
Parallel Computer Architecture I

Stefan Lang

Interdisciplinary Center for Scientific Computing (IWR)
University of Heidelberg

INF 368, Room 532
D-69120 Heidelberg

phone: 06221/54-8264
email: Stefan.Lang@iwr.uni-heidelberg.de

WS 14/15

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 1 / 41



Parallel Computer Architecture I

Why parallel computing?

Von-Neumann architecture

Pipelining

Cache

RISC und CISC

Scalable computer architectures

UMA, NUMA

Protocols for cache coherency

Examples

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 2 / 41



Definition of Parallel Machine

What is a parallel machine?

A collection of processing elements that communicate and
cooperate to solve large problems fast

(Almasi und Gottlieb 1989)

What is a parallel architecture?

It extends the usual concepts of a computer architecture
with a communication architecture

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 3 / 41



Why Parallel Computing?

3 flavours of parallel computing

Solve a problem of fixed size fast
Goal: Minimize time-to-solution and speedup r&d cycle

Compute very large problems
Goal: exact result, complex systems

Simulate very large problems fast (respec. in adequate time)
Goal: Grand Challenges

Single processor performance is not sufficient
→ Parallel Architectures

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 4 / 41



What are Problems?

from Culler, Singh, Gupta: Parallel Computer Architecture

Classification of problems according to memory and computing demands
Categorisation in 3 types: memory limited, compute-time limited and
balanced problems

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 5 / 41



Von Neumann Architecture
Schematical structure with instruction unit, arithmetic unit and memory

Instruction

Memory M

Processor
(CPU)

Register

Arithmetic

InstructionsData

ALU

controls

Unit

Instruction Counter

IU

Instruction cycle:
fetch instruction
decode instruction
execute instruction
store results

Memory contains program code and data
Data transfer between processor and memory uses system bus
Several devices (processors, I/O-Units, Memory) on bus

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 6 / 41



Generations of Electronic Computers
Distinction of 5 + 2 computer generations

Generation Technology and Software and Representative
Architecture Applications Systems

First Vacuum tubes and relay Machine/assembly languages, ENIAC,
(1945-54) memories, CPU driven by single user, no subroutinge Princeton IAS,

PC and accumulator programmed I/O using CPU IBM 701
Second Discrete transistors and HLL used with compilers, IBM 7090,
(1955-64) core memories, subroutine libraries, batch CDC 1604,

floating-point arithmetic processing monitor Univac LARC
Third Integrated circuits, micro- Multiprogramming and time- IBM 360/370,
(1965-74) programming, pipelining sharing OS, multiuser CDC 6600,

cache, lookahead processors applications TI-ASC, PDP-8
Fourth LSI/VLSI, semiconductor Multiprocessor OS, languages, VAX 9000,
(1975-90) memory, multiprocessors, compilers, enviroments for Cray X-MP,

vector- and multicomputers parallel processing IBM 3090
Fifth ULSI/VHSIC processors, mems Massively parallel processing Fujitsu VPP-500,
(1991-1997) and switches, high-density grand challenge applications Cray/MPP,

packaging, scalable archs heterogeneous processing Intel Paragon

Sixth commodity-component cluster Standardized Parallel Environ- Intel ASCI-Red,
(1997-2003) high speed interconnects ments and Tools, Metacomputing IBM SP2,

SGI Origin
Seventh Multicore, Powersaving Software for Failure Tolerance, IBM Blue Gene,
(2004-present) Extending memory hierarchy Scalable I/O, Grid Computing, Cray XT3

nach Hwang (with additions)
Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 7 / 41



Single-core Processor Performance

Culler, Singh, Gupta: Parallel Computer Architecture

Performance development of vector- and superscalar processors

Earlier: many manufacturers, now: some market leaders

Speed advantage of vector processors shrinks

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 8 / 41



Single-core Processors: Two Examples

1971: Intel 4004, 2700 Trans.,
4 bit, 100 KHz

2007: AMD Quadcore, 465 mill. trans.,
64 bit, 2 GHz

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 9 / 41



Intel founder Andy Grove, Robert Noyce, Gordon Moore in 1978
Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 10 / 41



Integration Density and Clock Frequency

Culler, Singh, Gupta: Parallel Computer Architecture

Increase according to Moore’s law: Doubling within 18 months

Moore’s law is NOT related to performance but to integration density

Divergence of speed and capacity in storage technologies

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 11 / 41



Architecture of Single-core Processors

Techniques to increase single-core processor performance

deep pipelining

speculative branch prediction

out-of-order execution

clock frequency scaling

superscalar design (instruction level parallelism ILP)

speculative execution

thread-level parallelism

multi-core design

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 12 / 41



Pipelining I: Principle
Synchronous, overlapping processing of operations
Pipeline with 4 stages:

Cycle 1 Cycle 4Cycle 3

Filling
of pipeline

Cycle 2

Time

SOP 4

SOP 3

SOP 2

SOP 1 x_1 x_2 x_3 x_4 .... ....

.... ....

....x_1 x_2

x_1

x_3

x_2

x_1

x_4

x_3

x_2

x_4

x_3

Requirements:
An operation OP(x) has to be applied onto many operands x1, x2, . . . in sequence.

The operation can be divided into m > 1 sub-operations (or also stages), that can be executed in
(preferably) equal time.

An operand xi may be with restrictions only a result of former operations.

Gain with pipelining: The time demand for processing of N operands is

TP(N) = (m + N − 1)
TOP

m

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 13 / 41



Pipelining II: Speedup

The Speedup is therefore

S(N) =
TS(N)

TP(N)
=

N ∗ TOP

(m + N − 1)TOP
m

= m
N

m + N − 1

For N → ∞ the speedup converges towards m.

Utilization inside processors:

Instruction pipelining: fetch, decode, execute, write back

Arithmetic pipelining: adapt exponents, add mantissa, norm mantissa

Further applications:

Memory interleaving

Cut-through routing

Wavefront algorithms: LU-decomposition, Gauß–Seidel

. . .

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 14 / 41



Cache I: Memory Hierarchy
Speed gap:

Processors are fast: 2-3 GHz clock, ≥ 1 instruction/cycle due to pipelining
Memory is slow: MHz clock, 7 cycles to read 4 words

Way out: Hierarchy of always slower but larger memories

��
��
��
��
��

��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

larger

Processor

slower

Register

Level−2 Cache

Level−1 Cache

Main Memory

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 15 / 41



Cache II: Cache Organisation
Memory contains respectively least recently used data of the next higher
hierarchy level

Transfer is managed in blocks (Cache Lines), typical size: 16. . . 128 bytes

Cache organisation:

Direct mapping: main-memory block i can only be positioned in place
j = i mod M inside the cache (M: size of cache).
Advantage: easy identification, Disadvantage: aliasing.

Assoziative cache: main-memory block i can be positioned at each
location inside the cache.
Advantage: no aliasing, Disadvantage: costly identification (M
comparisons).

Combination: k-way assoziative cache.

Replacement: LRU (least recently used), random

Storage: write through, write back

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 16 / 41



Cache III: Locality Principle

Up to now we have assumed, that all memory words can be accessed equally
fast.

But with cache least recently fetched data can be accessed faster. This has
implications on the implementation of algorithms.

Example: Multiplication of two n × n-matrices C = AB

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

for (k = 0; k < n; k++)
C[i][j] += A[i][k ] ∗ B[k ][j];

Assumption: Cache-line is 32 bytes = 4 floating point numbers.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 17 / 41



Cache III: Locality Principle
After calculation of C[0][0] there are the following words stored inside the
cache:

Matrix BA[15][0] Matrix A

A[0][15]A[0][0]

A,B,C completely in cache: 2n3 arithmetic operations but only 3n2 memory
accesses
If fewer than 5n numbers fit into the cache: slow
Tiling: Process matrix in m × m blocks with size 3m2 ≤ M

for (i = 0; i < n; i+=m)
for (j = 0; j < n; j+=m)

for (k = 0; k < n; k+=m)
for (s = 0; s < m; s++)

for (t = 0; t < m; t++)
for (u = 0; u < m; u++)

C[i + s][j + t ] += A[i + s][k + u] ∗ B[k + u][j + t ];Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 18 / 41



RISC und CISC
RISC =„reduced instruction set computer“
CISC=„complex instruction set computer“

Development of processors with increasingly complex instruction sets (i.e. adressing
methods): Costly decoding, instructions with variable length

Begin of 1980s : „Back to the roots“. Simple instructions, aggressive usage of
pipelining.

The idea was not new: Seymor Cray has always build RISC machines (CDC 6600,
Cray 1).

Design principle of RISC machines:
All instructions are coded in hardware, no micro programming.

Aggressive usage of instruction pipelining (parallelism on instruction level ILP).

Preferably execute one instruction/cycle (or more for superscalar machines). This requires a preferably
simple and homogeneous instruction set.

Memory accesses only with special load/store–instructions, no complicated addressing methods.

Provide many general purpose register to minimize memory access. The saved chip area in the
instruction unit is used for registers or caches.

Follow the design principle „Make the frequently occuring case fast“.

Today predominantly RISC processors. Intel Pentium is CISC with RISC-core.
Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 19 / 41



Scalable Computer Architecture I

Classification of parallel machines according to FLYNN (1972)

Distinction with regard to data streams and control pathes

SISD – single instruction single data: The Von Neumann Computer

SIMD – single instruction multiple data: The machines, also called array
processor, possess an instruction set and multiple independent arithmetic
units each is connected to its own memory. The arithmetic units are
controlled clock synchronous by the instruction unit and execute the
same operation on different data.

MISD – multiple instruction single data: This category is empty.

MIMD – multiple instruction multiple data: This correlates to a collection
of self-contained computers, each equipped with its own instruction– and
arithmetic unit.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 20 / 41



Scalable Computer Architecture II

globalerAdressraum
(b) verteilte Speicherorganisation,

Verbindungsnetzwerk

globalerAdressraum

(d) zentrale Speicherorganisation,

lokaler Adressraum

(c) zentrale Speicherorganisation,

SpeicherSpeicher

(a) verteilte Speicherorganisation,

Verbindungsnetzwerk

lokaler Adressraum

Speicher

CPU

CPU

SpeicherSpeicherSpeicher

Speicher

CPU

CPU

CPU

VerbindungsnetzwerkVerbindungsnetzwerk

CPUCPU

CPU

CPU

Speicher

CPU

CPU

CPU

Distinction according to physical address space and physical memory
organisation

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 21 / 41



Scalable Computer Architecture III

Classification according to type of data exchange:

Shared Memory
◮ UMA – uniform memory access. Shared memory with uniform access time.
◮ NUMA – nonuniform memory access. Shared memory with non-uniform

access time, with cache-coherency we speak of ccNUMA.

Distributed Memory
◮ MP – multiprozessor. Private memory with message passing.

We will consider predominantly MIMD–machines. The SIMD approach exists
still in the data parallel programming model (OpenMP, CUDA/OpenCL).

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 22 / 41



Shared Memory: UMA

Memory M

P

C

P

C

P

C

Connection Network CN

Global adress space: Each memory word has its global unique number
and can be read and written by all processors.

Memory access occurs over a dynamic connection network that connects
processor and memory (therefrom later more).

Memory organisation: Low-order interleaving – consecutive adresses are
in consecutive modules. High-order interleaving – consecutive adresses
are in the same module.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 23 / 41



Shared Memory: UMA

Cache is necessary to

avoid slow down of the processor, and

to remove load from the connection network.

Cache coherency problem: A memory block can be stored in several
caches. What happens, if a processor writes?

Write access onto the same block in different caches have to be
serialized. Read accesses have to provide up-to-date data.

UMA enables the usage of up to few 10th of processors.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 24 / 41



Shared Memory Board: UMA

Quad-processor Pentium Pro Motherboard

Symmetric multi processing (SMP)

Access to each memory word in equal time

Implementation of cache coherency protocols (MESI)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 25 / 41



Shared Memory: NUMA

MCP MCP

Communication Network CN

Each component consists of processor, memory and cache.

Global address space: Each memory word has a global unique number
and can be read and written from all processors.

Access onto local memory is fast, access onto other memory is
(considerably) slower, but transparently possible.

Cache-coherency problem as in the UMA case

Extreme memory hierarchy: level-1-cache, level-2-cache, local memory,
remote memory

Scales up to about 1000 processors (SGI Origin)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 26 / 41



Shared Memory Board: NUMA

Quad-processor Opteron Motherboard

Non-uniform memory access (NUMA)

Intra/Interboard connection with Hypertransport HTX-technology

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 27 / 41



Dynamic Connection Networks

Line transmission: Truely electric connection from source to target.

P0

C0

M0

P1

C1

M1

P2

C2

M2

(a)

P0

P1

P2

M0 M1 M2

(b)

Bus

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111
perfect
shuffle

(c)

(a) Bus: connects only two units at a
time, thus is not scalable. Advantages:
cheap, cache coherency by snooping.
(b) Crossbar: Complete permutation
realisable, but: P2 switching units.
(c) Ω network: (P/2) ld P switching
units, no complete permutation possi-
ble, each stage is perfect shuffle, sim-
ple routing.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 28 / 41



Cache Coherency: An Example

I/O Devices

Memory

P1

Cache Cache Cache

P2 P3

1
2

34 5

u=?u=?

u:5

u:5

u:5

u=7

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 29 / 41



Cache Coherency: Protocol Types

Snooping based protocols directory based protocols

I/O DevicesMemory

P1

Cache

bus snoop

Cache

Pn

cache-memory
transaction

P1

Cache

Memory

Scalable Interconnection Network

Comm.
Assist

P1

Cache

Comm
Assist

Directory MemoryDirectory

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 30 / 41



Cache Coherency: Bus Snooping, MESI

Bus enables simple, efficient protocol for cache-coherency.

Example MESI: Each cache block has one of the following states:
Status Meaning
E Entry valid, memory up-to-date, no copies exist
S Entry valid, memory up-to-date, further copies exist
M Entry valid, memory invalid, no copies exist
I Entry is not valid

Extends write-back protocol by cache coherency.

Cache controller monitors the bus traffic (snoops) and performs the following
state transitions (from the point of view of a controller):

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 31 / 41



Cache Coherency: Bus Snooping, MESI

remote
read
miss

hit
read

read hit
remote read miss

I

M S

E

read
miss

invalidate
write hit

read miss

invalidate

write hit

hit
read/write

write
miss

invalidate
(write back)

remote read miss (write back)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 32 / 41



Directory-based Cache Coherency I

Data Sharers State: U, S, E

Memory Directory

P C

VN

States:

Cache–Block Main Memory Block
State Description State Description
I Block invalid U noone has

the block
S ≥ 1 copies exist, caches and memory are up-

to-date
S see left

E exactly one has written the block (equals M in
MESI)

E see left

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 33 / 41



Directory-based Cache Coherency II

State transitions (view of directory):

Z Action Succ. Description
U read miss S Block is tranmitted to cache, bit vector

stores who has the copy.
write miss E Block ist transmitted to the requesting cache,

bit vector contains who has the valid copy.
S read miss S requesting cache gets copy from the memory

and is registered in bit vector.
w miss/hit E Requester gets (if miss) a copy of the memory,

directory sends invalidate to all remaining owners of a copy.
E read miss S Owner of the block is informed, this sends block back

to home mode and changes to state S,
directory sends block to requesting cache.

write back U Owner wants to replace cache block,
data are written back, noone has the block.

write miss E Owner changes. Previous owner is informed and sends
block to home node, this sends the block to new owner.

Variant: COMA (Cache Only Memory Architecture)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 34 / 41



Directory-based Cache Coherency III: Example

Situation: Three processors Pi , Pj , und Pk have a cache line in state shared.
Home node of this memory block is Pj

Data Sharers State

Memory

CacheCache

Cache

VN

Pi

Pj

Pk

i, j, k

S S

S

S

Actions:
1 Processor Pi writes into the cache

line (write hit): Message to
directory, this informs caches of Pj

and Pk , succeeding state is E in Pi

2 Processor Pk reads from this
block (read miss): Directory
fetches block of Pi , directory
sends block to Pk

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 35 / 41



Directory-based Cache Coherency IV: problem cases

Problems of ccNUMA architectures:

false sharing: Two processors read and write different memory locations,
that are by accident in the same block (probability increases with block
size, Origin: 128 byte)

capacity miss: Data amount, that a processor handles (working set), does
not fit into the cache and the data are in the main memory of another
processor

Solution for the capacity problem: Cache Only Memory Architecture (COMA),
Software Distributed Shared Memory. Pages of the main memory (i.e. 4-16
KB) can be migrated automatically, combination with virtual memory
mechanism.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 36 / 41



Examples I: Intel Xeon MP

IA32 architecture (as P4)

Cache coherency protocol MESI

Hyperthreading technique (2 logical CPUs)

Integrated 3-level cache architecture (-1 MB L2, -8 MB L3)

Machine Check Architecture (MCA) for external und internal buses,
cache, translation look-aside buffer and instruction fetch unit

Intel NetBurst Microarchitecture

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 37 / 41



Examples II: AMD Opteron

Direct connect architecture

On-Chip DDR memory controller

HyperTransport technology

Cache coherency protocol MOESI
MESI states + 5th state
direct data transfer between CPU
caches via Hypertransport

64-bit Data/Address path, 48-bit
virtual address space

ECC for L1/L2 and DRAM with
hardware scrubbing

2 additional pipeline stages

many IPCs (instructions per cycle)
through advanced branch prediction

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 38 / 41



Examples III: Server Architecture AMD vs INTEL

www.amd.com/us-en/assets/content_type/DownloadableAssets/AMD_Opteron_Streams_041405_LA.pdf

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 39 / 41



Examples III: Server Architecture AMD vs INTEL

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 40 / 41



Examples IV: Board Level Protocol

Hypertransport: Low latency chip-to-chip interconnect up to 8 CPUs with I/O
aggregate bandwidth 8 GB/s (22.4), link width 16 bit (32), clock 1 GHz (1.4)

Priority request interleaving

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 41 / 41


	Parallel Computer Architecture I

