
Parallel Solution of Large Sparse Linear Systems, SS 2015 Exercise sheet 5
Prof. Dr. Peter Bastian, Marian Piatkowski Deadline 29th June 2015
IWR, Universität Heidelberg

EXERCISE 12 JACOBI ITERATION AS ADDITIVE SCHWARZ

Let A be the stiffness matrix of a Finite Element discretization with the Finite Element space Vh and
basis ϕh

i . We will use the unique representation

uh “
Nh
ÿ

i“1

xiϕ
h
i , xi P R

of any function uh P Vh as a one dimensional, non-overlapping decomposition of the index sets, i.e.
Vh,i “ spantϕh

i u (cf. exercise 9).
In the lecture you have learned the additive Schwarz iteration

xpk`1q “ xpkq ` ω

p
ÿ

i“1

RT
i A

´1
i Ripb´Ax

pkqq with Ai “ RiAR
T
i . (1)

1. Specify how the damping factor ω, the number of subdomains p and the restriction matrices Ri

need to be chosen such that (1) describes the Jacobi iteration.

Assume that the following estimate holds:

}x}2 ď Ch´
d
2 }uh}0,Ω

where }¨}2 denotes the Euclidian norm on RNh and C is a constant independent on h.

In order to apply the abstract Schwarz theory to the Jacobi iteration, the following two assumpti-
ons need to be fulfilled:

Assumption 1 (Stable splitting).
There exists a constant C0 such that for all x P RNh there exists a splitting x “

řp
i“1R

T
i xi such that

p
ÿ

i“1

xRT
i xi, R

T
i xiyA ď C0xx, xyA.

Assumption 2 (Strengthened Cauchy-Schwarz inequality).
There exist constants 0 ď εi,j ď 1 for 1 ď i, j ď p such that for all xi and xj it holds

ˇ

ˇxRT
i xi, R

T
j xjyA

ˇ

ˇ ď εijxR
T
i xi, R

T
i xiy

1
2
AxR

T
j xj , R

T
j xjy

1
2
A.

2. Show that these assumptions are satisfied by the Jacobi iteration and specify the best possible
choice of the constants C0 and εij .

8 Points

EXERCISE 13 VARIANT OF STABLE SPLITTING

We consider the two level Schwarz method with coarse grid correction based on the hierarchical
construction where TH is a coarse mesh of p nonoverlapping subdomains which is uniformly refined
to give a fine mesh Th. Then overlapping subdomains Ω̂j are formed by adding elements t P Th from
neighboring subdomains. Thus Th,j “ tt P Th : t Ă Ω̂ju is the set of fine grid mesh elements making
up the subdomain j. For subdomains we assume a finite covering which is expressed as follows: There
exists a constant k0 independent of p such that

St :“ tj P t1, . . . , pu : t Ă Ω̂ju and k0 “ max
tPTh

#St.



Here St contains the indices of the subdomains containing element t and #St denotes the number
of elements in set St. The coarse grid and subdomains imply a decomposition of the finite element
space Vh defined on Th in to the coarse space VH defined on TH and the subdomain spaces Vh,j Ă Vh
given by Vh,j “ tv P Vh : supppvq Ă Ω̂ju.

Then we introduce the notation

atpu, vq “

ż

t
pK∇uq ¨∇v dx, aΩ̂j

pu, vq “
ÿ

tPTh,j

ż

t
pK∇u|tq ¨∇v|t dx, aΩpu, vq “ apu, vq,

and define the energy seminorms

|u|2a,ω “ aωpu, uq, @u P H1pωq,

where ω may be a single element t, a subdomain Ω̂j or the domain Ω itself. When it is clear that
u P H1

0 pωq then the seminorm becomes a norm and we write }.}a,ω instead and when ω “ Ω we may
omit the domain in the subscript.

After introducing the setting we now come to the formulation of the proposition which is Lemma
2.9 in [Spillane, Nataf, Dolean, Hauret, Pechstein, Scheichl: Abstract Robust Coarse Spaces for Systems of
PDEs via Generalized Eigenproblems in the Overlaps, NuMa-Report No. 2011-07, Johannes Kepler Univer-
sität, Linz].

Now the proposition to prove reads: Assume that for each v P Vh there exists a decomposition
into v “

řp
j“0 vj with v0 P VH , vj P Vh,j , 1 ď j ď p, such that with a constant C1 ą 0:

}vj}
2
a,Ω̂j

ď C1|v|
2
a,Ω̂j

for all 1 ď j ď p.

Then v “
řp

j“0 vj is a stable splitting with C0 “ 2` C1k0p2k0 ` 1q.
For the proof proceed in the following steps:

1. Using the assumption of the proposition and the finite covering show

p
ÿ

j“1

}vj}
2
a,Ω̂j

ď C1k0}v}
2
a.

Hint: use also }u}2a “ apu, uq “
ř

tPT atpu, uq.

2. Next show for the coarse grid contribution

}v0}
2
a ď 2}v}2a ` 2

›

›

›

›

›

p
ÿ

j“1

vj

›

›

›

›

›

2

a

.

3. In the next step (this is the most difficult one) show

›

›

›

›

›

p
ÿ

j“1

vj

›

›

›

›

›

2

a

ď k0

p
ÿ

j“1

}vj}
2
a,Ω̂j

.

Hint: start by using }u}2a “ apu, uq “
ř

tPT atpu, uq, use the finite covering assumption for each
t P Th and the fact that only a finite number of the vj are nonzero on t. Then employ the
inequality p

řm
i“1 ziq

2 ď m
řm

i“1 z
2
i holding any for m P N and numbers zi P R.

4. Now combine all intermediate steps to conclude.

12 Points

EXERCISE 14 ADDITIVE SCHWARZ WITH AND WITHOUT COARSE GRID CORRECTION

In this exercise we are going to compare the additive Schwarz method with and without the coarse
grid correction. As in the previous exercises, go to your dune-parsolve directory and type



$ git stash
$ git pull
$ git stash pop

to obtain the latest software version. The implementation of the two parallel solvers for this week’s
exercise are provided in the directory uebungen/uebung05. In this exercise the same Poisson pro-
blem is solved as in the previous exercise.

The file additive_schwarz_exc05.cc provides the same basic functionality as the additive
Schwarz implementation from the previous exercise sheet, but with the following differences:

• It is possible to chose a different length of the domain and a different number of cells in each di-
rection. With this we want to simulate anisotropies of the problem and examine the robustness
of the Schwarz methods under such anisotropies.

• The parameters can now be changed by a configuration file called additive_schwarz.ini.

The structure of the ini-file looks as follows:

[domain]
Lx = 1 # l e n g t h o f t h e domain in x´d i r e c t i o n
Ly = 1
Lz = 1

[grid]
dim = 3 # d imens i on o f t h e prob l em
nx = 32 # number o f c e l l s in x´d i r e c t i o n
ny = 32
nz = 32
overlap = 1 # o v e r l a p in a l l d i r e c t i o n s in d e c o m p o s i t i o n

The file two_level_additive_schwarz_exc05.cc provides a working implementation of
the additive Schwarz method with coarse grid correction. It contains the following parameters

• the length of the domain and the number of cells in each direction

• the desired overlap on the coarse grid

• the desired overlap on the fine grid

• the refinement level L

which can be changed by a second configuration file called two_level_additive_schwarz.ini.
The structure of the ini-file is very similar to the first one:

[domain]
Lx = 1 # l e n g t h o f t h e domain in x´d i r e c t i o n
Ly = 1
Lz = 1

[grid]
dim = 2 # d imens i on o f t h e prob l em
nx = 32 # number o f c e l l s on c o a r s e g r i d in x´d i r e c t i o n
ny = 32
nz = 4
overlapc = 1 # o v e r l a p on c o a r s e g r i d
overlapf = 2 # o v e r l a p on f i n e g r i d
L = 1 # r e f i n e m e n t s t o o b t a i n f i n e g r i d

The program uses Yasp-Grid and refines the coarse grid L-times uniformly. The decomposition of
the grid on the finest level L corresponds to the subdomains. The original grid is used as a coarse
grid. The coarse grid problem is solved on this grid.



Task 1 Have a careful look on the files two_level_additive_schwarz_exc05.cc
and two_level_schwarz.hh. What are the differences to the additive Schwarz method wi-
thout coarse grid correction? Describe what needs to be done in addition for the two level
version.

Task 2 Compare both additive Schwarz methods for different sizes of the overlap on the fine grid,
in two and three dimensions with the number of processors P t4, 16, 64u. Present the number of
iterations in form of a table.

Suggestion in two dimensions: Fix the ratio H{h, i.e. the number of uniform refinements and
vary H , i.e. the number of subdomains and the overlap, e.g. δ “ 1h, 2h, 4h.

Task 3 Compare both additive Schwarz methods for anisotropic domains in two dimensions. Sug-
gestion: Choose keep the number of cells the same in both directions (on coarse and fine grid),
fix the size of the domain in x-direction and vary the size of the domain in y direction. You may
also vary the size of the overlap. Put the number of iterations in a table.

10 Points


