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Shared Memory Programming Models |

Communication by shared memory
@ Critical section
@ Mutual exclusion: Petersons algorithm
@ OpenMP
@ Barriers — Synchronisation of all processes
@ Semaphores
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Critical Section

What is a critical section?

We consider the following situation:

@ Application consists of P concurrent processes, these are thus executed
simultaneously

@ instructions executed by one process are subdivided into interconnected
groups
» critical sections
» uncritical sections

@ Critical section: Sequence of instructions, that perform a read or write
access on a shared variable.

@ Instructions of a critical section that may not be performed simultaneously
by two or more processes.

— it is said only a single process may reside within the critical section.
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Mutual Exclusion |
2 Types of synchronization can be distinguished
@ Conditional synchronisation
@ Mutual exclusion
Mutual exclusion consists of an entry protocol and an exit protocol:

Programm (Introduction of mutual exclusion)

parallel critical-section

{
process I [intp e {0,...,P—1}]
while (1)
{
entry protocol;
critical section;
exit protocol;
uncritical section;
}
}
}
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Mutual Exclusion Il

The following criteria have to be matched:

@ Mutual exclusion. At most one process executed the critical section at a
time.

@ Deadlock-freeness. If two or more processes try to enter the critical
section exactly one has to succeed within limited time.

@ No unneccessary delay. If a process wants to enter the critical section
while all others process their uncritical sections this may not be
prevented.

© Final entry. Tries a process to enter the critical section then this must be
allowed after limited waiting time (therefore is assumed, that each
process in the critical section also leaves it again).
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Petersons Algorithm: A Software Solution

We consider at first only two processes and develop the solution step by step

First approach: Wait until the other is not inside

int in1=0, in2=0; // 1=drin
My: Mo

while (in2) ; while (in7) ;
in1=1; in2=1;

crit. section; crit. section;

@ No machine instructions are necessary
@ Problem: Reading and writing is not atomic
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Petersons Algorithm: Second Variant

First set, then test

int in1=0, in2=0;

My: Mo

in1=1; in2=1;
while (in2) ; while (in7) ;
crit. section; crit. section;

Problem: deadlock possible
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Petersons Algorithm: Third Variant

Solve deadlock by choosing one process

Programm (Petersons Algorithm for two processes)
parallel Peterson-2

{
int in1=0, in2=0, last=1;
process [1; process [
{
while (1) { while (1) {
in1=1; in2=1;
last=1; last=2;
while (in2 A last==1) ; while (in1 A last==2) ;
crit. section; crit. section;
in1=0; in2=0;
uncrit. section; uncrit. section;
} }
} }
}
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Consistency Models

Previous examples are based on the principle of Sequential Consistency:
@ Read- and write operations are finished in the order of the program
@ This sequence is for all processors consistently visible

Here one expects that a = 1 is printed:

int a = 0,flag=0; /[ important!
process [14 process [,
a=1;
flag=1; while (flag==0) ;
print a;

Here one expects that only for one the if condition is true:

inta=0,b=0; // important!

process [14 process [,
a=1; b=1,;
if(b==0)... if(a==0)...
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Consistency Models
Why is there no sequential consistency?

@ Reordering of instructions: Optimizing compilers can reorder operations
for efficiency reasons. Then the first example does not work any more!

@ OQut-of-order execution: e. g. read accesses shall pass slow write
accesses (invalidate) (as long as it is not the same memory location). The

second example does not work any more!

Total store ordering: Read access may only pass write access
Weak consistency: All accesses may pass each other

In-order sequence can be enforced by special machine instructions,
e. g. fence: finish all memory accesses before a new one is started

This operations are inserted,
@ through annotation of variables (,synchronisation variable®)
@ in parallel instructions (e. g. FORALL in HPF)
@ by the programmer of synchronisation primitives (e. g. Semaphore)
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Peterson for P Processes

Idea: Each passes P — 1 stages, respectively the last arriving in a particular
stage has to wait

Variables:
@ in[i]: Stage € {1,..., P — 1} (!), that N; has reached
@ /ast[j]: Number of process that arrived as the latest at stage j

Programm (Petersons Algorithm for P processes)
parallel Peterson-P

{
const int P=8;
int in[P] = {O[P]};
int /ast[P] = {O[P]};
| e
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Peterson for P Processes

Programm (Petersons Algorithm for P Processes cont.)
parallel Peterson-P cont.

process I [intj € {0,...,P — 1}]

int j.k;
while (1)
{
for (j=1,j < P —1;j++) // Traverse stages
infi] = j; // 1 am in stage j
last[j] = i; // I am the last of stage j
for (k =0,k < P; k++) // test all others
if (k #1i)
while (in[k]>in[i] A last[j]==i) ;
critical section;
infi] = 0; // exit protocol
uncritical section;
}

@ O(P?) tests are necessary for entry
@ Strategy is fair, who arrives first enters as first
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Hardware Locks

Hardware operations to realize of mutual exclusion:

@ fest-and-set: Check whether a memory location has value 0, if yes write
the contents of a register into the memory location (as indivisible
operation).

@ fetch-and-increment. Get the content of a memory location in a register
and increment the content of the memor locaton by 1 (as indivisible
operation).

@ atomic-swap: Interchange the content of a register with the content of a
memory location in an indivisible operation.

In each of the machine instructions a read access followed by a write access
has to be executed without break in between!
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Hardware Locks
Goal: Machine instruction and cache coherency model ensure exclusive entry
into the critical section and generate low traffic on the interconnection network

Programm (Spin Lock)
parallel spin—lock

{
const int P =8; // process count
int lock=0; // variable for protection
process I [int p € {0,...,P — 1}]
{
while ( atomic — —swap(& lock)) ;
.. // critical section
lock = 0;
}
}
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Hardware Locks

What occurs inside the system?

. Prozesse
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Both waiting processes generate high bus traffic!
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Hardware Locks

Activity with MESI protocol: Variable lock is 0 and is in none of the caches
@ Process Ny executes the atomic — swap operation

— Read access induces a read miss, block is fetched from memory and obtains the
state E (we take MESI as a basis).

— Subsequent writing without further bus access, state change from E to M.

@ other process Iy executes atomic — swap operation

— Read miss induces Write-back of the block by Mg, the state of both copies is now

S, after the read access.

Write access of Iy invalidates copy of My and state in My is M.

atomic — swap has result 1 in 1y and critical section is not entered by IM;.

@ If both processes execute the atomic — swap operation simultaneously the bus
decides finally who wins.

@ Assume cache Cy of processor P, and also C; have each a copy of the cache
block in state S before execution of the atomic — swap operation

@ Both read initially the value 0 from the variable lock.

@ In the following write access both compete for the bus to place their own
Invalidate message.

@ The winner sets its copy into state M, the loser sets its into state I. The cache
logic of the loser finds the state | when it writes and has to arrange that the
atomic — swap instruction returns after all the value 1 (the atomic-swap
instruction is yet not finished at this time).
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Improved Lock

Idea: Do not perform any write access as long as the critical section is
occupied

Programm (Improved Spin Lock)
parallel improved-spin—lock

{
constint P =8; // process count
int /ock=0; // variable for protection
process Il [intpe {0,...P—1}] {
while (1)
if (lock==0)
if (read — and — set(& lock)==0)
break;
.. // critical section
lock = 0;
}
}
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Improved Lock

@ Problem: Strategy guarantees no fairness

@ Situation with three processes: Two always alternate, while the third can
enter

© Effort if P processes want to enter at a time: O(P?), instruction lock = 0
causes P bus transactions for cache block copies

@ Solution is a queuing lock: During exit from the critical section the
process chooses a successor
Ticketing algorithmus:
@ Fairness with hardware lock

@ Idea: Before lining up in the queue one draws a number. The one with the
smallest number is the next to be choosen.
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Ticketing Algorithm

Programm (Ticketing Algorithm for P processes)
parallel Ticket

{
const int P=8;
int number=0;
int next=0;
process I [intj € {0,..., P — 1}]
{
int mynumber ;
while (1)
{
[mynumber=number; number=number+1]
while (mynumber#next) ;
critical section;
next = next+1;
uncritical section;
}
}

v
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Ticketing Algorithm

@ Fairness is based on a small duration for drawing a number. Opportunity
of a collision is small.

© Works also for counter overflow, (MAXINT>P)

@ Incrementing of next is possible without synchronisation, since this
always can only be done by one
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Conditional Critical Section |

@ Producer-Consumer problem:
» m processes P; (producers) generate requests, that shall be finished by n
other processes C; (consumers).
» The processes communicate by a central waiting queue (WQ) with k
positions.
» Is the WQ full the producers have to wait, is the WQ empty the consumers
have to wait.
@ Problem: Waiting may not block the (exclusive) access onto the WQ!

@ Critical section (manipulation of the WQ) may only be entered if WQ is
not full (for producer), resp. not empty (for consumer).

@ Idea: Entry on a trial basis and busy-wait
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Conditional Critical Section [l

Programm (Producer—Consumer Problem with Active Waiting)
parallel producer-consumer-busy-wait

{

constintm=8,n=6;k=10;

int orders=0;

process P [int 0 </ < m] process C [int0 < j < n]

{ {

while (1) { while (1) {
produce request;
CSenter; CSenter;
while (orders==k){ while (orders==0){
CSexit; CSexit;
CSenter; CSenter;
} }
store request; read request;
orders=orders+1; orders=orders-1;
CSexit; CSexit;
process request;
} )i
} }
}
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Conditional Critical Section Ill

@ Permanent Entry and Exit of the critical section is inefficient if several are
waiting (trick of the improved lock doesn'’t help)

@ (Practical) solution: Random delay between CSenter/CSexit, exponential
back-off.
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OpenMP (Open Multi Processing) |: Approach

OpenMP is a parallel programming model on
the basis of the following assumptions:

@ A process uses multiple threads (lightweight processes)

@ All threads share the same status variables of the program

@ Each thread can own additional private variables

@ Threads can run on different processors/cores

@ Mechanisms for synchronization and for locking are provided
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OpenMP 1l

What is OpenMP?
@ API (application programming interface) to write multi-threaded
applications
» Compiler directives and library functions
» Standardized for C/C++ and Fortran
@ New standard under steady enhancement
@ Important model, since many important companies are participating
@ Parallelisation process using OpenMP
» Program is parallelized in steps
» Starting point is the serial version, which remains in many cases unchanged
» Parallelism is not coded directly, but is influenced by directives

CIG++ 1

0 CIG++ 2.0
Fortran 1.0 Fortran 1.1 Fortran 2.0

OpenMP 2.5 OpenMP 3.0

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
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OpenMP Example |

Hello World:
@ The original program is preserved
@ Execution when an environment variable is set:

void main (void)
{ (~) : export OMP NUM THREADS=4
#pragma omp parallel (~): ./hello-openmp
{ Hallo Welt
printf (,Hallo Welt\n") ; Hallo Welt
} Hallo Welt
Hallo Welt
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OpenMP Example |

Parallel Regions (blocks)
@ By usage of the compiler directive #pragma omp parallel the
following block is executed in parallel
@ Therefore a set of threads is started
» the thread count depends on the environment variable OMP_NUM_THREADS,
that can be changed by the program
» we speack of fork-join parallelism
@ After all threads are finished, these are either terminated or remain
waiting

Control flow in block 1 control flwo in block 2
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OpenMP Example I

@ Primary application area of OpenMP is the parallelisation of loops
@ #pragma omp parallel for
@ i-loop will be executed simultaneously by oMP_NUM_THREADS threads

Matrix-Matrix multiplication

#fpragma omp parallel for
for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
for (k = 0; k < K; k++)
C[i,Jj] = A[i,k] * B[k,]J];
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OpenMP Example IV

Runtime conditions
@ if multiple threads read and write the same variable, inconsistencies can
occur
@ this is comparable to the already known inconsistencies in
shared-memory architectures

Example: Scalar product

sum = 0.0;
#fpragma omp parallel for
for (i = 0; i < N; i++)
sum = sum + x[i] * y[i]:
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OpenMP Example V

Solution 1: Locking

@ To secure the addition of the summing-up one can declare these as
atomic or critical

@ Disadvantage: This is inefficient, because the threads can not work in
parallel anymore

sum = 0.0;

#pragma omp parallel for
for (i = 0; i < N; i++)
#pragma omp critical

{

sum = sum + x[i] * y[i];

}
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OpenMP Example VI

Solution 2: Private variables

@ In parallel regions specific variables can be declared as private
@ This can be written in a more compact form

sum = 0.0;
#pragma omp parallel private(local sum)
{

local sum = 0.0;
#pragma omp parallel for
for (i = 0; i < N; i++)
local_sum = local_sum + x[i] * y[i];

#pragma omp critical
{ sum = sum + local sum; }

}
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OpenMP Example VI

Solution 3: Reduction variables
@ Such cases are typical, one can declare critical variables as reduction
variables
@ Within threads these are generated as private and then connected with
an appropriate operation at the loop end (synchronized)

sum = 0.0;
#pragma omp parallel for reduction (+ : sum)
for (i = 0; i < N; i++)

sum = sum + x[i] * y[i];
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OpenMP Pragmas |

@ Directives (in C):

> #pragma omp clauses ...

» are ignored by non-OpenMP compilers
@ Parallel regions (blocks):

> #pragma omp parallel

» following block ({...}) is executed in parallel
@ Variable scoping

> #pragma omp private(...) shared(...) reduction(. . .) firstprivate(. . .)
lastprivate(. . .)

» defines which variables are used together and which are used as copies in
each thread

» shared is default value
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OpenMP Pragmas Il

@ Synchronization

» #pragma omp atomic, critical, ordered, barrier, flush
» essential for program correctness
@ Parallel loops (work-sharing)
» #pragma omp parallel for
following for is parallelized
type of distribution can be determined with schedule clause
e.g. schedule(dynamic,4): each thread is assigned four loop iterations
(1...4,5...8) and new ones, as soon as a thread is ready
» other variant are static, guided and runtime

v

v

\4
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OpenMP Run Time Environment |

Run time environment
@ Processor count
» omp_get_num_procs()
@ Thread count

» omp_set_num_thread(int)
» omp_get_num_thread()

same as envrionment variable OMP_NUM_THREADS
» omp_get_thread_num()
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OpenMP Run Time Environment Il

Run time environment

@ Dynamic mode: Is in different blocks a different number of threads
allowed?
» omp_set_dynamic(), omp_get_dynamic()
» equal to OMP_DYNAMIC (TRUE / FALSE)

@ Nesting: Are in parallel regions new thread teams allowed? (nested
threads)

» omp_set_nested(), omp_get_nested()
» equal to OMP_NESTED (TRUE / FALSE)
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OpenMP in Practise: Matrix-Vector Product

#pragma omp parallel for default(none) \
private(i,j,sum) shared(m,n,a,b,c)
for (i=0; i<m; i++) >
{
sum = 0.0; —
for (j=0; j<n; j++) = 5
sum += b[i] [j]1*c[]];
a[i] = sum; i
}
TID=0 TID=1
for (i=0,1,2,3,4) for (1=5.6,7;8,9)
i=0
sum = b[i=0][j]l*c[]] sum = b[i=5]1[j]l*c[]]
af[0] = sum a[5] = sum
sum = b[i=1][j]l*c[]] sum = b[i=6][j]l*c[]]
ol il a[6] = sum
e O1C ...
openmp.org
WS 14/15
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OpenMP in Practise: Scaling behaviour in MFLOPs

2500
-1 Thread
-2 Threads
=i 4 Threads
2000 / \
1500

Matrix too
small *

1 10 100 1000 10000 100000 1000000
Memory Footprint (KByte)

Performance (MF op/s)

*) With the IF-clause in OpenMP this performance degradation can be avoided

openmp.org
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OpenMP in Practise: IF-Clause

if (scalar expression)

v Only execute in parallel if expression evaluates to true
v Otherwise, execute serially

#pragma omp parallel if (n > some_threshold) \
shared(n,x,y) private (i)
{

#pragma omp for
for (i=0; i<n; i++)
x[i] += y[i];
} /*-- End of parallel region —--%*/

openmp.org
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OpenMP in Practise: More Elaborate Example

#pragma omp parallel if (n>limit) default(none) \

shared(n,a,b,c,x,y,z) private(f,i,scale) -
{
£f=1.0;
#ipragma omp for nowait -
arallel loop
for (i=0; i<n; i++) paraliel 1o
E{4] = E[3] & FHIG (work is distributed) 7
-+ i
#pragma omp for nowait B = _‘l‘
®
for (i=0; i<n; i++) P:’auje' |°:P g Q
i = i il : work is distribute o
a[i] = b[i] + c[i]; ( ) S
-+
#pragma omp barrier -¢— synchronization
scale = sum(a,0,n) + sum(z,0,n) + £;
} /*-- End of parallel region --*/ ——
openmp.org
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OpenMP in Practise: OpenMP Summary

Directives Runtime Environment
environment variables
¢ Parallel region + Number of threads + Number of threads
+ Worksharing ¢ Thread ID + Scheduling type
constructs i
* Eé’f:ﬂ;’nﬁ:ﬂread + Dynamic thread
+ Tasking . adjustment
- + Nesled parallelism ’
¢ Synchronization + Schedule + Nested parallelism
¢ Dala-sharing + Active levels + Stacksize
Tl
atributes * Thread limit + Idle threads
+ Nesting level + Active levels
* A h
S e  Thread limit
¢ Team size
+ Wallclock timer
+ Locking
openmp.org
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OpenMP in Practise: Locking Mechanism

Program Locks /—| Initialize lock variable |

Call omp init lock (LCK)

Check availability of lock
'Somp parallel shared(LCK) / (also sets the lock)

Do While ( omp_test_lock (LCK) .EQV. .FALSE. )
Call Do Something Else()

End Do
Call Do Work() /—{ Release lock again |
Call omp unset lock (LCK)
'5omp end parallel /—{ Remove lock association |

Call omp destroy lock (LCK)

Stop
End

openmp.org
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OpenMP in Practise: Scheduling |

schedule ( static | dynamic | guided | auto [, chunk])
schedule (runtime)

‘ static [, chunk] ‘

v Distribute iterations in blocks of size "chunk" over the
threads in a round-robin fashion

v In absence of "chunk”, each thread executes approx. N/P
chunks for a loop of length N and P threads

e Details are implementation def ned

v Under certain conditions, the assignment of iterations to
threads is the same across multiple loops in the same
parallel region

openmp.org
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OpenMP in Practise: Scheduling Il

‘ dynamic [, chunk] ‘

v Fixed portions of work; size is controlled by the value of
chunk

v When a thread T nishes, it starts on the next portion of
work

guided [, chunk]

v Same dynamic behavior as "dynamic", but size of the
portion of work decreases exponentially

v The compiler (or runtime system) decides what is best
to use; choice could be implementation dependent

v lteration scheduling scheme is set at runtime through
environment variable OMP_SCHEDULE

openmp.org
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OpenMP in Practise: Scheduling Il

. LU 500 iterations using 4 threads
2 quided, 5 GG

1 TN g
o (T

o 50 100 150 200 250 300 350 400 450 500

lteration Number

openmp.org
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