
Parallel Computer Architecture III

Stefan Lang

Interdisciplinary Center for Scientific Computing (IWR)
University of Heidelberg

INF 368, Room 532
D-69120 Heidelberg

phone: 06221/54-8264
email: Stefan.Lang@iwr.uni-heidelberg.de

WS 14/15

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 1 / 51



Parallel Computer Architecture III

Parallelism and Granularity

Graphic cards

I/O

Detailed study Hypertransport Protocol

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 2 / 51



Parallelism and Granularity

 Increase of

 Parallelism Increase of

 Communications 

 Requirements

 level four

 level three

 level two

 level one

 level five

 Instructions

 or statements

 or iterators

Non−recursive loops

or methods

 Procedures, functions

 Subprograms, modules

 or classes

 coarse grained

 middle grained

 fine grained

 jobs or Programs

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 3 / 51



Graphics Cards

GPU = Graphics Processing Unit

CUDA = Compute Unified Device Architecture
◮ Toolkit by NVIDIA for direct GPU Programming
◮ Programming of a GPU without graphical API
◮ GPGPU

compared to CPUs strongly increased computing performance and

storage bandwidth

GPUs are cheap and broadly established

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 4 / 51



Computing Performance: CPU vs. GPU

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 5 / 51



Graphics Cards: Hardware Specification

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 6 / 51



Chip Architecture: CPU vs. GPU

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 7 / 51



Graphics Cards: Hardware Design

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 8 / 51



Graphics Cards: Memory Design

8192 registers (32-bit), in total 32KB per

multiprocessor

16KB of fast shared memory per

multiprocessor

Large global memory (hundreds of MBs, e.g.

512MB-6GB)

Global memory uncached, latency time

400-600 clock cycles

Local memory is part of global memory

Read-only constant memory

Read-only texture memory

Registers and shared memory are shared

between blocks, that are executed on a sinlge

multiprocessor

Global memory, constant and texture memory

are accessible by the CPU

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 9 / 51



Graphics Card: Programming Modell

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 10 / 51



Performance Development concerning I/O

Micro processor performance doubles about each 18 months

Performance of the I/O architecture doubles in about 36 months

Server and workstations necessitate different high speed buses (PCI-X,
PCI-E, AGP, USB, SATA)

→ High complexity and needless diversity with limited performance

Requirements that need bandwidth increase: High-resolution 3D graphics

and video (CPU – graphics processor), interprocessor (CPU – CPU), high
performance networks e.g. Gigabit Ethernet and Infiniband (CPU – I/O)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 11 / 51



Bottlenecks in I/O Section

Possible bottlenecks are:

Front-Side Bus

Memory interface

Chip-to-Chip connection

I/O to other bus systems

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 12 / 51



Standardization of I/O Requirements

Development of Hypertransport (HT) I/O connection architecture (since 1997)

HyperTransport is an In-The-Box solution (intraconnect technology)

Complementary technique to network protocols like Infiniband and 10

Gb/ 100 Gb ethernet as Box-to-box solutions (interconnect technology)

HT is open industry standard, no product (no license fees)

Further development and standardization by consortium of industry

partners, like AMD, Nvidia, IBM, Apple

Former code name: Lightning Data Transfer (LDT)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 13 / 51



Functional Overview

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 14 / 51



Design Goals in the Design of HyperTransport

Improvement of system performance
◮ Higher I/O bandwidth
◮ Avoidance of bottlenecks by slower devices in critical information pathes
◮ lower count of system buses
◮ lower response time (low latency)
◮ reduced energy consumption

Simplification of system design
◮ Unified protocol for In-box connections
◮ Usage of small pin counts for high packaging density and to ensure low costs

Higher I/O flexibility
◮ Modular bridge architecture
◮ Different bandwidth in upstream/downstream direction

Compatibility with existing systems
◮ Supplement for standardized, external buses
◮ Minor implications on existing operating systems and drivers

Extendability for system network architectures (SNA busses)

High scalability in multiprocessor systems

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 15 / 51



Flexible I/O Architecture

Hypertransport architecture is organized in 5 layers

Structure is adopted from Open-Sytem-Interconnection (OSI) reference
model

Bit transmission layer: Physical and electrical properties of data,
control, clockwires

Data connection layer: Initialisation and configuration of connections,

periodic cyclic redundance (CRC), Dis-/Reconnection, packet generation
control flow and error management,

Protocol layer: Virtual channels and commands

Transaction layer: Read- and write actions by using the data connection

layer

Session layer: Power-, interrupt- and system management

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 16 / 51



Device classes and -configurations

3 device classes are defined regarding function and location inside the

HT-chain: Cave, Tunnel und Bridge

HT Bridge: Connector between primary side (CPU resp. memory) and
sekundary side (HT devices) of a chain

HT Tunnel: has two sides each with a receive and a send unit, e.g.
network card of bridge to further protocol

HT Cave: markes end of a chain and has only one communication side.

By connecting of minimal a HT bridge and a HT Cave an easy HT chain
can be estabilished.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 17 / 51



Bit Transmission Layer I
Establishing a HT connection

Two unidirectional point-to-point data pathes

Data path width: 2,4 8 and 16 bit depending on device requirements

Commands, adressing and data (CAD) use the same signal wires
→ smaller wire count, smaller packets, smaller energy consumption,

improved thermal properties

Packets contain CAD and are multiple of 4 Byte (32 bit)

Connections with lower than 32 bit use subsequent cycles to transmit

packets completely

High performance and scalability

High data rates because of low voltage differential signaling (LVDS, 1,2V
± 5%)

Scalable bandwidth by scaling of transmission frequency and link width

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 18 / 51



Bit Transmission Layer II
Hypertransport Low Voltage Differential Signaling

Differential signal transmission using two wires: voltage difference (± 0,3

V) represents logic state Logic change by repoling of wires (symmetric
signal transmission, double-ended)

HT signal transmission complies to extended IEEE LVDS standard (1,2 V

instead of 2,5 V)

60 cm maximal wire length at 800 Mbit/s

Transceiver are integrated into control chips, 100 Ω impedance avoids

reflections

Simple realizable using standard 4-layer PCBs (Printed Circuit Boards)

and ready for future

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 19 / 51



Bitübertragungsschicht III

Electric signals

For any 8 bit data width there is a clock wire from sender to receiver that is
used to scan the data on the 8 data wires at the receiver (source synchronous

clock)

→ minimal deviation from source clock

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 20 / 51



Bit Transmission Layer IV
Band width scaling

Data transmission by CAD at rising and falling side of clock signal (DDR)

→ connection cycle at 800 MHz corresponds to 1600 MHz data cycle

Wire count enables adaptation onto band width needs

→ 2 x 16 CAD bits + 800 GHz clock = 2 x 3,2 GByte bandwidth (103 Pins)

→ 2 x 2 CAD bits + 400 MHz clock = 2 x 200 MByte bandwidth (24 Pins)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 21 / 51



Connection Layer
Packet structure of HT compared to PCI-E

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 22 / 51



Protocol- and Transaction Layer

Protocol layer: Commands, virtual channels and flow control

Transaction layer: Performs actions e.g. read requests and responses

Command overview

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 23 / 51



Packet Structure

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 24 / 51



Packet Routing

Routing methods of HT-3.0 specification

Store-and-Forward routing: A packet is received completely and buffered,

the check sum (CRC) is calculated and compared to packet crc, the

packet header is decoded for receiver determination, then the packet
itself is processed or routed over the connection in receiver direction (1

hop)

Cut-Through Routing: Routing of packet as soon as the packet header is

received and decoded, the packet is routed without buffering

Problem: further-routed packets with CRC error Solution: Termination of
routing, receiver determines packet error and removes the packet

Speculative Routing: Speculation on correctness and receiver port, only

determine whether the packet specifies a correct command (1 byte)

Speculative Routing with aggr. implementation: Packet is routed

immediately with the first clock cycle and without any decoding

All methods can be implemented without changing the connection

specification!

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 25 / 51



Packet Routing
Packet with n bytes (incl. CRC), bandwidth w bit, pathlength d hops
twire transmission time, tproc time for CRC check + receiver determination

h byte to receive til forwarding
Latency of different routing methods

Store-and-Forward Routing

L = d · (n · 8/w + twire + tproc)

Cut-Through Routing

L = d · (max(1, 8 ∗ h/w) + twire + tproc) + 8/w · (n − max(h,w/8))

Speculative Routing

L = d · (max(1, 8/w) + twire + tproc) + 8/w · (n − max(1,w/8))

Speculative Routing with aggr. implementation

L = d · (1 + twire + tproc) + 8/w · (n − 1)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 26 / 51



Packet Routing
Latency for standard vs. aggressive speculative routing

8-bit connection width

4-bit connection widthStefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 27 / 51



Innovative Architectural Approaches

Two development directions

Design beyond the RISC architecture
◮ TRIPS
◮ WaveCore

Many-Core processors
Many-Core chip development (chronological)

◮ Intel Tera
◮ Intel Larrabee
◮ Tilera Tile64
◮ Adapteva Epiphany

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 28 / 51



TRIPS Processor
TRIPS = Tera-op, Reliable, Intelligently adaptive Processing System

Research processor (UTA, Texas)

Processor architecture enables easy addition of further cores

Project funding e.g. by IBM, Intel, DARPA, NSF

EDGE architecture (Explicit Data Graph Execution) based on blocks, that execute

elementary instructions independent of each other as well as data-controlled

(out-of-order) instruction execution.

Goal: Realisation of processors with multi Teraflops performance

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 29 / 51



Design of TRIPS Architecture I

RISC-based Features

Set of arithmetic-logic units (ALU), caches and registers

ACUs: Integer and floating-point operations

Separate caches for data and instructions

Several compilation buffers (TLB), that map virtual and physical

addresses

Register subdivision into general and special registers (Special Function
Register, SFC):

◮ General register for arbitrary data or addresses
◮ Special register for configuration and control of processor status

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 30 / 51



Design of TRIPS Architecture II
TRIPS specific concepts

Definition of a set of internal queues as part of the instruction set and the data

flow model

This enables to execute a series of instructions, instead of only a single

instructions

Rest of TRIPS consists of a system wide network, that connects the different

computing blocks

Access of processors, that want to access the shared memory over this network,

are controlled by the system controller
Instruction Queue (IQ) processes up to

128 instructions at a time

Read Queue (RQ) buffers 32 read

accesses onto general registers

Write-Queue (WQ) buffers up to 32 write

accesses onto general registers

Additional Load and Store Queue (LSQ)

buffers 32 memory accesses

Queues buffer only transient states, while

persistent states are kept in registers,

caches and the system memory
Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 31 / 51



Implementation of TRIPS Architecture I

TRIPS processors are build out of

individual tiles

Each tile fulfills an elementary

function

The individual tiles are organized in a

two-dimensional array

We distinguish the following types of

tiles:
◮ Execution tiles (ET) contain IQ and ALU.
◮ Register tiles (RT) contain general

register, RQ and WQ.
◮ Data tiles (DT) contain data cache, Data

TLB and LSQ.
◮ Instruction tiles (IT) contain instruction

cache and instruction TLB.
◮ Global control tile (GT) contain the

special registers and the logic of the
global processor control unit.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 32 / 51



Implementation of TRIPS Architecture II

Most processor resources are additionally

subdivided into banks and can therefore be

used by several tiles

TRIPS architecture thus shapes a grid

architecture at processor level

This enables high clock frequences, high

parallelism of instructions and good

extendability

Disadvantage: High latency in grid

architectures, if data of a tile are used by a tile

far-away

→ scalability problem is at least possible

Advantage of grid architectures: Queues and

register exist multiple times in several

instances of identical tiles

→ Processing of a large instruction count as well

as up to four threads in parallel

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 33 / 51



Prototype of TRIPS Processor I
TRIPS prototype with two TRIPS prozessor cores and L2 cache (Secondary
Memory System) with interfaces for peripherals to the mainboard is

assembled on a single prozessor die

Prototype assembling as ASIC in a 130 nm process with about 170 million

transistors

4-fold multithreading and execution of up to 16 instructions each cycle and core at

clock frequency of 500 MHz

→ Peak performance of 16 GOps

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 34 / 51



Prototype of TRIPS Processor II

Dataflow oriented execution

Individual instructions blocks (up to 128 instructions) are not processed in the
sequence of instructions as in traditional processors but in the sequence of

the data flow.
Dependencies of instructions onto each other are directly stored with the

instructions. An instruction is executed as soon as all its data needed is

available.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 35 / 51



Intel: Tera

Intel TeraFlop Processor (2007)

80-core (8x10 array), 100 Mio.

Trans, 65nm, 275mm2

◮ 2 FPUs with multiply/accumulate
operation (FMAC) in SP with a 9
stage pipeline

◮ 3 KB instruction memory (IMEM) =
256 96-bit instructions.

◮ 2 KB of data memory (DMEM) = 512
single precision numbers.

◮ 10 port (6-read, 4-write) 32 entry
register file

network-on-a-chip
◮ A five port router
◮ 16 Gigabytes/sec over each port

performance
◮ 4 FLOPS/cycle/core at 4,27 GHz and

1,07V = 1,37 TFLOPs peak
◮ 97 Watt, 80 degrees

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 36 / 51



Intel: Tera

Performance of 4 application kernels

Programming the Intel 80-core network-on-a-chip Terascale Processor, 2008

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 37 / 51



Intel Larrabee
Lessons learned from Programming the 80 . . . Our future work will highlight

three major advantages of message passing architectures for many core chips.

1 Managing messages and explicitly distributing data structures adds

considerable complexity to the software development process. This complexity,

however, is balanced by the greater ease of avoiding race conditions when all

sharing of data is through explicit messages rather than through a shared

address space.

2 While a programmer can block data to fit into a cache or use prefetching to

prepare a cache in advance of a computation, programmers have little or no

control over eviction of data from a cache. It is difficult to write software with

predictable performance when the state of the cache is so difficult to control. A

NoC chip without cache coherence between cores avoids this problem

altogether.

3 There are software engineering advantages to message passing architectures.

Well engineered software is often constructed as modules that can be composed

into the final application. Composition is based on isolation of concerns;

computing occurs inside a black- box module while sharing of information occurs

only through the interfaces to the modules. A shared address space makes it

difficult to assure that no unintended sharing is taking place. A message passing

architecture, however, naturally supports a discipline of isolation between

modules since sharing can only occur through the exchange of messages.

We believe it is important to fully explore these and other software engineeringStefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 38 / 51



Intel Larrabee

Intel Larrabee (2009)

Many-core processor on basis

of modified Pentium (P4)
cores with additional vector

unit

Usage as graphics processor

was planed

Ring-shaped communication

topology

Complete paradigm change

Disappointing first real

performance data

Offically dismissed

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 39 / 51



Tilera Tile64 I

Processor Architecture:

MIMD architecture

2D grid of 64 homogeneus, generalpurpose compute elements (tiles)

Tileras iMesh on-chip network

4 DDR2 controllers + IO controllers

Tiles:
◮ Processor
◮ L1 & L2 cache
◮ non-blocking switch

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 40 / 51



Tilera Tile64 II

Tile64 floorplan

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 41 / 51



Tilera Tile64 II

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 42 / 51



Tilera Tile64 III

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 43 / 51



Tilera Tile64 IV

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 44 / 51



Tilera Tile64 V

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 45 / 51



Tilera Tile64 VI

Latency in clock cycles

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 46 / 51



Adapteva Epiphany
2D mesh of general-purpose RISC cores

hooked up via a high bandwidth, low latency

on-chip network

current implementation has 16 cores with SP

FP operations, 4k-core layout with 64 W and

4 TFLOPs peak finished

1000 thousand core version is already in the

works with DP FP (2011)

similar to Tilera’s manycore chips with focus

on floating point power

processor doesn’t have a hardware cache,

each core has 32 KB of local memory

fast on-chip-network allows extremly

low-latency data requests

programming in ANSI-C with

message-passing paradigm following

MCAPI-Standard not MPI

currently as co-processor in consumer mobile

devices and embedded systems

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 47 / 51



Adapteva Epiphany

Comparison of mobile Processors

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 48 / 51



NoC: Hiting the memory wall again!

Memory access speed is not the only cause of the memory wall, which is also

tied to memory-to-logic interfacing issues. DRAMs currently are developed
using high-density NMOS process optimized to create high-quality

capacitors and low-leakage transistors. On the other hand, logic chips are

manufactured in high-speed CMOS processes optimized for transistor
performance and complex multi-level metalizations. The two processes are

not compatible, therefore highly optimized DRAM and logic cannot coexist on
the same die1 and they must be interfaced through off-chip interconnects.

This imposes tight constraints on the maximum DRAM pin count resulting

in a limited-bandwidth interface between DRAM and Logic chips. A number
of countermeasures have been adopted to overcome this problem, such as

multiplexing the address in two phase (RAS and CAS) and fast burst-transfer

modes to increase per-pin bandwidth. This has lead to an ever-increasing
power and signal integrity bottleneck in memory interfaces.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 49 / 51



NoC and RAM: Possible Solution Approach?

3D stacking of NoC-processor layers and memory layers

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 50 / 51



Literature

Literature for Parallel Computer Architecture

Hennessy J., Patterson D.: Computer Architecture – A Quantitative
Approach, 3. Ausgabe, Morgan Kaufmann, 2003

Hennessy J., Patterson D.: Computer Architecture – A Quantitative
Approach, 4. Ausgabe, Morgan Kaufmann, 2007

Culler D., Singh J., Gupta A.: Parallel Computer Architecture – A
Hardware/Software Approach, Morgan Kaufmann, 1999

HyperTransport Konsortium: www.hypertransport.org

Hwang K.: Advanced Computer Architecture: Parallelism, Scalability,
Programmability, McGraw-Hill, 1993

Grama A., Gupta A., Karypis G., Kumar V.: Introduction to Parallel
Computing, 2. Ausgabe, Benjamin/Cummings, 2003

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 51 / 51


