Paralleles Höchstleistungsrechnen

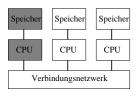
Parallele Rechnerarchitektur II

Stefan Lang

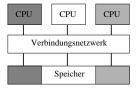
Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Universität Heidelberg INF 368, Raum 425 D-69120 Heidelberg

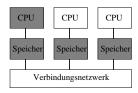
phone: 06221/54-8264
email: Stefan.Lang@iwr.uni-heidelberg.de

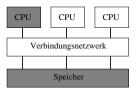
21. Oktober 2009



Parallele Rechnerarchitektur II


- Multiprozessor Architekturen
- Nachrichtenaustausch
- Netzwerktopologien
- Architekturbeispiele
- Routing
- TOP 500
- TOP2 Architekturen


Kommunikationsarchitekturen


(a) verteilte Speicherorganisation, lokaler Adressraum

(c) zentrale Speicherorganisation, lokaler Adressraum

(b) verteilte Speicherorganisation, globalerAdressraum

(d) zentrale Speicherorganisation, globalerAdressraum

architecture types distinguished by memory organization

Einteilung von MIMD-Architekturen

physische Speicheranordnung

- gemeinsamer Speicher
- verteiler Speicher

Adressraum

- alobal
- lokal

Programmiermodell

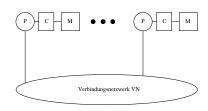
- gemeinsamer Adressraum
- Nachrichtenaustausch

Kommunikationsstruktur

- Speicherkopplung
- Nachrichtenkopplung

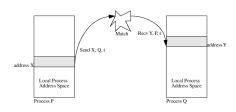
Synchronisation

- Semaphore
- Barriers

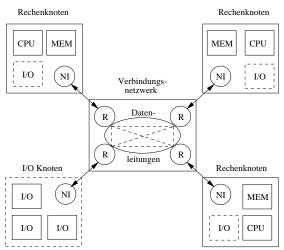

Latenzbehandlung

- Latenz verstecken
- Latenz minimieren

21. Oktober 2009


Distributed Memory: MP

- Multiprozessoren haben einen lokalen Adressraum: Jeder Prozessor kann nur auf seinen Speicher zugreifen.
- Interaktion mit anderen Prozessoren ausschließlich über das Senden von Nachrichten.
- Prozessoren, Speicher und Cache sind Standardkomponenten: Volle Ausnutzung des Preisvorteils durch hohe Stückzahlen.
- Verbindungsnetzwerk von Fast Ethernet bis Myrinet.
- Ansatz mit der höchsten Skalierbarkeit: IBM BlueGene > 100 K
 Prozessoren

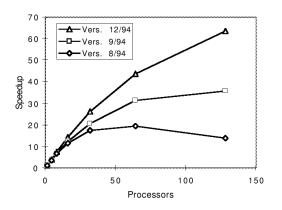

Distributed Memory: Message Passing

- Prozeße kommunizieren Daten zwischen verteilten Adreßräumen
- expliziter Nachrichenaustausch notwendig
- Sende-/Empfangsoperationen

Eine generische Parallelrechnerarchitektur

Generischer Aufbau eines skalierbaren Parallelrechners mit verteiltem Speicher

Skalierbarkeit: Parameter


Parameter, welche die Skalierbarkeit eines Systems bestimmen:

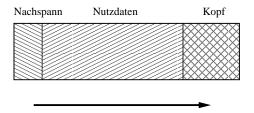
- Bandbreite [MB/s]
- Latenzzeit [μs]
- Kosten [\$]
- Physische Größe [m²,m³]

Eine skalierbare Architektur sollte harte Grenzen vermeiden!

Einfluß von Parallelen Architekturen?

from Culler, Singh, Gupta: Parallel Computer Architecture

Eine skalierbare Architekture ist Voraussetzung für skalierbares Rechnen



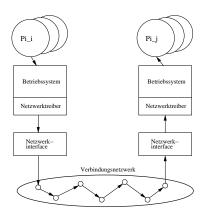
Nachrichtenaustausch

Speicherblock (variabler Länge) soll von einem Speicher zum anderen kopiert werden

Genauer: Vom Adressraum eines Prozesses in den eines anderen (auf einem anderen Prozessor)

Das Verbindungsnetzwerk ist paketorientiert. Jede Nachricht wird in Pakete fester Länge zerlegt (z. B. 32 Byte bis 4 KByte)

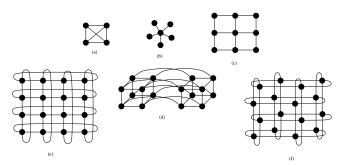
Kopf: Zielprozessor, Nachspann: Prüfsumme


Kommunikationsprotokoll: Bestätigung ob Paket (richtig) angekommen,

Flusskontrolle

Nachrichtenaustausch

Schichtenmodell (Hierarchie von Protokollen):



Modell der Übertragungszeit:

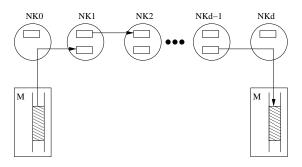
$$t_{mess}(n) = t_s + n * t_b.$$

 t_s : setup-Zeit (latency), t_b : Zeit pro Byte, $1/t_b$: Bandbreite, abh. von Protokoll

Netzwerktopologien I

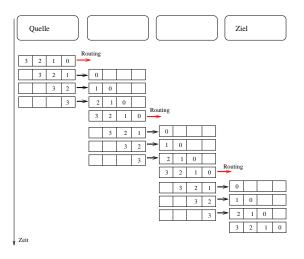
- (a) full connected, (b) star, (c) array (d) hypercube, (e) torus, (f) folded torus
- Hypercube: der Dimension d hat 2^d Prozessoren. Prozessor p ist mit q verbunden wenn sich deren Binärdarstellungen in genau einem Bit unterscheiden.
- Netzwerkknoten: Früher (vor 1990) war das der Prozessor selbst, heute sind es dedizierte Kommunikationsprozessoren

Netzwerktopologien II


Kennzahlen:

Netzwerktopologie	Knoten- grad K	Leitungs- anzahl L	Durch- messer D	Bisektions- bandbreite B	,
Volle Konnektivität	N – 1	N(N - 1)/2	1	$(N/2)^2$	Ja
Stern	<i>N</i> − 1	<i>N</i> − 1	2	[<i>N</i> /2]	nein
2D-Gitter	4	2 <i>N</i> − 2√ <i>N</i>	2(√ <i>N</i> − 1)	\sqrt{N}	nein
3D-Torus	6	3 <i>N</i>	$3\lfloor\sqrt{N}/2\rfloor$	2√ <i>N</i>	ja
Hypercube	log ₂ N	$nN \log_2 N$	n	N/2	ja
k-ärer n-cube ($N = k^n$)	3 <i>N</i>	<i>n</i> [<i>k</i> /2]	nΝ	2 <i>k</i> ⁿ⁻¹	ja

Store & Forward Routing

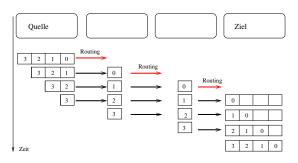

Store-and-forward routing: Nachricht der Länge n wird in Pakete der Länge N zerlegt. Pipelining auf Paketebene: Paket wird aber vollständig im NK gespeichert

Store & Forward Routing

Übertragung eines Paketes:

Store & Forward Routing

Laufzeit:

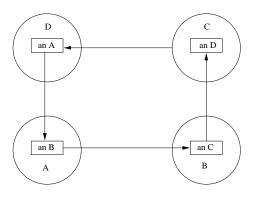

$$t_{SF}(n, N, d) = t_{s} + d(t_{h} + Nt_{b}) + \left(\frac{n}{N} - 1\right)(t_{h} + Nt_{b})$$
$$= t_{s} + t_{h}\left(d + \frac{n}{N} - 1\right) + t_{b}\left(n + N(d - 1)\right).$$

- t_s: Zeit, die auf Quell– und Zielrechner vergeht bis das Netzwerk mit der Nachrichenübertragung beauftragt wird, bzw. bis der empfangende Prozess benachrichtigt wird. Dies ist der Softwareanteil des Protokolls.
- t_h: Zeit die benötigt wird um das erste Byte einer Nachricht von einem Netzwerkknoten zum anderen zu übertragen (*engl.* node latency, hop–time).
- t_b: Zeit für die Übertragung eines Byte von Netzwerkknoten zu Netzwerkknoten.
- d: Hops bis zum Ziel.

Cut-Through Routing

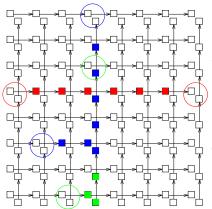
Cut-through routing oder wormhole routing: Pakete werden nicht zwischengespeichert, jedes Wort (sog. flit) wird sofort an nächsten Netzwerkknoten weitergeleitet Übertragung eines Paketes:

Laufzeit:

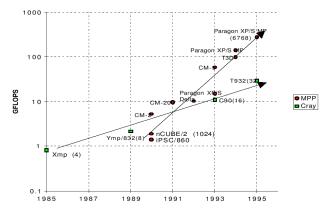

$$t_{CT}(n, N, d) = t_s + t_h d + t_h n$$

Zeit für kurze Nachricht (n = N): $t_{CT} = t_s + dt_h + Nt_b$. Wegen $dt_h \ll t_s$ (Hardware!) quasi entfernungsunabhängig

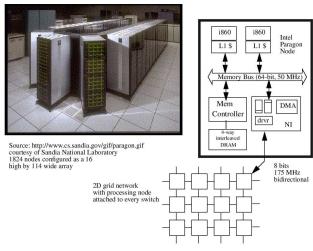
Deadlock


In paketvermittelnden Netzwerken besteht die Gefahr des store-and-forward deadlock:

Deadlock

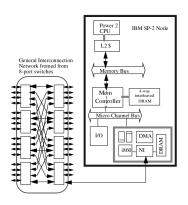

Zusammen mit cut-through routing:

Verklemmungsfreies "dimension routing". Beispiel 2D-Gitter: Zerlege Netzwerk in +x, -x, +y und -y Netzwerke mit jeweils eigenen Puffern. Nachricht läuft erst in Zeile, dann in Spalte.


Multi-Processor Performance

from Culler, Singh, Gupta: Parallel Computer Architecture

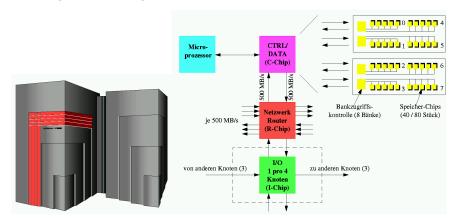
Message Passing Architectures I



Intel Paragon:

- erste Machine mit parallelem Unix
- Prozeßmigration, Gangscheduling

Message Passing Architectures II



IBM SP2:

- Rechenknoten sind RS 6000 workstations
- Switching Netzwerk

Message Passing Architectures III

Cray T3E:

- hohe Packungsdichte
- ein systemweiter Taktgeber
- virtual shared memory

Top500

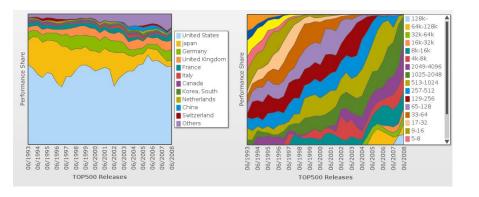
Top500 Benchmark:

- LINPACK Benchmark wird zur Evaluation der Systeme verwendet
- Benchmarkleistung reflektiert nicht die Gesamtleistung des Systems
- Benchmark zeigt Performanz bei der Lösung von dichtbesetzten linearen GLS
- Sehr reguläres Problem: erzielte Leistung ist sehr hoch (nahe peak performance)

Top 10 of Top500

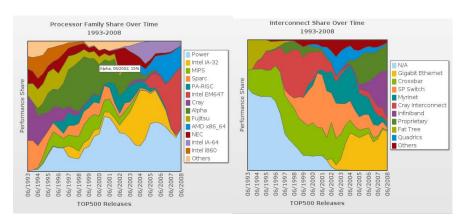
Stefan Lang (IWR)

	Site	Computer/Year Vendor	Cores	max	peak	Power
1	DOE/NNSA/LANL United States	Roadrunner - Blade Center QS22/LS21 Cluster, ANL PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz , Voltaire Infiniband / 2008 IBM		1026.00	1375.78	2345.50
2	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution / 2007 IBM	212992	478.20	596.38	2329.60
3	Argonne National Laboratory United States	Blue Gene/P Solution / 2007 IBM	163840	450.30	557.06	1260.00
4	Texas Advanced Computing Center/Univ. of Texas United States	Ranger - SunBlade x6420, Opteron Quad 2Ghz, Infiniband / 2008 Sun Microsystems	62976	326.00	503.81	2000.00
5	DOE/Oak Ridge National Laboratory United States	Jaguar - Cray XT4 QuadCore 2.1 GHz / 2008 Cray Inc.	30976	205.00	260.20	1580.71
3	Forschungszentrum Juelich (FZJ) Germany	JUGENE - Blue Gene/P Solution / 2007 IBM	65536	180.00	222.82	504.00
7	New Mexico Computing Applications Center (NMCAC) United States	Encanto - SGI Altix ICE 8200, Xeon quad core 3.0 GHz / 2007 SGI	14336	133.20	172.03	861.63
3	Computational Research Laboratories, TATA SONS India	EKA - Cluster Platform 3000 BL460c, Xeon 53xx 3GHz, Infiniband / 2008 Hewlett-Packard	14384	132.80	172.61	786.00
9	IDRIS Blue Gene/P Solution / 2008 France IBM		40960	112,50	139.26	315.00
10	Total Exploration Production France	SGI Affix ICE 8200EX, Xeon quad core 3.0 GHz / 2008 SGI	10240	106.10	122.88	442.00

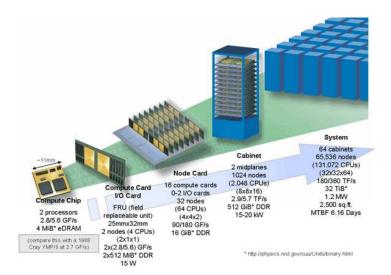


Top500 key facts

- alle Systeme haben mehrfache TeraFlop/s Leistung
- 1. Rechner (roadrunner) hat 1.026 PFlop/s in LINPACK benchmark
- 1. Rechner (roadrunner) ist der Energieeffizienteste der Liste
- Energieverbrauchsdurchschnitt von TOP10 ist 1.32 MW und 248 MFlops/W
- 500. Rechner hat 9.00 TFlop/s in LINPACK benchmark
- akkumulierte Leistung ist 11.7 PFlop/s (4.92 PFlop/s)
- TOP 100 Mindestleistung 12.97 TFlop/s (9.29 TFlop/s)
- 400 (80%) Systeme sind Cluster, Rest MPP
- Prozessortyp: Intel Harpertown 375, IBM Power 68, AMD Opteron 56
- Quad core vorwiegende Chip Architektur (56%)
- InfiniBand Technologie in 120 Systemen
- Skalarprozessor 95.8%, Vectorprozessor 4.2%

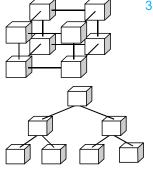


Top500 Country + Processor Count



Top500 Processor + Interconnect

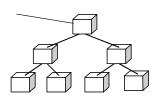
IBM Blue Gene/L Architecture


IBM Blue Gene/L Specification

367 teraFLOP/s (in symmetric mode) 184 teraFLOP/s (in communications
co-processor mode)Peak computational rate
16 TB (16 2 ⁴⁰ bytes)Aggregate memory
$400~\mathrm{TB}~(400~~10^{12}~\mathrm{bytes})Aggregate~global~\mathrm{disk}$
$40~\mathrm{GB/s}$ (40 $~10^9~\mathrm{bytes/second})\mathrm{Delivered~I/O}$ bandwidth to applications
1,024 x 1-Gb/s Ethernet (in $10^9\ \mathrm{bits/second})\mathrm{External}\ \mathrm{networking}$
65,536 (131,072)Number of nodes (processors)
256 MB (256 $$ 220 bytes)Memory per node
Dual PowerPC 440Microprocessor technology
2 MW (2 106 Watts)Power required for computer and cooling
>4,500,000 BTU/hrHeat generated
>5,000Cables in the machine
>12 milesAggregate cable length

IBM Blue Gene/L Networks

65536 Knoten verbunden über drei integrierte Netzwerke



3 Dimensional Torus

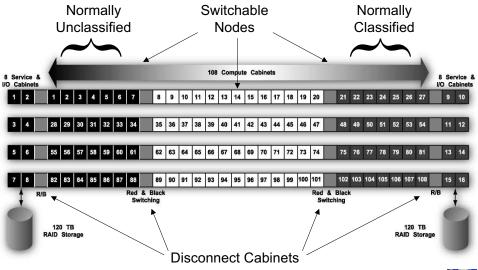
- Virtual cut-through hardware routing to maximize efficiency
- 2.8 Gb/s on all 12 node links (total of 4.2 GB/s per node)
- Communication backbone
- 134 TB/s total torus interconnect bandwidth

Global Tree

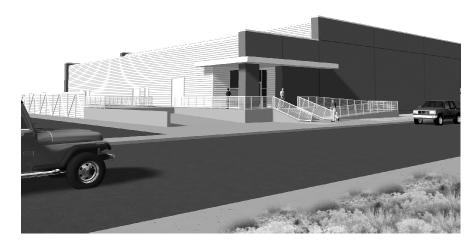
- One-to-all or all-all broadcast functionality
- Arithmetic operations implemented in tree
- ~1.4 GB/s of bandwidth from any node to all other nodes
- Latency of tree traversal less than 1usec

Ethernet

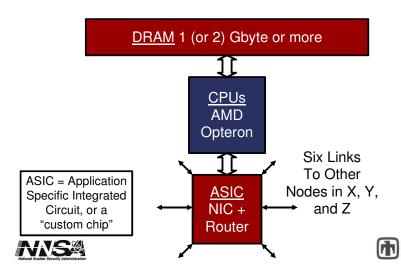
- Incorporated into every node ASIC
- Disk I/O
- Host control, booting and diagnostics

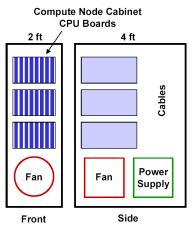


Cray RedStorm



Cray RedStorm Configuration




Cray RedStorm Building

Cray RedStorm Compute Node

Cray RedStorm Cabinet

- Compute Node Cabinet
 - 3 Card Cages per Cabinet
 - 8 Boards per Card Cage
 - 4 Processors per Board
 - 4 NIC/Router Chips per Board
 - N + 1 Power Supplies
 - Passive Backplane
 - Service and I/O Node Cabinet
 - 2 Card Cages per Cabinet
 - 8 Boards per Card Cage
 - 2 Processors per Board
 - 4 NIC/Router Chips per Board
 - Dual PCI-X for each processor
 - ◆ N + 1 Power Supplies
 - Passive Backplane

Blue Gene L vs Red Storm

BGL 360 TF version, Red Storm 100 TF version

	Blue Gene L	Red Storm	
Node speed	5.6 GF	5.6 GF	(1x)
Node memory	.255 GB	2 (1-8 GB)	(4x)
Network latency	7 us	2 us	(2/7x)
Network link bw	0.28 GB/s	6.0 GB/s	(22x)
BW Bytes/Flops	0.05	1.1	(22x)
Bi-Section B/F	0.0016	0.038	(24x)
#nodes/problem	40,000	10,000	(1/4x)

