme the smoothers Sy, Spost need to be paral-
lelized: Either use the damped Jacobi method or a hybrid method that
is additive between processors and multiplicative within processors. (Aka
Block-Jacobi with Gaufs-Seidel as inexact block solver.)

e Prolongation and restriction between grid levels is trivially parallel.

e Note that in multigrid Ny is in principle independent of the number of
processors p. If p > Ny then the coarse levels need to be treated by less
than p processors.

The parallelization of the grid transfer is essential. We first treat the case
where:

e (! is a union of elements of 7; associated with processor i on level /.

e Every grid level is decomposed in an overlapping fashion where Qﬁ ) Qf-“
for 0 <[ < L and the overlap is at least one element on each level.

e The domain decomposition results in an overlapping decomposition of the
index sets

p
L=Jn:, o0<i<L
i=1
and we require that the decomposition is such that
Li4+1
Ya € 1 VB € Il+1,i : 6@,6 75 0 — ac€ ]lﬂ'v (6.8)
i.e. the interpolation can be done locally.

e The two conditions above imply that |7y > p.

Remember, by R; : R+ — R we denote the sequential multigrid re-
striction operator and by 7; : R" — Rl the subdomain restriction opera-
tor, ie. (r,x); = (z);Vy € I;; known from the Schwarz method. Finally,
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Ry : R+ — R is the local restriction operator that can be carried out in
each processor and which is given by

(Rl i xl—i—l i Z Hl l+1 ml—i—l i (69)

BGIlJrl i

Figure 6.3: Local restriction operator

Observation 6.2 (Local Restriction). For all 0 < | < L, 1 < i < p and
Tpy1,; € RIi:

T T
Ry P41 Ti41 = Ty Ry x4 (6.10)

®
[ 2

[+ 1 |

N
7

Figure 6.4: Local restriction
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Proof. o Lor a € I}

(riRui xis1i)o = (Rii Tis1i)a (Def. of 1y, a0 € L)
— Z Ql Hl (141.4) (Def. of Ry;, (6.9))
6€h+M
Z 91 ZH rl+1 iTi+14)p  (Def. of 744 ;)
BEl1

= (Ri7fy1%0414)a

Here we used that

T (T131,4)p B € Ly,
T .T i =
(Ti41.4T141,4)8 {0 B¢ I

e For o ¢ [;;: In this case implies

a¢lyy = VBEeln,: 01 =0

So
T LiI+1 B
(Rl Tlv1, xl—i—l,i)oz = E eaﬂ (5’31+1,z’)ﬂ =0
BElif1,
and
T
(7 Rii viv1i)a = 0
since a ¢ ;. O]

Observation 6.3 (Local prolongation). For all 0 < [ < L, 1 < i < p and
T € R
T T
Ti41, Rl xy = Rl,z’ (ARRY (6.11)
S~~~ N~~~

global, seq. prolong. on subdom. ¢
NG y A\ 7

TV TV
on subdom. 4 local prolongation

Proof. Consider 8 € Ij41.

(sz:ﬂ"l,il'Oﬂ = Z (9l l+1(7‘17i5L‘l)a (Def. of RZD
OzEIl,Z
= Z Héf;l(:pl)a (Def of T, € Im)
aELi
= Z 0- (x (due to assumption (6.8))) O
a€cl;
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Now these two observations can be used as follows. Given any z;,; € R+,
decompose it into x;4;; such that

p

_ T
Li+1 = E Ti41,i Tl+1,i
i=1

Then

p
T
Rz =R E Tl Tl
i—1
p
T
= E Ry, Tig
=1

1=
p
T
Y ol Rigwi
=1

where the right-hand side is again an additive decomposition on the coarser grid.
This can be iterated over all levels to get

P
RoRy -+ Ry = Z roRoiRui -+ Rui xien. (6.12)
i=1
For the prolongation we get for any [ < L by recursive application of obser-
vation [6.3]

T T pT T T T
rLilRp g R Ryop = RL—l,i ri—1iRp o Ry x

6.13
— R%_Li L Rg[:Z 7’171' SU[ ( )

Coarse Grid correction in two level Schwarz

Eq. (6.12)) and (6.13]) immediately show how to implement the coarse grid cor-
rection in two level Schwarz:

1. Compute defect.

Compute additive splitting.

Restrict locally over all levels until [ = 0 is reached.

Sum defect over all partitions, requires nearest neighbor. Communication.
Solve coarse grid problem (either parallel or sequentially).

Communicate required parts of corrections to each processor.

N o s N

Prolongate corrections over all levels until [ = L is reached.

Note that no communication is needed at intermediate levels.
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6.4 PARALLEL IMPLEMENTATION OF MULTIGRID METHODS

Application to Multigrid

On each level do:
1. Smooth (includes communication).
2. Compute defect, do additive decomposition.
3. Restrict locally.
4. Sum defect over partitions (communication required).
5. Solve coarse grid problem recursively (includes communication).
6. Provided correction is available on partition prolongate locally.

7. Smooth (includes communication).

overlap H overlap

x  RAS decomposition

Figure 6.5: Data decomposition with minimal overlap and RAS smoother.
Observe that condition is satisfied.

Non-overlapping Multigrid Implementation

The data decomposition from figure also satisfies (6.8). Note that there is
no overlap with the other subdomains, except in codimension 1.

H

Figure 6.6: Data decomposition without overlap
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This data decomposition corresponds to a non-overlapping decomposition
i p —
Q=%  QnQ;=0Vi#]j
i=1
We may define the linear and bilinear forms

li(v) .= | fvdx, a;(u,v) = [ (KVu)-Vuvdz, i=1,...,p. (6.14)
/ /

Q;

With the index sets

I = {a € I : supp(¢,) N Q # 0}, i=1,...,p (6.15)
we define the right-hand side vectors and matrices
b € R (bri)a = 1i(9a),
Ay € RIix T (A1i)ap = az’(¢>lga ).

Together with the index sets we have the restriction operators RZ’Z- R 5 R
given as usual by ) i
(Riixi)a = (T)a, VYa €.

Since the §; form a partitioning of {2 we have

p p
[(v) = Zli(v), a(u,v) = Zai(u,v)
i=1 i=1
and as a consequence
P P )
b= Rib Ay => RLA R,
i=1 i=1

This representation is similar to the local stiffness matrix in finite element as-
sembly.

Now if we consider the computation of the defect on level [ for a given iterate
acf , we obtain

This means:
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6.5 A CONVERGENCE PROOF FOR MULTILEVEL METHODS

e The quantity d¥, = b; — A;; x}, can be computed locally, without com-
munication provided xfl — Ry a¥ is available.

o dF =P dF. is an additive representation of the defect which is exactly
what is needed to apply observation for parallel restriction.

Thus, in the non-overlapping version, no communication is needed in restriction.
However, there is an additional problem in the smoother: For v € I;; N [; ; # ()
and ¢ # j neither processor can compute the correction implied by the Jacobi or
Gauk-Seidel smoothers since a(¢l, ¢',) is not available. There are two options:

e Use additional storage and a single communication during the setup phase
to store the missing entries a(gblﬁ, ¢). (For a hybrid Gauk-Seidel smoother

an additional non-overlapping decomposition of the index set [; = J_, I Lis
LN =0Vi#j, I; C I, is needed.)

e For the BPX method a(¢l, ) ~ h{? is assumed and no additional
storage and communication is necessary.

6.5 A Convergence Proof for Multilevel Methods

This proof applies to MDS and to multiplicative V-cycle multigrid with one
Gauls-Seidel pre-smoothing step. It uses the Schwarz theory and follows the
presentation in Smith et al. [1996].

Define the a-projection &2, : H(2) — V; to level [ as

a(Pwu,v) = a(u,v) Yv e V.

Practically a computation of Z2u would involve the solution of a linear system
with the matrix A;.
With the help of the a-projection we can define the splitting

Uy -— Wou,
u = (P — P_1)u for | > 0.

Lemma 6.4 (Properties of &7). Assume a is symmetric. Given u € Vj, =V,
the projection & satisfies

1. u= ZZL:O u; and

0 [ >k,
a(u,w)) 1=

2. a(ug,uy) = {
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Proof. 1. Zul Lo+ (Pru — Pou) + (Pou — Pyu) The last equality

+ -+ (Pru— P qu)
= Yru=u
holds as u € V7.
2. Assume [ > k > 0.
a(uy, ur) = a(Pu — P_u, Pru — Pr_qu)
= a(ZPu, Pru) — a( P, Pr_qu)
— a(P_u, Pru) + a( P u, Pj_qu)

= a(ZPu, Pru) — a(P_1u, Pru) (*)
_ Ja(u, Zru) — a(u, Pru) =0 ifl—1>k < [l >k,
) a(u, i) — a(Pr_yu,u) = alu, ) if 1=k

For (*) we used that a(Zu, Py_1u) = a(u, Py_1u) since Py_u € V,
and a(Z_1u, Pj_1u) = a(u, Py_1u) as Py_1u € Vi_1.

Assume [ > k = 0.

a(ug, ug) = a( P — Py_qu, Pyu)

a( P, Pyu) — a( P_1u, Pou)

= a(u, Pyu) — a(u, Pyu) (*)
= 0.

For (*) we used that Z, € V, C V.1 C V.
Assume [ = k = 0.
a(ug, up) = a(Pyu, Pou) = a(u, Pyu)
since Zyu € V. O

For any function w € V, [ > 0, we can write
w=Y w(sh)el =Y F(dw)
1€1l] 1€1l]

with the Lagrange points sﬁ and the Lagrange interpolation operator .. Here
the ¢l act as a “partition of unity” (up to the Dirichlet boundary and % (¢lw) =
w(s;), ¢ € Vi; = span{¢'}). Then for u € V;, = Vy,

U_UO-I-ZZ% iUl —UO—FZZUM
=y,

=1 Z€Il — =1 i€l
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6.5 A CONVERGENCE PROOF FOR MULTILEVEL METHODS

forms a splitting of u since

L L L
up + ZZ%(dul) = uy + ZZug(sﬁ)d = lz_ozul = .

=1 i€l =1 i€l

=uy
Now we show that this splitting is stable.

Lemma 6.5. Assume the variational problem is H?regular and the meshes 7;
are quasi-uniform. Then there exists a constant ¢ > 0 independent of h such
that for all u € Vj,:

L
a(ug, ug) + Z Za(ul,i, u;) < calu,u).

=1 i€l

Proof. 1. Let [ > 0.

Za(ulai,uu) < Zc|ull|%ﬂ (cont., equiv. of |.|1, [|][1)

i€l] i€l
< CZ lurili g, (€2 == supp ¢})
1€l
= cz | 7 (D) %Qz (Def. of u;;)
i€l;
<o o, (Lemma £
1€1;
—cY [ IVl o
i€} Qli
<Y [ I6ivulf + uvoll ds
1€1; Q”
2 1 2
< CZ wlt g, + h_2Hul| 0.9
1€l; L
1 ..
<c (‘UZ‘%Q + ﬁHungQ> (77 quasi-uniform)
i

2. We need to estimate ||u;||oo. The continuous problem

UcHyQ) : a(Uw)=1v) Yve& HyQ)
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108

is H?*-regular, i.e. U € H?*(2). Due to Aubin-Nitsche, see for example
[Braess, 2003, Lemma 7.6], the FE solution

U, eV, : a(Uh,U) = l(’U) Yv eV,
satisfies the estimate
HU — UhH(LQ S Ch‘U — Uh|179.

We apply this to the a-projection in the following way: For given u; € V,
[ > 0, we define a linear form [(v) := a(u;,v). Then

o Uc HNQ): a(U,v) = aluy,v) Vv € H}(Q) is solved by U = w.

o Zue Vi a(Zu,v) = alu,v) Vo € Vi_q is the a-projection
of uj.

And we have the estimate

| — Z1—1wjon < chy—i|w — P 0.

. The &, are projections, i.e. 2?7 = 2. Moreover, for &,_1 Pju we get

a(P_1(Pw),v) = a(Pu,v) = alu,v) Yve V1 CV
and on the other hand
a(P_qu,v) = a(u,v) Yo € V.

So we have

ﬁzl_lﬁzm = @l_lu.
As a consequence, for [ > 0:

Piw = P 1(Pu — P_qu)
= @g_p@gu — @?_ﬂt
= Z_u— Zu
= 0.

Combining that with 2 we obtain

luilloo = ||lw — Zi—rwloo < chi—i|uy — P10 = chi—iwl o
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4. Now back to [l:
1

> atusu) < (Jufio + gplulfe )
l

i€l

hi—1
<c Wﬁ@+C?7yWﬁ@
~—
=2
< clulig
< ca(uy,uy) (Ellipticity).

5. Now sum over all levels.

L
a(ug, ug) + Z Z a(ugi, ;)

=1 €l
L

< a(ug, ug) + CZ a(ug, ) (41)

a(u, ) (Lemma

L
= ca(u, Z w)
1=0

= ca(u,u) (Lemma O
Now we search the upper bound. Define the restriction operators
RO : RIL — RIO, (RO)a,B = 03:% = ¢8¢(35)7
i I,L
Ry;: R — RY }, (Rii)ip = 91-,3 = #(35)
and the Schwarz projection operators
AO = ROALRg, PO = RgAalRoA,
A == R;ALR],, P = R ;AR A

Lemma 6.6. With the definitions above there exists ¢ > 0 independent of the
mesh size h such that

(Po+ Y Y Pz, a)a, < (1+ Lej(w,x)a,.

=1 el
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Proof. On every level [ there exists a coloring of the index set into at most N,

colors
N,

I = U I, LeNTe=0Ye#d,
c=1
such that
(PLiz, P jx)a, = 0 when c(i) = c(j).

Figure 6.7: Coloring of index set

Set ]5170 = Zidlc P ;. Then 15170 is also an Ap-orthogonal projection.

L
(Po+>_) Pi)z,x)a,

=1 iGIl

Po—i—ZZPlca: T)A

=1 c=1

L
= (Pyx, Pyw) 4, + Z (P o, Pot) 4 (Lemma
< (14 LN )(x,x)4,. O
In order to handle the multiplicative method a bound for p(&’) in the strength-

ened Cauchy-Schwarz inequality (assumption is necessary. We will prove
this in the form of an optimal bound.
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6.5 A CONVERGENCE PROOF FOR MULTILEVEL METHODS

Lemma 6.7 (Zhang [1992]). Let A € R™*" be a matrix with at most ¢ nonzero
entries per column. Then

[Allz < e mZaX(Z(A)?,j)?-
J
Proof. Recall the Raleigh quotient from observation [2.4}

A
HAHQZ sup ” .CL’”2
Jalloo 1]]2

Set

0 otherwise.

0, {1 (A)ij #0,

Then

< Z (Z(A)fj)(z 923(:5)?)) (Cauchy-Schwarz)

< cmax(3(A)2) !}
J

Finally, combine this with the definition of || A||s. O

Lemma 6.8. Let 7y be shape regular and quasi-uniform. 7; is obtained from

;_1 through regular subdivision of each element into 2¢ elements. K is piecewise
constant on 7Ty. Then there exist constants ¢; and ¢y independent of h and L
such that

N[

1. a(u,v) < ¢ 2712 g(u, w)za(v,v)2 Yu e Vii,v € Vi,

2. p(&) < .
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Proof. 1. Let we Vi, veV,; withk > L.

a(u,v) = /(KVU) -Voudx
0

= / (KVu) - Vude

Qm‘ﬂQk,j
3
< / (KVu) - Vudx / (KVv)-Vudx
Ql,ika,j Qlyiﬂﬂk’j

Do

N|—

< / (KVu)-Vudz | a(v,v)

QMQQ;@J‘

[

In the last step we enlarged the integration domain for the second integral.

Further

/ (KVu) - Vudzx

Ql,iﬁQkJ

< / IVl d

QN 5

—c > [ vl

TG%:TQQLZ‘#Q TkaJ.

=c Z | Vul3 / 1dx

TEW:TQQLﬁé@ TﬁQk,j
2 4
<c Z [Vull3 T SaE T
———
TeT,:TNQ; ;#0 =|ul?
¢ 2
< odle—1] Z Julfr
TE'E:TQQM#@
_ ¢ 2
= Wlull,ﬁ
< E2_0l|k_l|a(u, u)
(8%

(**)

(***)

For (*) we used that Vu is constant on 7. For (**) we used that € ;
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consists of up to ¢’ elements t € T and that the volume of ¢ € Ty, being

a refinement of T, is % For (***) note that u = 0 outside of € ;.

Finally take the square roots and use the symmetry.

2. Let u € Vj;, v eV, with k > j, then
° Qm’ ﬂQk,j =) = a(u,v) =0

e ., CT €T, = a(u,v) =0 because

/ (KVu)-Vodz = /(KVU) -Voudz

QmﬁQkJ‘ T

:_/V-(KVu)vdx+/(KVu)-nvds
T or
=0

as V- (KVu) = 0 since u € P, or ¢ and v = 0 on 97 since
supp ¢, = Q; C 7.

3. The structure of &:
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=1 [ =2 [=3 =1L
=1 Ne X X X X X X X X X

X X X

Ne 1... Ne
=2 | ®|X >{'"1,.>< X | X X X (29D | c(24- L2

.,.'1

[ =3 Ne Ne Ne C(Qd—l)kz—l
=1L

® (¢}, ¢;) = a(d], ¢7)

Figure 6.8: Structure of &

As a consequence of . a(¢}, ¢F) # 0 for at most

(2d—1) |k~ ¢ — ¢ old=1)k=l|

basis functions, where 277! stands for the surface, |k — I| is the number of

refinements and ¢ is the number of finitely many edges/faces of T' € 7} in
supp 2;,;.

Introduce the level-wise block structure of &:
Er R 1< k<L

with
(E1r)ij = (E)iy-
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6.5 A CONVERGENCE PROOF FOR MULTILEVEL METHODS

&1 i has the following properties:
e All entries have the size at most ¢; 2

T
* Sir =&

—d|k—1|/2

e k£ >1[: at most ¢y 2(d=DIE=Il antries per row are Non-zero.

e k£ > [: at most n, entries per column are non-zero.
So, together with Lemma we obtain for £ > [

i 2\ 2
|1kl < né max <02 old=1)[k—| (01 Q—dlk—ll/2> )

A\

1

g

~
independent of 4

1/2 -k
:ni/Q%/ 12 \k—1]/2

= ¢ F-lI2,

. Finally define £ € RF*E as
(B,

E is symmetric since &1 = & and [|Al|
(|[Hackbusch, 1991], Folgerung 2.9.4]).

Now we show

= HAT||2 for any matrix A

p(&) = [I€]l2 < [[E]l2-

This follows from

1€13 = sup ||

|z[|3=1
S <|zmk|2>
=]13=1""4
I 2
. (z@@|>
lzll3=1 7= \ =1
2
L
< sup Z >, Ll
HCC||2—11 1 k=1 (Z)k,ZGRL
I 2
— Y (z )
12115=1"=1 \ =1
= sup ||Ez|3
|z]13=1
= | E|3.

(exploit block structure x = (x4, . ..

(triangle ineq.)

(associated matrix norm)

(lzl3 = Y lzel3 = Y ()i = Il=I13)

k k
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5. Now combine B and [4].:
Ello =p(E) < ||E|ls = e
[E]l2 = p(E) <[ E] m;ach() <

k=1

which is independent of L. For the last estimate we used the geometric
series. ]

6.6 Algebraic Multigrid (AMG)

The Need for AMG

Convergence of standard geometric multigrid (GMG) and many other methods
such as additive Schwarz is often not robust with respect to problem parameters
of the PDE. Consider the general elliptic problem

V-(bu— KVu)+cu=f in .

A method where the convergence rate does not depend on b, K and c is called
robust.
Typical problems are

e ¢ <0 and || large: indefinite Helmholtz problem

e ||b|| > ||K]||: convection-dominated problem

o K = k(x)I where k(z) is discontinuous with large “jumps”

o K = QTDQ where maxd;; > min d;;: anisotropic problem

e irregular/anisotropic meshes can have similar effects.
Typical remedies in GMG invented to solve these problems:

e robust smoothers: line and plane relaxation, ILU (anisotropic problems),
streamline ordering (convective problem)

e semi-coarsening (anisotropic problem)

e matrix-dependent prolongations and restrictions, Galerkin coarse grid prod-
uct (variable coefficient problem)

Complex geometries: generating coarse grids of good quality resolving complex
geometries is an enormous challenge.
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Software issue:

e many commercial simulators have matrix-vector interface to linear solver
and only a single grid.

e geometric multigrid requires grid hierarchy and solver is intertwined with
discretization.

AMG Introduction
AMG mimics the GMG method by

e Construct a hierarchy of linear systems A;, 0 <1 < L.
e A is constructed using solely information from A;,; (there are exceptions).

e Usually A; is obtained by A; = RIAZHRIT where RE‘F is a prolongation
operator (rectangular matrix, sparse, full rank).

e Then a usual multiplicative (V-; W-, ...) cycle is performed.

e Intentionally only simple smoothers such as Jacobi, Gauk-Seidel, SSOR
are used.

e All operations are local and parallelizable similar as in GMG.

Algebraic smoothness

Smoothing and coarse grid correction are complementary: coarse grid correc-
tion should reduce errors that are not reduced by the smoother. For the Pois-
son problem and standard FE this corresponds to low- and high-frequency sine
waves. In general elliptic problems this is not so easy. Alternatively define al-
gebraic smooth errors as those where Se ~ e with S the iteration matrix of
the smoother. Theoretical investigations suggest a more rigorous definition. We
introduce the following scalar product and corresponding vector norms:

<xay>0 = <D$,y>,

<£C,y>1 = (Ax,y},

(2, y)2 := (D™ Az, Ay),
[zl ==V (2, x);

where (-,-) is the Euclidean scalar product, A a symmetric positive-definite
matrix and D := diag(A).
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Observation 6.9. The scale of scalar products and norms satisfies the following
relations:

(@, y)r < [lzllollyll2;
lz]l3 < p(D~* A) |3,
]Iy < p(D~A)J]l5.

Proof. The first inequality follows from the Definition and Cauchy Schwarz:

<SC,y>1 - <5L’,Ay>
— (D3z, D2 Ay)
< \/(Dka, Dia) /(D4 Ay, D4 Ay)
= [|2{|o]|y]]2-

For the second inequality holds

l]13 (D' Az, Ax)
sup 5 =
0 [17lf A0 (Az, )
(A:D~ 1Ay, y)
= sup
x:A*%y?éo <y7 y>
= p(A2 D' A2)
= p(D71A).

The third can be proven in the same way. ]

Definition 6.10. The smoother with iteration matrix S is said to have the
algebraic smoothing property if there exists o > 0 such that

ISelly < llelli = allells.

2 2
From ”ﬁigl <1-— 0% we deduce that the reduction of the error is small
1 1

if le]|o < ||e]|1 (provided o is reasonably large). We characterize algebraically
smooth errors as those where

leflz < llell1-

Lemma 6.11. Provided 0 < w < ﬁ, the damped Jacobi iteration
S = I—wD™!' A has the algebraic smoothing property with 0 = w(2—wp(D1A)).
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Proof.
ISellf = (Se, Se)y
= (A(I —wD 'A)e, (I —wD ' A)e)
= (Ae,e) — 2w(AD ' Ae,e) +w*(AD ' Ae, D! Ae)
< |lell? = 2wlle||? + w*(D 2 AD 2D~ % Ae, D" Ae)
< lell} = 2wllell3 +w’p(D~ A)lell5
= |

lellf — w(2 = wp(D™ A))llell;

From the assumption 0 < w < ﬁ follows that w(2 —wp(D71A)) >0. O

Interpretation of algebraic smoothness

e is algebraically smooth if ||e|ls < |le]|1. Since [le]|F < |lellollell2 < |lellollellr
this implies also ||e||1 < ||€]|o-

Observation 6.12. Suppose A is a symmetric positive-definite M-matrix. Then

= 555 - o=+ S0t (S )

J
Proof.

el = (4e,)

-3 (?A)I,j(e)j) ol

TR

= 3 (< (@i = ©)7) + (e
-3 (e + ()

i g>i

1 2
-5¥ zj: () (@)~ (),
= (o

—
+
/N
™
~—
Al V)
I
—~
~/
™
~—
<
I
~/
™
N—
<.
N—r
[N}
[
N——
S
—~
S
I
S
N~—
I
S
I
[\
)
S
_l_
S
[N}
~—r"

.
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Figure 6.9: The structure of matrix A

From the observation and |le||; < ||el|o we conclude

> (%Z (—(A)is((e)i = (e);)%) + (Z(A)m-) @)3) < Z(A%,i(e)g_

i J J
Assuming row sum zero in all rows (true if there is no zero order term) then
on average for every i (sufficient condition):

ST (=(A)ii((e)i — (€);)?) < (A)iale)?

() () = (),
=2 @ o <t

In the sum the term for ¢ = j is zero and since A is a M-matrix (A); ; < 0 for
i # j. Therefore all terms are nonnegative and

(Al _ oy, M= (@)

small, and
(A)ii ()il
()i = @)l e — [l oy
()] (A)m
From this follows: if % = O(1) the errors in unknown ¢ and j are about

equal and (e); can be interpolated from (e);.
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Algebraic Multigrid (AMG) Algorithm

1. Given Aj, € R a symmetric positive-definite M-matrix. Set

. (Al
L= : >
S;:={j€l,:j+#1iand A 2 at

with, for example, o € [%L, %] S; is the set of strongly connected neighbors
of 1 € I,

2. Partition I, = Iy U (I \ Ig) = C U F such that

e VicFVjeS :jeCV(E@keS;:kel).
Direct coupling: S; N C' # 0.

e |Iy| is not too large, preferably % ~ 274,

3. Define interpolation as

T\ (6)1 1€ C
(RHG)Z - {Z; wl_j(e)j icF

e Wy
where w;; = S

4. Set Ay := RHAhRE and proceed recursively.

A further objective is that Apy is as sparse as Ay,. This is ensured heuristically
in the partitioning strategy in step [2

Agglomeration-based AMG
1. As above.

2. Build partitioning
N
L=JG, GnCi=0 Vi#j
i=1

such that for every 1 <i < N, Cj = {a, ..., q|c,} there exists a chain
O{jl, OéjQ, ce ’Qj\Cil

such that a;, ., € Sy, , k <|[Cil.
Set Iy :={1,...,N}and m:I;, » Ig as m(i) = j <= i€ (.
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3. Define piecewise constant interpolation
(Rize)i = (€)m(i)-
4. Set AH = RHAhRE

Again it needs to be ensured that Ay is as sparse as A;, and it needs to be
used within AMLI cycle or with coarse grid extrapolation

o = 29" + WRAG Ry (b, — Apa ).
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6.6 ALGEBRAIC MULTIGRID (AMG)

Table 6.1: Iteration numbers for various domain decomposition and multigrid
methods. The Laplace equation with Dirichlet boundary conditions
and C'*°-solution is solved in a square domain with ¢); finite elements.
Weak scaling was employed with 7682 = 589824 elements per proces-
sor on the finest grid. The coarse grid was 32 = 9 elements per proces-
sor. We compare the single grid additive Schwarz method (SASM),
the single grid multiplicative Schwarz method (SMSM), the two-grid
additive Schwarz method, the multilevel diagonal scaling method (ad-
ditive multigrid with one step Jacobi smoothing) and the multigrid
method with one step of hybrid, symmetric Gauls-Seidel as pre- and
post-smoother. All domain decomposition methods used exact sub-
domain solves with SuperLU. The numbers behind the domain de-
composition acronyms denote the overlap in mesh cells on the finest
grid. Residual reduction was 107% with random initial guess.

VP 1 2 3 4 5 8 10 15 16 20 32
SASM 1| 1 67 83 116 131 186 221 310 328 391 -
SASM 2 | - 48 58 81 94 133 156 221 235 278 -
SASM 4 | - 34 43 58 68 95 112 154 168 200 273
SASM 8 | - 26 31 44 48 69 81 114 120 142 196
SMSM 1| 1 37 68 114 227

SMSM 2| - 30 49 81 197

SMSM 4| - 23 40 60 109

SMSM 8| - 17 29 45 78

TASM 1| 1 36 38 39 39 38 37 37 37 36 36
TASM 2| - 27 28 28 28 27 27 27 27 27 27
TASM 4| - 20 21 21 20 20 20 20 20 20 20
TASMS8| - 15 16 16 16 15 15 15 15 15 15
MDS 5 15 15 15 15 15 15 15 15 15 15
MGC 3 33 3 3 3 3 3 3 3 3
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CHAPTER 6 MULTIGRID METHODS

Table 6.2: Total computation time in seconds for various domain decomposi-

124

tion and multigrid methods. This table corresponds to the iteration
numbers given in Table [6.1] Computations were done on a cluster
consisting of 32 nodes with four 8 Core AMD Opteron 6212 proces-
sors at 2.6 GHz connected by an infiniband network (40G QDR). The
time given does not include the time for the factorization of the sub-
domain problem. Note that for the multigrid methods we provide two
digits after the comma!
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Chapter 7

Nonoverlapping Domain Decomposition
Methods

7.1 Introduction to lterative Substructuring

We consider the case where () is subdivided into two non-overlapping simply
connected subdomains, i.e.

QU =0 N =0.

We set
I' = an N 892

O

Figure 7.1: model case (left) and general case (right)

Lemma 7.1. The weak formulation of the elliptic problem in €2 is equivalent to
the following two subdomain formulations

ai(ui,v1) = /(KVul) -Vourdr = (f,v1)o0, Yo € Hy(Q) (7.1a)
931

CLQ(UQ,UQ) = /(KVUQ) Vg da = (f, 'UQ)()’Qz Yuy € H&(Qg) (71b)
92

U = Uy on I' (7.1c)

ay (ulv RLLL) + a2(u27 RQM) - (f7 RlM)O,Ql + (f: R2:u)0792 ‘v’,u SN (71d>
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CHAPTER 7 NONOVERLAPPING DOMAIN DECOMPOSITION METHODS

where

A ={ne H>T):n=uv|r for suitable v € Hy ()}

and
Ri: A=V, = {U c HI(QZ) : U|8QmaQ = O}

are extension operators.

Proof. |Quarteroni and Valli, 1999, Lemma 1.2.1] O

[FTNONQ = 0 we have A = H2(T) and if TNHQ # O, A is denoted by HO%O(F).
Note that ((7.1d)) is a weak formulation of the strong interface condition

(KVuy)-n=(KVug)-n onTl

with n the normal to I'.
The extension operator R; is not unique. One particular choice is the so called
harmonic extension H; : A — V; given as follows:

HZ)\ = Rz)\+w

with
w € Hi () : ai(w,v) = —a(Ri\,v) Yo € Hy().

This means that u; = H;\ solves the weak formulation of

-V - (KVu;) =0 in Q;,
U = A on I,
u; =0 on 0%2; N OS2.

With this extension one can formulate an operator . : A — A’ the so-called
Poincaré-Steklov operator, given by

2
(Fnm) = ai(Hm, Hip) ¥n,p€ A, (7.2)

1=1

It can be shown that .# is symmetric, continuous and coercive, i.e. systems of
the form

S =§ (7.3)

have a unique solution.
On the discrete level this procedure can be formulated as follows.
Discretize the domain with conforming finite elements such that the interface is

resolved by the mesh, as shown in figure [7.2]
Partition the index set into

Iy =1,1 Ul 2 ULy
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7.1 INTRODUCTION TO ITERATIVE SUBSTRUCTURING

Figure 7.2: Discretization in two subdomains with the mesh resolving the inter-
face

then the linear system exhibits the 3 x 3 block structure

An 0 Air T by
0 AQQ AQI‘ ) = bQ . (74)
Ar1 Ars Arr rr br

Block-Gaufs elimination of the blocks Ap; results in the block triangular system

An 0 A T b
0 AQQ AQP i) = b2 <75)
0 0 S rr g

with

S = Arr — An A A — AreAsy Aor,
g=br— ArlAﬁlbl — AF2A2_21b2-

(7.6)
A general procedure to solve would consist of the following steps:
1. Compute S, g.
2. Solve Szr = g.
3. Backsolve for z1 and xs.
The advantages are
o |It| < |1

e The backsolves can be done in parallel.
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CHAPTER 7 NONOVERLAPPING DOMAIN DECOMPOSITION METHODS

A disadvantage is that S is in general not sparse.

It can be shown that the matrix S is actually a discretization of the Poincaré-
Steklov operator .. Since .7 : Hz(T') — H—2(I) it is better conditioned than
the original system .« : H}(Q) — H1(Q) and k(S) = O(h™1) can be shown.

This suggests to solve Sz = g iteratively with the conjugate gradient method
which requires only matrix-vector products Sx. These products can be done
“on the fly” without explicitly assembling S and exploiting instead. The
corresponding CG-method requires O(h%) steps and efficient subdomain solvers.

Note that the subdomain solves A;xz; = b; — A;rxr involve the harmonic
extensions into the subdomains.

A disadvantage of this iterative approach is that the subdomain problems
must be solved exactly. Consider for simplicity the Richardson-iteration for the
interface problem

o = ok + w(g — Saf) (7.7)

then ¢ — Sy = 0 <= y = xr is a necessary condition for the iteration to
converge to xr.

An alternative formulation that overcomes this problem is based on the LDL”
decomposition of A given by

I, 0 0 Ay 0 0\ (L1 0 AjjAir
A= 0 Iy 0 0 A O 0 I AQ%ALF
AF,lAl_j AF’QAQ_; [RF 0 0 S 0 0 ]r,r
) _T 17

(7.8)
Now iteratively solve the original Az = b by using an approximation of A from
(7.7) as a preconditioner where Al_j, Ay % and S are replaced by approximations.

Remark 7.2. Setting

i Ai; 0 0 i i
D= 0 Ay 0 and A:=LDL"
0 0 Irr

yields the same iterates as (7.7)) for the interface unknowns xrp.

Proof. Straightforward calculation for the iteration matrix I — wA ' A. ]

7.2 Two Subdomain Preconditioners

The iterative solution of the Schur complement system is not efficient enough for
larger problems due to the growth in condition number. Therefore, precondition-
ers for the Schur complement are required. In this section some preconditioners
for the case of two subdomains are introduced.
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7.2 TWO SUBDOMAIN PRECONDITIONERS

J-Operator

For the model problem —Au = f in Q = (0,2) x (0, 1), discretized on a struc-
tured quadrilateral mesh with A = (n + 1)7! the Schur complement can be
explicitly diagonalized

S = FAF

where F' € R™ " is

2 1T o
(F)i’j:“n—I-lSln(n—i—l)’ i,7€{l,...,n}

and A € R™"™ can be approzimated by

, LT
A~ Z, (Z)Z’Z = 2sin <m) .

It can be shown that the preconditioner
J:=FY'F

is spectrally equivalent to S, for details see Chan and Mathew, [1994].

In case of non-uniform grids mappings to/from the model region and mesh
are used. The quality of the preconditioner then strongly depends on the mesh
and the form of the domain.

The multiplication with F' can be done with O(nlogn) operations using FFT.

Neumann-Dirichlet Preconditioner

The matrix block Apr from (7.4)) can be split into

(Arr)ij; = a(0j, i) = a1(d;, ¢i) + az(@j, ¢;) = (A(pl)p)u + (A(p2>r)zg, i,J € Ir,

which gives rise to a splitting of the Schur complement S into
S = AR} — Ap AT A r + AP — AppAsiAsr = S 4 5@,

In addition, S occurs as the Schur complement of the 2 x 2 block matrix

; Aii Air
Al = <Ari Ag)r) (79)

when eliminating the block Ar;. Note that AW is a discretization of the varia-
tional problem with Neumann conditions on I'.
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The Neumann-Dirichlet preconditioner is based on the idea that in the case
of symmetry of the domain, K, and mesh with respect to I', we have

SW =50 — §=9W0 4 5% _ 950

In that case Byp = S MW s a spectrally equivalent preconditioner. Since .S
is not directly available we apply the CG method directly to the (right) pre-

conditioned system SS (M~" This amounts to be able to compute matrix-vector

products

—1 -1

SSW ™y = (SM 4 §@)gM ™y = 5 4 §RSM Ty,

y = S@SW "2 can be computed in two steps:

11

1. Compute v = SW "z,

2. Multiply y = S®v.
Realization of Step 1: For AW from (7.9) we have the LDL" decomposition:

A(l)_ I 0 A171 0 I Al_,%Al,F
" \Arad 1)\ o sW)\o T

from which the following representation of the inverse A can be obtained:

_ _ -1 _ _ -1
AOT App+ AleliFS(l) ArpAp) _AL%ALF?(D
s~ AF,lAf,% NN

with R : ROVIr & R the usual restriction (RWx); = (x); Vi € Ir, we obtain
M)A ROT (Y
ROADTROT Z (0 1) (* ) (8

=0 1) (g01)

involving the Neumann data x.
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Realization of step 2:

Yy = §2)y = (A?% — AF’QAQ_’%AQ’F)U

)

involves the solution of the linear system
AQ’QZ = AQIU

involving Dirichlet data on I'.

Comments:

e Left preconditioning can be done in the same way and leads to the Dirichlet-
Neumann preconditioner.

e Convergence is independent of i, but depends on how well the symmetry
condition is satisfied (domains, coefficients).

e One iteration of the CG method to the preconditioned system obviously
requires two subdomain solves that need to be executed sequentially.

Neumann-Neumann Preconditioner

Assuming again that SO = S@ . Byy 1= SO +£5@ " ig a good preconditioner
because

BywS = (SO + 57 (8M 4 5@y = 1+ SO @ 4 g7 g 4 1~ 4T,
The application of this preconditioner in the way described above requires
e the solution of two Neumann and two Dirichlet problems,

e but two problems can be solved in parallel at a time.

7.3 Many Subdomains

Let  be subdivided into p non-overlapping subdomains of each diameter O(H).
The interface in two space dimensions

p
r=|Jona=JE,;uv

i=1 ij

consists of edges E; ; = 0€2; N 0€2; and vertices v, € V where more than two
subdomains meet. The v, € V are denoted as “cross points”.
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The variational problem is discretized using conforming finite elements of low-
est order, where the mesh resolves the interface I'. Then the index set can be

partitioned as
I, =I;UlIp

into interior () and interface (Ir) degrees of freedoms. This induces a 2 x 2
block structure on the FE system in the form

Arr Are (zr) _ (b
Arr Arr) \ar br

AI,I = . , AF,I = (Ap,l c AF,p) , ALF = A%,I'
0 Ay

Eliminating the Ap ; block results in the Schur complement system
Sxr =g
with
P
S=Arp— Y AriA;lAir,
i=1

p
qg= br — Z AI‘,zAZ_Jlbz
=1

7.4 Hierarchical Basis for the Schur Complement System

As pointed out in chapter|[6], the hierarchical basis method is an additive subspace
correction method based on the direct sum

v=ao"ul ) |J {el}-

=1 iEIl\Il_l

Setting v; = ¢§ when ¢ € [y for l =0 ori € I;\ [;_1 for [ > 0 we observe
VI = VI = span ®* = span ¥".
The linear system )
A =b
with ) )
(A)i,j = Cl(lbj, wi), (b)z - lwi)
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7.4 HIERARCHICAL BASIS FOR THE SCHUR COMPLEMENT SYSTEM

has the condition number

K(A) =0 <H2 <1 + log %)2> ,

see [Smith et al. [1996].
Using the simple matrix

ﬁ-- {(A)’L,j i:jVi,jEIQ

0 otherwise

results in a preconditioned system with condition number

2
K(DTTA) =0 ((1 + log %) >
for d = 2.

Now we review how this method can be implemented with optimal complexity:.
Since span ¥" = span ®” there exist coefficients wi; such that

L
Y = Z Wi @y -
JEIL

Then

up = (@)=Y (@) | D wyof | =D (Z ww(i')z) o

i€ly, i€ly, JeIlr, jel, \iel
A\

e

~"

=:(x);
By introducing H € RI2*t with (H); ; := wj;,
x=Hzx

transforms the coefficients w.r.t. the hierarchical basis into the coefficients w.r.t.

the standard Lagrange basis. The evaluation of a linear functional is transformed
by

(B = 1) = U wiioy) = D wig Uo7) = (H'D);
Jelr jeIL( HT);, —(b),

Finally, the stiffness matrix in the hierarchical basis is related to the original
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matrix by
(A)ij = a(j, )
o> widl, Y wiigl)
rely, self

L L
= Wig a\@,, Pg) Wir
Swi Y alt oh) v
s€lp rele —4),,. ().,
=3 i (A,
SGIL(HT)LS

Therefore
Ai =b <= H'AHi = H"b.
One iteration of a linear iterative method using D as approximate inverse is then
= 3k 4+ D7Y(b — Ah).
Transforming from hierarchical to nodal basis reads

lek—|—1 — Hi,k—kl

— Hi* + HD (b — Az¥)
— Hi* + HD Y (H"b — HT AH ")
— 2" + HD7'HT (b — Azb).

The multiplication with H, H can be realized with O(nr) steps and is very
similar to a multigrid prolongation (H) and restriction (HT).

Application to the Schur complement system
Partition the index set I, into interior and interface unknowns:
I =1I; U Ir.

This implies a corresponding 2 x 2 block structure on A, A and H such that

z‘:lf,f z‘:lf,r _ Hé[ 0 Arr Arr\ (Hrr Hir
AF’[ AFI HI,F HIZ:I‘ AI‘,I AF,F 0 HI‘,F .
This is because in the transformation from hierarchical basis to nodal basis

(multiplication by H) the coefficients on the interface do not depend on interior
coefficients (as in multigrid prolongation). The 2 x 2 structure of D is then

H_ (D 0
0 Drr
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7.4 HIERARCHICAL BASIS FOR THE SCHUR COMPLEMENT SYSTEM

with DL 7 a diagonal matrix and ZA)F’F containing the coarse grid system.

Observation 7.3. Let A be a 2 x 2 block matrix w.r.t. the partitioning I =
I U I of the index set. By Schur(A) := App — AFJAE}—A[I we denote the
Schur complement w.r.t. App. Furthermore let

_ (Trr Trr
I'= ( 0 Tnp)

be an upper triangular block matrix. Then
Schur(TTAT) = TIZ:F Schur(A)Tr r.
Proof. Straightforward calculation. ]
With respect to the hierarchical basis we solve the preconditioned system
D 'HTAH: = D 'H"p,

which we can symmetrize to
A1

D *HT"AHD 2= D>H"b (7.10)

by setting © = ﬁ*%@ and multiplying by Dz from the left. Using the block
decomposition and lemma [7.3] we obtain

Schur(D2HTAHD 7) = ZA?F%HIT’F SChUI'(A)HFIDF’%.

Therefore ((7.10)) can be interpreted as a preconditioned Schur complement sys-
tem

a1 A1 A1
Dr,%HII,FSHF,FDF,%yF = Dr,%Hl?,rQ
.1
Undoing the symmetrizing transformation by ¢r = D{ -2r we obtain

A1 7fT A _ A-1pT
DF,FHF,FSHF,FIF = DF,FHF,FQ-

With the transformation zr = HrrZr we obtain an iteration for the Schur
complement system in the nodal basis:

k+1 _ _k —1 g7 k
ap' =y + Hpp Dy pHrp(g — Sar),
i.e. the preconditioner is Byp = HFIDE%HITF.

In order to estimate the condition number we can utilize the result for the
original hierarchical basis method.
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Lemma 7.4. Let A be a symmetric and positive definite matrix with 2 x 2
block structure as introduced above. Then

k(Schur(A)) < k(A).

Proof. Set S := Schur(A). Any z € RZ can be decomposed as

. <x1> _ <Ea:r) N (scf - Exr) N
xr Ir 0

where E := —AI_}A 71 is the discrete harmonic extension.
Then

(x, Az) =(2' + 2", A(2" + 2"))
(o, A"y + 2(z", Ax") + (2", Ax")

(%) ()
() ()
() (e

=(xr, Sar) + (xr — Ear, A (v — Ear)).

So

Irr Sxp
Amaz(S) = sup <’—>
w0 (ZT, TT)
>0 since Ar s s.p.d.

(xr, Sar) + (x; — Exr, Arf(x; — Ear))

< sup

zr#0, 27=0 <l‘p,$p> + <x170$1>

A

Ly (w4

x=(zr,2r)T, 2r#£0,2;=0 <$7I>

(x, Ax)

< sup

x#£0 <.%',.’]3>
- )\maz(A)
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and

=0

(xp, Sxr) + Z-TI — Exp, Arr(xr — Exr)y

> inf
r#0, 2y =Eay (xp,zr) + (T1,27)
——
>0
> inf (, Az)
x#£0 <I,l’>
= Amin(A). ]

Theorem 7.5. The Schur complement system preconditioned by the hierarchi-
cal basis method has condition number

A oA . H
o DEES) = R(DF L SHer) = O((1 +1og (1 )

Proof. Symmetrize and apply lemma 7.4}
w(DrpS) = #(Dp R HE pSHrrDr})
k(Schur(D 2 HTAHD 7)) (Obs. [7.3)

< ﬁ(ﬁ_%HTAH]A)_%) (Lemma
= k(D7'A)
LAY
= O((1 + log n )9) (Result of Yserentant)

7.5 Bramble-Pasciak-Schatz Method (BPS)

The Bramble-Pasciak-Schatz is also referred to as BPS method or “iterative
substructuring”.
In d = 2 we may partition the interface index set as

Ir=IgUly =Ip Ul U---U g Uly,

where [y, are the cross points and [g: are the interiors of the edges. Then the
Schur complement S can be block structured accordingly:

SElEl C. SElEnE SElv
g (SEE SEV) _
—\S S N
VE Svv Sprept ... Sprppre Sprpy
SVEl N SVE"E SVV
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We switch to a partial hierarchical basis. In Observation[7.3)we saw that the basis
transformation of the Schur complement is independent from the transformation
in the interior which is not considered at all here. As transformation use

where Hpy is the linear interpolation on an edge and I, Iyy are identities.
Partial hierarchical basis means that

‘T’:‘POULEJ U{Csz}

k=1 iEIEi

Then the transformed Schur complement is

As a preconditioner for S we may use

Spip 0

~1

SE”EE”E _

0 Syv
Now what is Sy 7

Assume that edges of the subdomains are straight lines, the subdomains have
either quadrilateral or triangular shape and that permeability is scalar and con-
stant in each subdomain. Then, the harmonic extension of piecewise linear
boundary data is a function in Vy = span @, or, in terms of coefficients

—A7lA _
Ryxy = < ]IFIF IF) HrrRyzy

where

Ry : R™ — R gtandard two-grid Schwarz restriction operator
Ry : RIF — RIV 18 (Rvﬂfp)i = (xF)Z Vie Iy C Ir.
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7.5 BRAMBLE-PASCIAK-SCHATZ METHOD (BPS)

With this, we obtain

Ay = Ry AR
=T 1 —AFATY 5 o1

A 7
-~

9

— Ry H{ SHrrRY
= RySR},
= SVV-

The BPS preconditioner can be written in the following form, due to the block
diagonal form of Drpr:

ng
Bpps = Hrr Ry Ay Ry Hip + Z RSyl R, (7.11)
i—1

where
REi . RIY — RIEi, (REixp)j = (.%T)j VJ € Ipi.

Note that Hpr transforms correction to standard basis, H{ transforms the
right-hand side into partial hierarchical basis and it holds Rp: Hip = Rp.

Interpretation as a subspace correction method

We assume that K(z) = k;I for z € Q; and denote by & : Rl* — V}, the finite
element isomorphism

Pr=> ():¢]

i€l

on the fine mesh. Now define the following subspaces of V}:

~ e
Vi={ueV,: 2 lu= ( App Alrﬂfr)}

Irr

Vi={ueV,: 2 u= (%I>}

Vj, is the subspace of discrete harmonic functions and the two subspaces provide
a direct decomposition 3 A
Vi, =V, & V. (7.12)

Lemma 7.6. We have
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1. a(u,v) = 2L Syr for u,v € V}, and

o (). ()
xr ’ yr

2. a(u,v) =0 for u € Vj, v € Vj,

3. a(u,v) = 2T Ay for u,v € Vj, and

Proof. Just insert:
1. a(u,v) = (A(~Amdmer) (=4 Ao )y = (g0 ), (51)) = (Sar, yr).

A )y = (%), () = 0.

(N}
)
—~
S
<
~—
I
—~
—~
of
N
0N
—~
\
N
~
~
S
~
!
<
=

u=u-+1u U b, U h
v=04+70 v ‘N/h,f(A) Ah
and

a(u,v) =1l(v) Yv eV,
= a(i+0,0+0)=1(0+0) YoeW,oeV,
— a(@t, ) + a(t, 0) = 1(0) + 1(0) Vo€ Vi, €V,
. a(u,v) =1(v) Vo€ /h (set v =0)

a(t,0) =1(v) Vo€V, (set 0 =0)

So, the FE problem in this basis is split into two completely independent sub-
problems.

Due to Lemma [7.6| (1.) the problem in Vj, corresponds algebraically to the
Schur complement, i.e. solving the Schur complement problem is equivalent to
solve the original FE problem in the space of discrete harmonic functions.

Due to (3.) the problem in V}, corresponds to the p independent subdomain
solves.
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7.5 BRAMBLE-PASCIAK-SCHATZ METHOD (BPS)

With

+ U

() ()
o ()

we see that the summation corresponds to the back substitution.

Now the BPS preconditioner. As noted above we have Vi C Vj, i.e. coarse
grid functions are discrete harmonic. From ([7.11)) we observe that the trans-
formation to partial hierarchic basis is irrelevant for the edges. Therefore, BPS
corresponds to an additive Schwarz method corresponding to the direct sum

|I
22

Vi=Vue PV, (7.13)

1=1

where

A1

Lr

Let us now turn to the convergence proof of the BPS method.
The upper bound is based on a coloring argument as usual:

Lemma 7.7. Assume there exists ¢ > 0, independent of ng, such that

Ig=|JCw, CiNC =0Vi#;

k=1
and
Vk=1,...,¢Vi,j € Ch,i# j: RppSRE 1 = 0.
Then
(BppsSz,x)s < (c+ 1){x,z)s.
Proof. From

BgpsS = HrrRE A, IRVHFFS+ZRT1 St RS

=1

we see that the ng 4+ 1 contributions are S-orthogonal projections. Also

1€Cy,

is S-orthogonal. ]
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Note that in this method the edges are colored and the number of colors for
the model problem is ¢ = 4 as in the Schwarz method.

e
p—
NN

N~
T
p—
NN

7

-~
N~

-
>

2 1 2

Figure 7.3: Coloring of the edges

The lower bound is based on proving the existence of a stable splitting. The
following Lemma plays a crucial role in the proof.

Lemma 7.8. Let u be a piecewise linear FE function on a mesh of size A and
a domain €2 of diameter H. Let U be the value of u at any point in €2. Then
there exists ¢ > 0 such that

H
= Ul < (14108 ) 1o

Proof. See Bramble [1966). O

Lemma 7.9. Assume the subdomains €); are triangles and that the bilinear

form reads
p

a(u,v) = Z ki(Vu, Vv)q,,

1=1

i.e. the diffusion coefficient k; > 0 is constant on each of the non-overlapping
subdomains €2;. Then there exists ¢ > 0 independent of h, H, p and the k; and
a decomposition Rt 3 zp = R‘T/xv + >0 R%ix g such that

ng
<R€l’v, Rgl'v>5 + Z<R§Zsz, RgszZ>S < C/<I'F, $r>5
=1

with ¢ = ¢ (1 + log %)2

Proof. This proof follows [Smith et al., (1996, Section 5.3.2].
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7.5 BRAMBLE-PASCIAK-SCHATZ METHOD (BPS)

1. First, we observe that the decomposition is unique due to (7.13)). Moreover,
due to Lemma [7.6| we have equivalently

ng

a(uy,uy) + Za(uEi, upi) < calur,ur) (7.14)
i=1

where uy, ugi are the functions in the space of discrete harmonic exten-
sions V}, that correspond to xy and xgi.

2. Let
Vii={ve HY(Q) : 3w eV}, : Vo € Q; : v(z) = w(z)}

be the restriction of Vj, to subdomain €; and u’ € f/hz the corresponding
restriction of u € Vj,.

Assume we could prove that for all ‘N/'hZ Sul = uﬁf + Z?ﬁl u%j we have

(Vui,, Vui oo + Z(Vu%j, Vug o, < ¢'(Vu', V' )og (7.15)

j=1

then we have (7.14]) with ¢ = max;—;__, c".

Note that the functions in ([7.15]) are not necessarily zero at the boundary:.
In particular, for a so-called “floating subdomain” 9€2; N 9N = () we have
for u' a constant function that Vu’ = 0 and the right-hand side is zero.
But in that case the decomposition yields u}, = u’, ug; = 0 and the left-

hand side is zero as well and (7.15)) is satisfied. This is called the “null
space property’.

3. Consider now u' € f/,f Since ; is triangular, we have ul, = FHu|q, the
Lagrange interpolation of u" on the coarse grid. With ug,,,, := sup,cq, u',

up = Mingeq, u' we estimate

2 max min 2
Lo S¢ H - d
N’ integration

estimates Vu(,

[uy

) )2
— max min

H\? .
<c (1 + log ﬁ) ' g,

<c(u' . —u

In the last step we used Lemma with U = o

min:’
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CHAPTER 7 NONOVERLAPPING DOMAIN DECOMPOSITION METHODS

4. We now need to consider u%,;, i.e. the discrete harmonic extension of data

on edge £7 in subdomain €2;. Let us consider a triangular subdomain with
edges numbered B!, E? and E3.

Figure 7.4: Triangular subdomain with numbered edges

up; is difficult to handle and we want to estimate a simpler function.

We observe: For all FE functions with the same values on 0¢2; the harmonic
extension has minimal energy.

Assume u' € V}i and w' € V}i (= Vj, restricted to €;) with w’ = u’ on
09;. Then w' = @' + W' with @' € ‘N/ff, w; € V,f (= Vi, restricted to ).
Since w’ = u’ on 9€; we have @' = u’. Therefore, due to Lemma [7.6| with
a(u,v) = (Vu, Vo) q,:

(Vw', Vu')o g, = (Vu' + V', Vu' + Vi')g o,
= (vuz7 vui)oﬂi + (vwz’ vwi)oﬂi
> (Vu', Vu')o.q,.

To estimate the effect of the harmonic extension we define for each edge
E7 5 =1,2,3 a finite element function on €); as follows:

Figure 7.5: Finite element function 6;(sy)
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7.5 BRAMBLE-PASCIAK-SCHATZ METHOD (BPS)

(1 sk € B (excluding end points)
0 sk € O\ E’ (includes 2}, 2?)
Qj(Sk) =9 il 777
Ei(sk)  si € 2 (see figure
(& (sk) sk € Q) (see figure

Figure 7.6: Finite element function &, (x)

6w
Gle) = 1C ¢ (z)
VE (r) < m
Since I(z) ~ r(x) we also have

. Let
Ipi = {] e Ir: Sj € 892}

and define &; : RIri — f/hz, the FE isomorphism mapping degrees of
freedom on 9€; to discrete harmonic functions on €2;. Then, given any
u' € V) we wish to analyze the decomposition

3
u' = ul, + Z @ZR]F 1 (T V)
i=1

where RJF : Rt — RIsi (szz:)k = (x) Yk € Ig; picks of the DOFs on
edge j.
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CHAPTER 7 NONOVERLAPPING DOMAIN DECOMPOSITION METHODS

Now due to {4 E we estimate w; = S "(0;(u’ — ul))), ie.
(PR P (' — )0, < |70 (0;(u" —uy))|1e,
because they have the same boundary data.
6. First split off the two small triangles next to the end points of edge EV:
2 Ue — Ui\ 2
max . .
\wj\l,t? <c ( ; mm) h (similar to [3])

H
c (1 + log %> lulf g, (Lemma

7. Now for the rest 77 := T(Q;)\{t}, 3}.

377
Z ‘wj‘%,t = Z ‘jh (Qj(ui - U%/)) ‘%t
teTi teTI
< CZ IV (6;(u' — ui))) Hg’t (0;(u" — uy) p. w. quadratic)
teTi
<ecy {116V —up)l,
teTi

+ (' = uy)VOl5. }
For the first term:
N6V = up)lls, < uf = up g, (6; <1, add t;,t9)

30
teTI
< QW\%Q + 2|uH%Q (triangle)

H\? .
(141067 ) 1o B)

and the second term:

S — i) V8, HOt—Z/u |V ()| d

teTi teTI Y
2 C
< E , max_ min / ) dz
r?(x)
teTi ¢

) 7 2 -2
=C (umax _ umin) / - dw
Q\{tht7}

H\? .
(141067 ) I,
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where we used again Lemma [7.§ and

/ r2de = / r2dx + / r—2dx,

Q\{t,17} I\ {1} Q)
(bl CQH
-2 o -2
/ r“dx = / / r—“rdrde
QP\{ih) 0 ah

= ¢! [log 7]}

H
< clog (E) :

H\? .
\w]\fQ <c (1 + log E) Wﬁﬂ

Together with 5] and [3] we obtain

8. Combining [6] and [7] yields

3 2
72 @RFlgz—l P Y2 < 141 ap
luy |1 g, + ;:1 | PR P (u' —uy)|ig, <c|1+log A u'[7 g

which is ((7.15]) from which the desired result follows. O

BPS is historically an interesting method and it can be analyzed relatively
easily. In practice, however, it is seldomly used now. The reasons are:

e [t needs to be modified to cover 3D applications.

e [t requires too many subdomain solves, e.g. 4 solves per subdomain for the
model problem with quadrilateral subdomains and the Dirichlet-Neumann
method as edge preconditioner.

7.6 Outlook: Balancing Neumann-Neumann and
FETI-DP

Notation for many subdomains is extended by:

Ir : DoFson I
Ir, ={jelr:s; € 0Q;NI'} C Ir DoFs on I' being part of 052
Iy:={iel,....p:00,Nn00p =0} Cc{1,...,p}
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CHAPTER 7 NONOVERLAPPING DOMAIN DECOMPOSITION METHODS

and restrictions

Rpi - RIP eri, (Rri$)j = (l’)] Vi € ]Fi

() j=i

Ros - R RO, (Ryur); = § ket 7 =1
0 j#i.

Ir, corresponds to tearing apart the subdomains.

C
@

Figure 7.7: Example for I,

Then we need diagonal scaling matrices per subdomain:
Vi=1,...,p: DO :R* 5 R guch that

i€EN(4)

where N(j) :={i € {1,...,p} : j € Ir,}. Examples for D) are:

, 1
(D(Z)).. — :
Y ING)
or k'V |
(D(Z)) jj — —Z'7 v € [_7 OO)
Y ZleN(j) k7 2

and k; is the diffusion coefficient.
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7.6 OUTLOOK: BALANCING NEUMANN-NEUMANN AND FETI-DP

Coarse grid correction (balancing step)

Define RT Rl — RIr ag

R =Y R{ DY
1€ly
and
R() = Z R()’iD( )
1€y

Then define the subspace correction on the Schur complement system via

S() = R()SRg

and
o= 2 + RIS Ry(g — Sxb)

which has the error propagation
el = (I — Py, Py= RIS, RyS.

Py and I — Fy are S-orthogonal projections.

Subdomain corrections
AT, A,

(i
As before AW = ( ) (I)
Ary App

) is the matrix arising from

a;(u,v) = /(KVU) -Vudaz
Q;

on subdomain €; partitioned w.r.t. I; (subdomain interior DoFs) and Ir,.

has the Schur complement

and

Note that S is singular for i € I and ker(S®) = span{1,}.

A)

Now a preconditioner for S is constructed by solving local problems with S

in the following way:

ot = ok 4 ZRF ()Rp (g — Saf)

(7.16)
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CHAPTER 7 NONOVERLAPPING DOMAIN DECOMPOSITION METHODS

with error propagation

p
= (1-3"P)*, B =RELDVSO DR S,
=1

Here application of S (i)_lm is understood as one solution of a system
SDy; = r;. (7.17)

In order to make v; well-defined we must ensure that r; € range(S®).
Then the Balancing Neumann-Neumann (BNN) method is given by

p
Epyy = (I — R)(I =) P)(I - Py
i=1
which, exploiting Egyy = I — Pgyn, results in

P
Ppyy =P+ (I — ) ZPz'(] — Ry).

1=1

Note: In practice, since (I — Py)? = (I — By) only one coarse grid solve for

iteration is needed.
How do we ensure that the local problems ([7.17)) are solvable?
The following observation is helpful.

Lemma 7.10. Given some matrix A € R™" with dim(ker(A)) > 0.
Then Az = b has a solution if and only if

(b,v) =0 Vo € ker(A).

Proof. Set U = R" and V' = range(A) C U. Then
={uelU: (u,v)=0 YveV}
={ueU: (u,Aw) =0 Yw e U}
—{ucU: (ATu,w) =0 YweU}
={uecU: Alu =0}
= ker(AT)

Then

Ar =b <= (Az,v) = (bjv) Yo eU

split
b=0by+byr, byeV, by.eVsh
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7.6 OUTLOOK: BALANCING NEUMANN-NEUMANN AND FETI-DP

(Azx,v) = (b,v) VoeU=VaoVt

(Az,v) = (by,v) YveV (1)
= {(Ax,v) = (by,v) YveVt (2)

Now (1) has a unique solution x € U /ker(4) due to the fundamental theorem of
homomorphisms.

In the second equation, since Az € V, the left-hand side is zero for all v € V*.
Therefore (2) is equivalent to

(by1,v) = (by +by1,v) = (bv) =0 YoVt
Since V+ = ker(AT) we have

(b,v) =0 Vo € ker(A").

O
Now we apply this result to the subdomain problems in BNN.
From ([7.16) we see these problems are:
Rt 5 2 = D(i)S(i)_lD(i)RFiSe
e DO'SODO . — Ry Se
— (SWz, v) = (Rp,Se,v) Vv e U; =R, (7.18)

since ker(S®) = span{1,}.

We have SODO ™' DO, = 0, .. ker(S®) = span{D@1;}. Since a balancing
step is applied before the subdomain solve we have e = (I — Fy)é. Accordingly
to Lemma |7.10] one needs to check the right-hand side of on ker(9):

(Rr,S(I — Py)é, DY) = (S(I — Ry)é, REDYL,;) =0
since (I — Py)é is S-orthogonal to

range(Py) = range(R}) = range(z leiD(i)Rai)

1€y

and Rf. DU1; = 7., Rf DY1;6;;.
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