
Shared Memory Programming Models II

Stefan Lang

Interdisciplinary Center for Scientific Computing (IWR)
University of Heidelberg

INF 368, Room 532
D-69120 Heidelberg

phone: 06221/54-8264
email: Stefan.Lang@iwr.uni-heidelberg.de

WS 14/15

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 1 / 30

Parallel Programming Models II

Communication using shared memory

Barrier – synchronization of all processes

Semaphores

Philosphers problem

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 2 / 30

Global Synchronization

Barrier : All processors shall wait on each other until all have arrived

Barriers are often repeatedly executed repeatedly:

while (1) {

a calculation;

Barrier ;

}

Since the calculation is load balanced, all arrive simultanously at the

barrier

First idea: Count all arriving processes

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 3 / 30

Global Synchronization
Program (First proposal of a barrier)

parallel barrier-1

{

const int P=8; int count=0; int release=0;

process Π [int p ∈ {0, ...,P − 1}]
{

while (1)

{

calculation;

CSenter ; // entry

if (count==0) release=0; // reset

count=count+1; // increment counter

CSexit; // exit

if (count==P) {

count=0; // last resets counter

release=1; // and frees

}

else while (release==0) ; // waiting

}

}

} Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 4 / 30

Barrier with Sense Reversal
Wait reversible for release==1 and release==0

Program (Barrier with direction reversal)
parallel sense-reversing-barrier
{

const int P=8; int count=0; int release=0;

process Π [int p ∈ {0, ..., P − 1}]
{

int local_sense = release;
while (1)
{

calculation;
local_sense = 1-local_sense; // change direction
CSenter ; // entry
count=count+1; // increment counter
CSexit; // exit
if (count==P) {

count=0; // last resets
release=local_sense; // and frees

} else
while (release 6=local_sense) ;

}
}

}

Complexity is O(P2) since all P processes have to pass through a critical

section at a time. Is there a better approach?
Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 5 / 30

Hierarchical Barrier: Variant 1

In the barrier with counter all P processes have to pass through a critical

section. This necessitates O(P2) memory accesses. We now develop a

solution with O(P log P) accesses.

We start with two processes and consider the following program segment:

int arrived=0, continue=0;

Π0: Π1:

arrived=1;

while (¬arrived) ;

arrived=0;

continue=1;

while (¬continue) ;

continue=0;

We use two synchronization variables, so called flags

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 6 / 30

Hierarchical Barrier: Variant 1

When using flags the following rules have to be met:

1 The process, that waits for a flag, also resets it.
2 A flag may first be newly set, if it has been savely reset.

Both rules are respected by our solution.

The solution assumes sequential consistency of the memory!

We now apply this idea in a hierarchical way:

100 101 110000 001 010 011 111

000 010

000

100 110

100

000

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 7 / 30

Hierarchical Barrier: Variant 1
Program (Barrier with tree)

parallel tree-barrier

{

const int d = 4, P = 2d ; int arrived[P]={0[P]}, continue[P]={0[P]};

process Π [int p ∈ {0, ...,P − 1}]
{

int i , r , m, k;

while (1) {

calculation;

for (i = 0; i < d; i++) { // upward

r = p &

[

∼

(

i
∑

k=0

2k

)]

; // reset bits 0 to i

m = r | 2i ; // set bit i

if (p == m) arrived[m]=1;

if (p == r) {

while(¬arrived[m]) ; // wait

arrived[m]=0;

}

} // process 0 knows that all are there

. . .

}Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 8 / 30

Hierarchical Barrier: Variant 1
Program (Barrier with tree cont.)

parallel tree-barrier cont.

{

. . .

for (i = d − 1; i ≥ 0; i −−) { // downward

r = p &

[

∼

(

i
∑

k=0

2k

)]

; // reset bits 0 to i

m = r | 2i ;

if (p == m) {

while(¬continue[m]) ;

continue[m]=0;

}

if (p == r) continue[m]=1;

}

}

}

}

Caution: Flag variables should be stored in different cache lines, that

accesses do not hinder themselves!
Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 9 / 30

Hierarchical Barrier: Variant 2

This variant presents a symmetric solution of the barrier with recursive

doubling.

We consider at first again the barrier for two processes Πi and Πj :

Πi : Πj :

while (arrived [i]) ; while (arrived [j]) ;

arrived [i]=1; arrived [j]=1;

while (¬arrived [j]) ; while (¬arrived [i]) ;

arrived [j]=0; arrived [i]=0;

As prerequisite for the general solution the flags are organized as arrays, in

the beginning all flags are 0.

Sequence in words:

Line 2: Each sets its flag to 1

Line 3: Each waits onto the flag of the other

Line 4: Each resets the flag of the other

Line 1: Because of rule 2 from above wait until the flag is reset

Now we use this ideas in a recursive manner!
Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 10 / 30

Hierarchical Barrier: Variant 2

Recursive doubling uses the following communication structure:

100 101 110000 001 010 011 111

100 101 110000 001 010 011 111

100 101 110000 001 010 011 111

100 101 110000 001 010 011 111

Stufe 2

Stufe 1

Stufe 0

No idle processors

Each step is a two way communication

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 11 / 30

Hierarchical Barrier: Variant 2
Program (Barrier with recursive doubling)

parallel recursive-doubling-barrier

{

const int d = 4, P = 2d ; int arrived[d][P]={0[P · d]};

process Π [int p ∈ {0, ...,P − 1}]
{

int i , q;

while (1) {

calculation;

for (i = 0; i < d; i++) // all steps

{

q = p ⊕ 2i ; // reverse bit i

while (arrived[i][p]) ;

arrived[i][p]=1;

while (¬arrived[i][q]) ;

arrived[i][q]=0;

}

}

}

}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 12 / 30

Semaphore

A semaphore is an abstraction of a synchronisation variable, that enables the elegant

solution of multiple synchronisation problems

Up-to-now all programs have used active waiting. This is very inefficient under

quasi-parallel processing of multiple processes on one processor (multitasking). The

semaphore enables to switch processes into an idle state.

We understand a semaphore as abstract data type: Data structure with operations,

that fulfill particular properties:

A semaphore S has a non-negative integer value value(S), that is assigned during

creation of the semaphore with the value init .

For a semaphore S two operations P(S) and V(S) are defined with:

P(S) decrements the value of S by one if value(S) > 0, otherwise the process

blocks as long as another process executes a V operation on S.

V(S) frees another process from a P operation if one is waiting (are several

waiting one is selected), otherwise the value of S is incremented by one. V

operations never block!

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 13 / 30

Semaphore

Is the number of successfully finished P operations nP and the one of V

operations nV , then for the value of the semaphore applies always:

value(S) = nV + init − nP ≥ 0

or equivalent nP ≤ nV + init .

The value of a semaphore is not visible from the outside. It shows only by the

executability of the P operation.

The increment resp. decrement of a semaphore is performed in an atomic

way, multiple processes can also perform P/V operations concurrently.

Semaphores, that can take a value larger than one, are called general

semaphores.

Semaphores, that only have values {0,1}, are called binary semaphores.

Notation:

Semaphore S=1;

Semaphore forks[5] = {1 [5]};

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 14 / 30

Mutual Exclusion with Semaphore

We now present in which way all already treated synchronisation problems

can be solved with semaphore variables. The first application is dedicated to

mutual exclusion by usage of a single binary semaphore:

Program (Mutual exclusion with semaphore)

parallel cs-semaphore

{

const int P=8;

Semaphore mutex=1;

process Π [int i ∈ {0, ...,P − 1}]
{

while (1)

{

P(mutex);

critical section;

V(mutex);

uncritical section;

}

}

}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 15 / 30

Mutual Exclusion with Semaphore

By multitasking processes can be switched to the idle state (waiting).

Fairness is easy to integrate into the wake-up mechanism (FCFS).

Memory consistency model can be respected by the implementation,

programs remains portable (e. g. Pthreads)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 16 / 30

Barrier with Semaphore

Each process has to be delayed until the other(s) arrive at the barrier.

The barrier has to be reusable, since it is usually executed several times.

Program (Barrier with semaphore for two processes)

parallel barrier-2-semaphore

{

Semaphore b1=0, b2=0;

process Π1 process Π2

{ {

while (1) { while (1) {

calculation; calculation;

V(b1); V(b2);

P(b2); P(b1);

} }

} }

}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 17 / 30

Barrier with Semaphore
After unrolling of the loop, the code looks as follows:

Π1: Π2:
calculation 1; calculation 1;
V(b1); V(b2);
P(b2); P(b1);
calculation 2; calculation 2;
V(b1); V(b2);
P(b2); P(b1);
calculation 3; calculation 3;
V(b1); V(b2);
P(b2); P(b1);
.

Assume process Π1 works in calculation phase i , thus it has executed P(b2)

i − 1-times. Assume further Π2 works in calculation phase j < i , therefore it

has executed V(b2) j − 1. Then holds

nP(b2) = i − 1 > j − 1 = nV (b2).

On the other hand the semaphore rules assure, that

nP(b2) ≤ nV (b2) + 0.

This is a contradiction and it can not apply j < i . The argument is symmetric

and applies also when the processor numbers are exchanged.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 18 / 30

Producer/Consumer m/n/1

m producers, n consumers, 1 buffer location,

Producer has to block if the buffer location is occupied.

Consumer has to block if no request is stored.

We use two semaphores:

empty : counts number of free buffer locations

full : counts number of occupied locations (requests)

Consumer

Producer

Producer

R

Consumer

Consumer

R

R

R

R

R

R

R

R

Producer

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 19 / 30

Produce/Consumer m/n/1
Program (m producer, n consumer, 1 buffer location)
parallel prod-con-nm1
{

const int m = 3, n = 5;
Semaphore empty=1; // free buffer location
Semaphore full=0; // available request
T buf ; // the buffer
process P [int i ∈ {0, ..., m − 1}] {

while (1) {
Generate request t;
P(empty); // Is buffer free?
buf = t; // store request
V(full); // request available

}
}
process C [int j ∈ {0, ..., n − 1}] {

while (1) {
P(full); // Is request available?
t = buf ; // remove request
V(empty); // buffer is empty
Process request t;

}
}

}

Shared binary semaphore (split binary semaphore):

0 ≤ empty + full ≤ 1 (invariant)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 20 / 30

Producer/Consumer 1/1/k

1 producer, 1 consumer, k buffer locations,

Buffer is array of length k of type T . Insertion and deletion works with

buf [front] = t ; front = (front + 1) mod k ;

t = buf [rear]; rear = (rear + 1) mod k ;

Semaphore as above, only initialized with k !

Program (1 producer, 1 consumer, k buffer locations)

parallel prod-con-11k

{

const int k = 20;

Semaphore empty=k; // counts free buffer locs

Semaphore full=0; // count avaiable requests

T buf [k]; // the buffer

int front=0; // newest request

int rear=0; // oldest request

}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 21 / 30

Producer/Consumer 1/1/k
Program (1 producer, 1 consumer, k buffer locations)

parallel prod-con-11k

{

process P {

while (1) {

Generate request t;

P(empty); // Is buffer free?

buf [front] = t; // store request

front = (front+1) mod k; // next free location

V(full); // request available

}

}

process C {

while (1) {

P(full); // Is request there?

t = buf [rear]; // remove request

rear = (rear+1) mod k; // next request

V(empty); // buffer is free

Process request t;

}

}

} Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 22 / 30

Producer/Consumer m/n/k

m producers, n consumers, k buffer locations,

We only have to ensure, that producers among each other and consumers

cannot manipulate the buffer at the same time.

Use two additional binary semaphores mutexP und mutexC

Program (m producer, n consumer, k buffer locations)
parallel prod-con-mnk
{

const int k = 20, m = 3, n = 6;
Semaphore empty=k; // count free buffer locations
Semaphore full=0; // count available requests
T buf [k]; // the buffer
int front=0; // newest request
int rear=0; // oldest request
Semaphore mutexP=1; // access of producers
Semaphore mutexC=1; // access of consumersr

}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 23 / 30

Producer/Consumer m/n/k

Program (m producer, n consumer, k buffer locations)
parallel process
{

P [int i ∈ {0, ..., m − 1}] {
while (1) {

Generate request t;
P(empty); // Is buffer free?
P(mutexP); // manipulate buffer
buf [front] = t; // store request
front = (front+1) mod k; // next free position
V(mutexP); // ready with buffer
V(full); // request available

}
}
process C [int j ∈ {0, ..., n − 1}] {

while (1) {
P(full); // Is request there?
P(mutexC); // manipulate buffer
t = buf [rear]; // remove request
rear = (rear+1) mod k; // next request
V(mutexC); // ready with buffer
V(empty); // buffer is free
Process request t;

}
}

}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 24 / 30

Dining Philosophers

Complex synchronisation task: A process necessitates exclusive access onto

several ressources to perform a specific task.

→ overlapping critical sections.

Five philosophers sit at a round table. The exercise of each

philosopher consists out of interchanging phases of thinking and

eating. In between two of the philosophers a fork is positioned and in

the center of the table a mountain Spaghetti is located. To eat a

philosopher needs two forks – the one laying left and right next to

him.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 25 / 30

Dining Philosophers

The problem:

Write a parallel program, with one process per philosopher, that

enables a maximal count of philosophers to eat and

that avoids a deadlock.

Skeletal structure of a philosopher:

while (1)

{

think;

take forks;

eat;

lay back forks;

}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 26 / 30

Naive Philosophers

Program (Naive solution of the philosophers problem)

parallel philosophers–1

{

const int P = 5; // number of philosophers

Semaphore forks[P] = { 1 [P] }; // forks

process Philosopher [int p ∈ {0, ...,P − 1}] {

while (1) {

Thinking;

P(fork[p]); // left fork

P(fork[(p + 1) mod P]); // right fork

Eating;

V(fork[p]); // left fork

V(fork[(p + 1) mod P]); // right fork

}

}

}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 27 / 30

Naive Philosophers

Philosophers are deadlocked, if all take at first the left fork!

Simple solution of the deadlock problem: Avoid cyclic dependencies,

e. g. philosopher 0 takes his forks in a different sequence right then left.

This solution allows eventually not maximal concurrency:

4

0

1

23

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 28 / 30

Clever Philosophers

Take forks only, when both are available

Critical section: only one can manipulate the forks

Three states of a philosopher: thinking, hungry, eating

Program (Solution of philosophers problem)

parallel philosophers–2

{

const int P = 5; // count philosophers

const int think=0, hungry=1, eat=2;

Semaphore mutex=1;

Semaphore s[P] = { 0 [P] }; // eating philosopher

int state[P] = { think [P] }; // state

}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 29 / 30

Clever Philosophers
Program (Soluton of philosophers problem)
parallel process
{

Philosopher [int p ∈ {0, ..., P − 1}] {
void test (int i) {

int l=(i + P − 1) mod P, r=(i + 1) mod P;
if (state[i]==hungry ∧ state[l]6=eat ∧ state[r]6=eat)
{

state[i] = eat;
V(s[i]);

}
}

while (1) {
Thinking;
P(mutex); // take forks
state[p] = hungry;
test(p);
V(mutex);
P(s[p]); // wait, if neighbor eats
Eating;
P(mutex); // lay forks downs
state[p] = think;
test((p + P − 1) mod P); // wake-up left neigbor
test((p + 1) mod P); // wake-up right neighbor
V(mutex);

}
}

}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 30 / 30

