Parallele Rechnerarchitektur II

Stefan Lang

Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Universität Heidelberg INF 368, Raum 532 D-69120 Heidelberg

phone: 06221/54-8264
email: Stefan.Lang@iwr.uni-heidelberg.de

WS 12/13

1/37

Parallele Rechnerarchitektur II

- Multiprozessor Architekturen
- Nachrichtenaustausch
- Netzwerktopologien
- Architekturbeispiele
- Routing
- TOP 500
- TOP2 Architekturen

Einteilung von MIMD-Architekturen

physische Speicheranordnung

- gemeinsamer Speicher
- verteiler Speicher

Adressraum

- global
- lokal

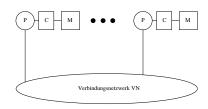
Programmiermodell

- gemeinsamer Adressraum
- Nachrichtenaustausch

Kommunikationsstruktur

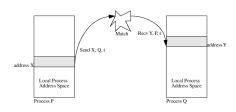
- Speicherkopplung
- Nachrichtenkopplung

Synchronisation

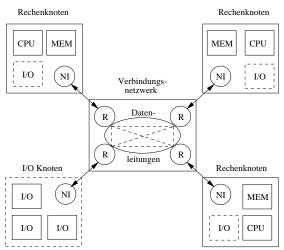

- Semaphore
- Barriers

Latenzbehandlung

- Latenz verstecken
- Latenz minimieren


Distributed Memory: MP

- Multiprozessoren haben einen lokalen Adressraum: Jeder Prozessor kann nur auf seinen Speicher zugreifen.
- Interaktion mit anderen Prozessoren ausschließlich über das Senden von Nachrichten.
- Prozessoren, Speicher und Cache sind Standardkomponenten: Volle Ausnutzung des Preisvorteils durch hohe Stückzahlen.
- Verbindungsnetzwerk von Fast Ethernet bis Infiniband.
- Ansatz mit der höchsten Skalierbarkeit: IBM BlueGene > 100 K
 Prozessoren

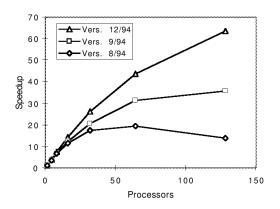

Distributed Memory: Message Passing

- Prozeße kommunizieren Daten zwischen verteilten Adreßräumen
- expliziter Nachrichenaustausch notwendig
- Sende-/Empfangsoperationen

Eine generische Parallelrechnerarchitektur

Generischer Aufbau eines skalierbaren Parallelrechners mit verteiltem Speicher

Skalierbarkeit: Parameter


Parameter, welche die Skalierbarkeit eines Systems bestimmen:

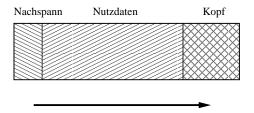
- Bandbreite [MB/s]
- Latenzzeit [μs]
- Kosten [\$]
- Physische Größe [m²,m³]
- Energieverbrauch [W]
- Fault tolerance / recovery abilities

Eine skalierbare Architektur sollte harte Grenzen vermeiden!

Einfluß von Parallelen Architekturen?

from Culler, Singh, Gupta: Parallel Computer Architecture

Eine skalierbare Architekture ist Voraussetzung für skalierbares Rechnen



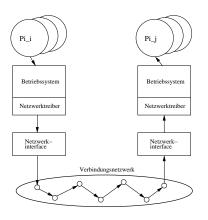
Nachrichtenaustausch

Speicherblock (variabler Länge) soll von einem Speicher zum anderen kopiert werden

Genauer: Vom Adressraum eines Prozesses in den eines anderen (auf einem anderen Prozessor)

Das Verbindungsnetzwerk ist paketorientiert. Jede Nachricht wird in Pakete fester Länge zerlegt (z. B. 32 Byte bis 4 KByte)

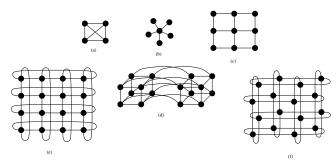
Kopf: Zielprozessor, Nachspann: Prüfsumme


Kommunikationsprotokoll: Bestätigung ob Paket (richtig) angekommen,

Flusskontrolle

Nachrichtenaustausch

Schichtenmodell (Hierarchie von Protokollen):



Modell der Übertragungszeit:

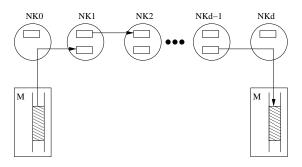
$$t_{mess}(n) = t_s + n * t_b.$$

 t_s : setup-Zeit (latency), t_b : Zeit pro Byte, $1/t_b$: Bandbreite, abh. von Protokoll

Netzwerktopologien I

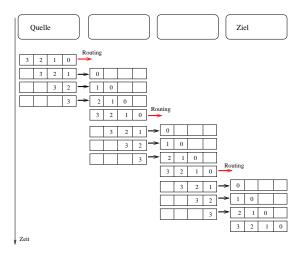
- (a) full connected, (b) star, (c) array (d) hypercube, (e) torus, (f) folded torus
- Hypercube: der Dimension d hat 2^d Prozessoren. Prozessor p ist mit q verbunden wenn sich deren Binärdarstellungen in genau einem Bit unterscheiden.
- Netzwerkknoten: Früher (vor 1990) war das der Prozessor selbst, heute sind es dedizierte Kommunikationsprozessoren

Netzwerktopologien II


Kennzahlen:

Netzwerktopologie	Knoten- grad K	Leitungs- anzahl L	Durch- messer D	Bisektions- bandbreite B	•
Volle Konnektivität	N – 1	N(N – 1)/2	1	$(N/2)^2$	Ja
Stern	<i>N</i> − 1	<i>N</i> − 1	2	[<i>N</i> /2]	nein
2D-Gitter	4	2 <i>N</i> − 2√ <i>N</i>	2(√ <i>N</i> − 1)	\sqrt{N}	nein
3D-Torus	6	3 <i>N</i>	$3\lfloor\sqrt{N}/2\rfloor$	2√ <i>N</i>	ja
Hypercube	log ₂ N	$nN \log_2 N$	n	N/2	ja
k-ärer n-cube ($N = k^n$)	3 <i>N</i>	<i>n</i> [<i>k</i> /2]	nΝ	$2k^{n-1}$	ja

Store & Forward Routing

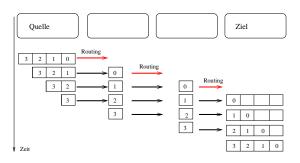

Store-and-forward routing: Nachricht der Länge n wird in Pakete der Länge N zerlegt. Pipelining auf Paketebene: Paket wird aber vollständig im NK gespeichert

Store & Forward Routing

Übertragung eines Paketes:

Store & Forward Routing

Laufzeit:


$$t_{SF}(n, N, d) = t_s + d(t_h + Nt_b) + \left(\frac{n}{N} - 1\right)(t_h + Nt_b)$$
$$= t_s + t_h\left(d + \frac{n}{N} - 1\right) + t_b\left(n + N(d - 1)\right).$$

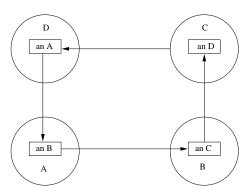
- t_s: Zeit, die auf Quell– und Zielrechner vergeht bis das Netzwerk mit der Nachrichenübertragung beauftragt wird, bzw. bis der empfangende Prozess benachrichtigt wird. Dies ist der Softwareanteil des Protokolls.
- t_h: Zeit die benötigt wird um das erste Byte einer Nachricht von einem Netzwerkknoten zum anderen zu übertragen (engl. node latency, hop-time).
- t_b: Zeit für die Übertragung eines Byte von Netzwerkknoten zu Netzwerkknoten.
- d: Hops bis zum Ziel.

Cut-Through Routing

Cut-through routing oder wormhole routing: Pakete werden nicht zwischengespeichert, jedes Wort (sog. flit) wird sofort an nächsten Netzwerkknoten weitergeleitet Übertragung eines Paketes:

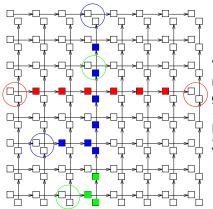
Laufzeit:

$$t_{CT}(n, N, d) = t_s + t_h d + t_h n$$

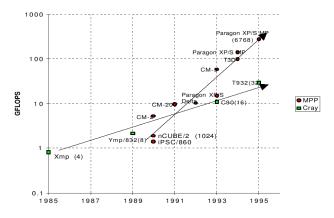

Zeit für kurze Nachricht (n = N): $t_{CT} = t_s + dt_h + Nt_b$. Wegen $dt_h \ll t_s$ (Hardware!) quasi entfernungsunabhängig

16 / 37

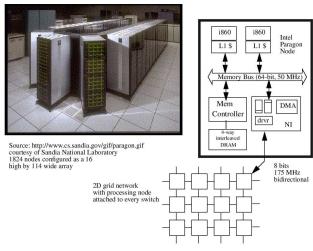
Deadlock


In paketvermittelnden Netzwerken besteht die Gefahr des store-and-forward deadlock:

Deadlock

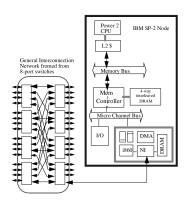

Zusammen mit cut-through routing:

Verklemmungsfreies "dimension routing". Beispiel 2D-Gitter: Zerlege Netzwerk in +x, -x, +y und -y Netzwerke mit jeweils eigenen Puffern. Nachricht läuft erst in Zeile, dann in Spalte.


Multi-Processor Performance

from Culler, Singh, Gupta: Parallel Computer Architecture

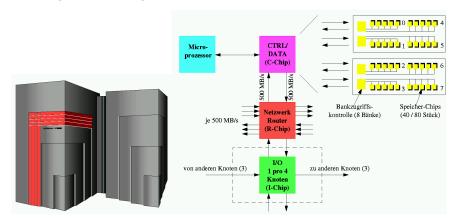
Message Passing Architectures I


Intel Paragon:

- erste Machine mit parallelem Unix
- Prozeßmigration, Gangscheduling

20 / 37

Message Passing Architectures II


IBM SP2:

- Rechenknoten sind RS 6000 workstations
- Switching Netzwerk

21/37

Message Passing Architectures III

Cray T3E:

- hohe Packungsdichte
- ein systemweiter Taktgeber
- virtual shared memory

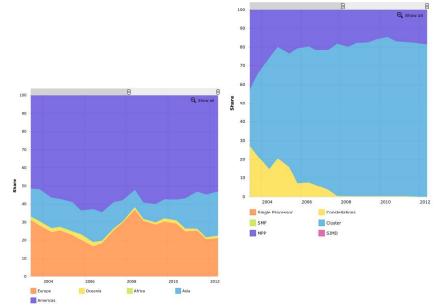
Top500

Top500 Benchmark:

- LINPACK Benchmark wird zur Evaluation der Systeme verwendet
- Benchmarkleistung reflektiert nicht die Gesamtleistung des Systems
- Benchmark zeigt Performanz bei der Lösung von dichtbesetzten linearen GLS
- Sehr reguläres Problem: erzielte Leistung ist sehr hoch (nahe peak performance)

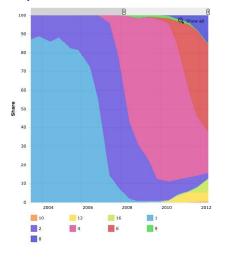
Top 10 of Top500

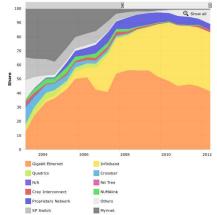
Rank	Site	Computer/Year Vendor	Cores	R _{max}	R _{peak}	Power
1	DOE/NNSA/LLNL United States	Sequola - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom / 2011 IBM	1572864	16324.75	20132.66	7890.0
2	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect / 2011 Fujitsu	705024	10510.00	11280.38	12659.9
3	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom / 2012 IBM	786432	8162.38	10066.33	3945.0
4	Leibniz Rechenzentrum Germany	SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband FDR / 2012 IBM	147456	2897.00	3185.05	3422.7
5	National Supercomputing Center in Tianjin China	Tianhe-1A - NUDT YH MPP, Xeon X5670 6C 2.93 GHz, NVIDIA 2050 / 2010 NUDT	186368	2566.00	4701.00	4040.0
6	DOE/SC/Oak Ridge National Laboratory United States	Jaguar - Cray XK6, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA 2090 / 2009 Cray Inc.	298592	1941.00	2627.61	5142.0
7	CINECA Italy	Fermi - BlueGene/Q, Power BQC 16C 1.60GHz, Custom / 2012 IBM	163840	1725.49	2097.15	821.9
8	Forschungszentrum Juelich (FZJ) Germany	JuqUEEN - BlueGene/Q, Power BQC 16C 1.60GHz, Custom / 2012 IBM	131072	1380.39	1677.72	657.5
9	CEA/TGCC-GENCI France	Curle thin nodes - Bullx B510, Xeon E5-2680 8C 2.700GHz, Infiniband QDR / 2012 Bull	77184	1359.00	1667.17	2251.0
10	National Supercomputing Centre in Shenzhen (NSCS) China	Nebulae - Dawning TC3600 Blade System, Xeon X5650 6 C 2.66GHz, Infiniband QDR, NVIDIA 2050 / 2010 Dawning	120640	1271.00	2984.30	2580.0

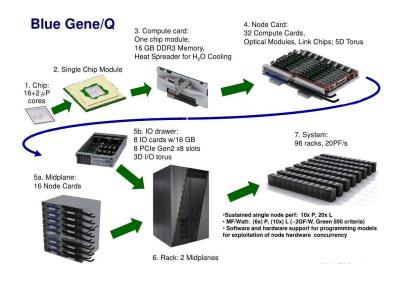


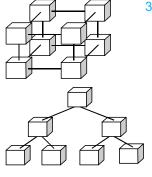
Top500 key facts

- Eintrittbarriere ist Leistung von 60.8 TeraFlop/s
- Mittlerer Energieverbrauch der Top10 ist 4.09 MW: 0.8-2 GFlops/W
- 40 Systeme verbrauchen mehr als 1 MW
- Akkumulierte Leistung ist 123.4 PFlops/s (74.2 PFlop/s)
- Top100 Mindestleistung ist 172.6 TFlop/s (115.9 TFlop/s)
- 20 Petaflops-Systeme
- TOP 100 Mindestleistung 12.97 TFlop/s (9.29 TFlop/s)
- Prozessortyp: Intel SandyBridge, AMD Opteron, IBM Power 68
- 74.8 % der Systeme verwenden Prozessoren mit 6 oder mehr Kernen
- Infiniband (208) and Gigabit Ethernet (207) Netzwerke dominieren
- Architektur: 80% Cluster, 20% MPP, 0% SIMD/SMP



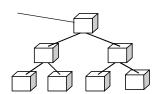

Top500 Continent + Archtecture Type


Top500 CoresPerSocket + Interconnect


IBM Blue Gene/Q Architecture

IBM Blue Gene/Q Networks

98304 Knoten verbunden über drei integrierte Netzwerke



3 Dimensional Torus

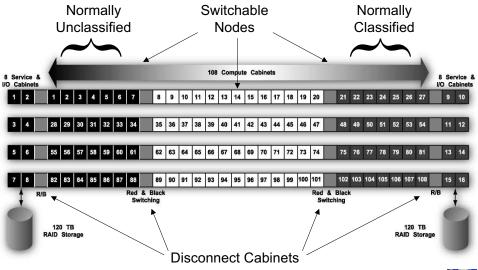
- Virtual cut-through hardware routing to maximize efficiency
- 2.8 Gb/s on all 12 node links (total of 4.2 GB/s per node)
- Communication backbone
- 134 TB/s total torus interconnect bandwidth

Global Tree

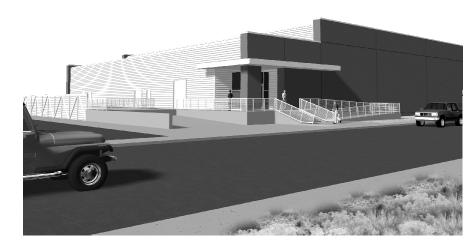
- One-to-all or all-all broadcast functionality
- Arithmetic operations implemented in tree
- ~1.4 GB/s of bandwidth from any node to all other nodes
- Latency of tree traversal less than 1usec

Ethernet

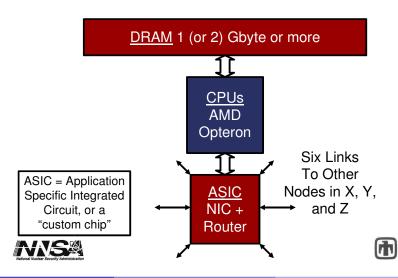
- Incorporated into every node ASIC
- Disk I/O
- Host control, booting and diagnostics

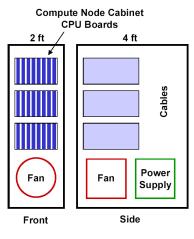

29 / 37

Cray RedStorm



Cray RedStorm Configuration



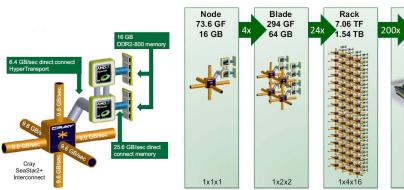

Cray RedStorm Building

Cray RedStorm Compute Node

Cray RedStorm Cabinet

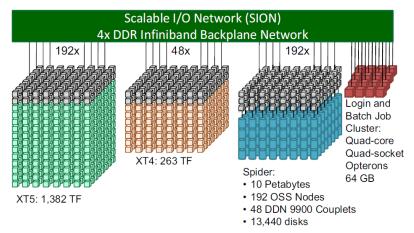
- Compute Node Cabinet
 - 3 Card Cages per Cabinet
 - 8 Boards per Card Cage
 - 4 Processors per Board
 - 4 NIC/Router Chips per Board
 - N + 1 Power Supplies
 - Passive Backplane
 - Service and I/O Node Cabinet
 - 2 Card Cages per Cabinet
 - 8 Boards per Card Cage
 - 2 Processors per Board
 - 4 NIC/Router Chips per Board
 - Dual PCI-X for each processor
 - ◆ N + 1 Power Supplies
 - Passive Backplane

34 / 37


Blue Gene L vs Red Storm


BGL 360 TF version, Red Storm 100 TF version

	Blue Gene L	Red Storm		
Node speed	5.6 GF	5.6 GF	(1x)	
Node memory	.255 GB	2 (1-8 GB)	(4x)	
Network latency	7 us	2 us	(2/7x)	
Network link bw	0.28 GB/s	6.0 GB/s	(22x)	
BW Bytes/Flops	0.05	1.1	(22x)	
Bi-Section B/F	0.0016	0.038	(24x)	
#nodes/problem	40,000	10,000	(1/4x)	


Cray XT-5 Jaguar Architecture

Cray XT-5 Jaguar IO-Configuration

