
Shared Memory Programming Models III

Stefan Lang

Interdisciplinary Center for Scientific Computing (IWR)
University of Heidelberg

INF 368, Room 532
D-69120 Heidelberg

phone: 06221/54-8264
email: Stefan.Lang@iwr.uni-heidelberg.de

WS 14/15

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 1 / 36

Shared Memory Programming Models III

Communication by shared memory

Semaphore rep.

Reader-Writer problem

PThreads

Active Objects

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 2 / 36

Semaphore

A semaphore is an abstraction of a synchronisation variable, that enables the elegant

solution of multiple of synchronisation problems

Up-to-now all programs have used active waiting. This is very inefficient under

quasi-parallel processing of multiple processes on one processor (multitasking). The

semaphore enables to switch processes into an idle state.

We understand a semaphore as abstract data type: Data structure with operations,

that fulfill particular properties:

A semaphore S has a non-negative integer value value(S), that is assigned during

creation of the Semaphore with the value init .

For a semaphore S two operations P(S) and V(S) are defined with:

P(S) decrements the value of S by one if value(S) > 0, otherwise the process

blocks as long as another process executes a Voperation on S.

V(S) frees another process from a Poperation if one is waiting (are several

waiting one is selected), otherwise the value of S is incremented by one.

Voperations never block!

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 3 / 36

Readers/Writers Problem

Datenbank

SchreiberLeser

Database

Readers Writers

Two classes of processes, readers and writers, access a common

database. Readers perform transactions, that are not modifying the

database. Writers change the database and need to have exclusive

access. If no writer has access an arbitrary number of readers can

access simultaneously.

Problems:

Deadlock-free coordination of processes

Fairness: Final entry of writers

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 4 / 36

Naive Readers/Writers

Two Semaphores:

rw : How has access to the database the readers/the writers

mutexR: Protection of the writer counter nr

Program (Reader–Writer–Problem, first solution)
parallel readers–writers–1
{

const int m = 8, n = 4; // number of readers and writers
Semaphore rw=1; // Access onto database
Semaphore mutexR=1; // Protect reader count
int nr=0; // Count of accessing readers

process Reader [int i ∈ {0, ..., m − 1}] {
while (1) {

P(mutexR); // Access reader counter
nr = nr+1; // A further reader
if (nr==1) P(rw); // First is waiting for DB
V(mutexR); // next reader can get in
read database;
P(mutexR); // Access reader counter
nr = nr-1; // A reader fewer
if (nr==0) V(rw); // Last releases access to DB
V(mutexR); // next reader can enter

}
}

}
Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 5 / 36

Naive Readers/Writers

Program (Reeder–Writer–Problem, first solution cont.)
parallel process
{

Writer [int j ∈ {0, ..., n − 1}] {
while (1) {

P(rw); // Access onto DB
write database;
V(rw); // Release DB

}
}

}

Solution is not fair: Writers can starve

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 6 / 36

Fair Readers/Writers

Schedule waiting processes according to FCFS in a waiting queue

Variable:

nr , nw : Number of active readers/writers (nw ≤ 1)

dr , dw : Number of waiting readers/writers

buf , front , rear : Waiting queue

Semaphore e: Protection of waiting queue state

Semaphore r , w : Waiting of readers/writers

Program (Reader–Writer–Problem, fair solution)
parallel readers–writers–2
{

const int m = 8, n = 4; // Number of readers and writers
int nr=0, nw=0, dr=0, dw=0; // State
Semaphore e=1; // Access onto waiting queue
Semaphore r=0; // Delay of readers
Semaphore w=0; // Delay of writers
const int reader=1, writer=2; // Marks
int buf [n + m]; // Who waits?
int front=0, rear=0; // Pointer

}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 7 / 36

Fair Readers/Writers

Program (Reader–Writer–Problem, fair Solution cont1.)
parallel readers–writers–2 cont1.
{

int wake_up (void) // May be excuted by exactly one!
{

if (nw==0 ∧ dr>0 ∧ buf [rear]==reader)
{

dr = dr-1;
rear = (rear+1) mod (n + m);
V(r);
return 1; // Have awaked a reader

}
if (nw==0 ∧ nr==0 ∧ dw>0 ∧ buf [rear]==writer)
{

dw = dw-1;
rear = (rear+1) mod (n + m);
V(w);
return 1; // Have awaked a writer

}
return 0; // Have awaked noone

}

}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 8 / 36

Fair Readers/Writers
Program (Reader–Writer–Problem, fair Solution cont2.)
parallel readers–writers–2 cont2.
{

process Reader [int i ∈ {0, ..., m − 1}]
{

while (1)
{

P(e); // want to change state
if(nw>0 ∨ dw>0)
{

buf [front] = reader ; // in waiting queue
front = (front+1) mod (n + m);
dr = dr+1;
V(e); // free state
P(r); // wait until readers can continue

// here is e = 0 !
}
nr = nr+1; // here is only one
if (wake_up()==0) // can one be awaked?

V(e); // no, set e = 1

read database;

P(e); // want to change state
nr = nr-1;
if (wake_up()==0) // can one be awaked?

V(e); // no, set e = 1
}

}
Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 9 / 36

Fair Readers/Writers
Program (Reader–Writer–Problem, fair solution cont3.)
parallel readers–writers–2 cont3.
{

process Writer [int j ∈ {0, ..., n − 1}]
{

while (1)
{

P(e); // want to change state
if(nr>0 ∨ nw>0)
{

buf [front] = writer ; // in waiting queue
front = (front+1) mod (n + m);
dw = dw+1;
V(e); // free state
P(w); // wait until it is its turn

// here is e = 0 !
}
nw = nw+1; // here is only one
V(e); // here needs noone to be waked

write database; // exclusive access

P(e); // want to change state
nw = nw-1;
if (wake_up()==0) // can one be awaked?

V(e); // no, set e = 1
}

}
}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 10 / 36

Processes and Threads

A Unix process has

IDs (process, user, group)

Environment variables

Directory

Program code

Register, stack, heap

File descriptors, signals

Message queues, pipes, shared

memory segments

Shared libraries

Each process owns its individual

address space

Threads exist within a single process

Threads share an address space

A thread consists of

ID

Stack pointer

Registers

Scheduling properties

Signals

Creation and switching times are

shorter

„Parallel function“

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 11 / 36

PThreads

Each manufacturer had an own implementation of threads or „light weight

processes“

1995: IEEE POSIX 1003.1c Standard (there are several „drafts“)

Standard document is liable to pay costs

Defines threads in a portable way

Consists of C data types and functions

Header file pthread.h

Library name is not normed. In Linux -lpthread

Compilation in Linux: gcc <file> -lpthread

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 12 / 36

PThreads Overview

There are 3 functional groups

All names start with pthread_

pthread_

Thread management and other routines

pthread_attr_

Thread attribute objects

pthread_mutex_

All that has to do with mutex variables

pthread_mutex_attr_

Attributes for mutex variables

pthread_cond_

Condition variables

pthread_cond_attr_

Attributes for condition variables

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 13 / 36

Creation of Threads

pthread_t : Data type for a thread.

Opaque type: Data type is defined in the library and is processed by its

functions. Contents is implementation dependent.

int pthread_create(thread,attr,start_routine,arg) :
Starts the function start_routine as thread.

◮ thread : Pointer onto a pthread_t structure. Serves for identification of a

thread.
◮ attr : Thread attributes are explained below. Default is NULL.
◮ start_routine: Pointer onto a function of type void* func (void*);
◮ arg : void* pointer that is passed as function argument.
◮ Return value that is larger than zero indicates an error.

Threads can start further threads, maximal count of threads is

implementation dependent

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 14 / 36

Termination of Threads

There are the following possiblities to terminate a thread:
◮ The thread finishes its start_routine()
◮ The thread calls pthread_exit()
◮ The thread is terminated by another thread via pthread_cancel()
◮ The process is terminated by exit() or the end of the main() function

pthread_exit(void* status)

◮ Finishes the calling thread. Pointer is stored and can be queried with

pthread_join (see below) (Return of results).
◮ If main() calls this routine existing threads continue and the process is not

terminated.
◮ Existing files, that are opened, are not closed!

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 15 / 36

Waiting for Threads

Peer model: Several equal threads perform a collective task. Program is

terminated if all threads are finished

Requires waiting of a thread until all others are finished

This is a kind of synchronisation

int pthread_join(pthread_t thread, void **status);

◮ Waits until the specified thread terminates itself
◮ The thread can return via pthread_exit() a void* pointer
◮ Is the status parameter choosen as NULL, the return value is obsolete

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 16 / 36

Thread Management Example

#include <pthread.h> /* for threads */

void* prod (int *i) { /* Producer thread */

int count=0;

while (count<100000) count++;

}

void* con (int *j) { /* Consumer thread */

int count=0;

while (count<1000000) count++;

}

int main (int argc, char *argv[]) { /* main program */

pthread_t thread_p, thread_c; int i,j;

i = 1; pthread_create(&thread_p,NULL,(void*(*)(void*)) prod,(void *) &i);

j = 1; pthread_create(&thread_c, NULL,(void*(*)(void*)) con, (void *) &j);

pthread_join(thread_p, NULL); pthread_join(thread_c, NULL);

return(0);

}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 17 / 36

Passing of Arguments

Passing of multiple arguments requires the definition of an individual data
type:
struct argtype {int rank; int a,b; double c;};

struct argtype args[P];

pthread_t threads[P];

for (i=0; i<P; i++) {

args[i].rank=i; args[i].a=...

pthread_create(threads+i,NULL,(void*(*)(void*)) prod,(void *)args+i);

}

The following example contains two errors:
pthread_t threads[P];

for (i=0; i<P; i++) {

pthread_create(threads+i,NULL,(void*(*)(void*)) prod,&i);

}

◮ Contents of i is eventually changed before the thread reads it
◮ If i is a stack variable it exists eventually no more

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 18 / 36

Thread Identifiers

pthread_t pthread_self(void);

Returns the own thread-ID

int pthread_equal(pthread_t t1, pthread_t t2);

Returns true (value>0) if the two IDs are identical

Concept of an „opaque data type“

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 19 / 36

Join/Detach

A thread within state PTHREAD_CREATE_JOINABLE releases its

resources only, if pthread_join has been executed.

A thread in state PTHREAD_CREATE_DETACHED releases its resources

as soon a it is terminated. In this case pthread_join is not allowed.

Default is PTHREAD_CREATE_JOINABLE, but that is not implemented in

all libraries.
Therefore better:
pthread_attr_t attr;

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

int rc = pthread_create(&t,&attr,(void*(*)(void*))func,NULL);

....

pthread_join(&t,NULL);

pthread_attr_destroy(&attr);

Provides example for application of attributes

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 20 / 36

Mutex Variables

Mutex variables realize mutual exclusion within PThreads

Creation and initialisation of a mutex variable

pthread_mutex_t mutex;

pthread_mutex_init(&mutex,NULL);

Mutex variable is in state free

Try to enter the critical section (blocking):

pthread_mutex_lock(&mutex);

Leave critical section

pthread_mutex_unlock(&mutex);

Release resource of the mutex variable

pthread_mutex_destroy(&mutex);

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 21 / 36

Condition Variables

Condition variables enable inactive waiting of a thread until a certain

condition has arrived.

Simplest example: Flag variables (see example below)

To a condition synchronisation belong three things:
◮ A variable of type pthread_cond_t, that realizes inactive waiting.
◮ A variable of type pthread_mutex_t, that realizes mutual exclusion during

condition change.
◮ A global variable, which value enables the calculation of the condition

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 22 / 36

Condition Variables: Creation/Deletion

int pthread_cond_init(pthread_cond_t *cond,

pthread_condattr_t *attr);

initializes a condition variable

In the simplest case: pthread_cond_init(&cond,NULL)

int pthread_cond_destroy(pthread_cond_t *cond);

the resources of a condition variable is released

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 23 / 36

Condition Variables: Wait

int pthread_cond_wait(pthread_cond_t *cond,

pthread_mutex_t *mutex);

blocks the calling thread until for the condition variable the function

pthread_signal() is called

When calling the pthread_wait() the thread has to be the owner of

the lock

pthread_wait() leaves the lock and waits for the signal in an atomic

way

After returning from pthread_wait() the thread is again the owner of

the lock

After return the condition has not to be true in any case

With a single condition variable one should only use exactly one lock

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 24 / 36

Condition Variables: Signal

int pthread_cond_signal(pthread_cond_t *cond);

Awakes a thread that has executed a pthread_wait() onto a condition

variable. If noone waits the function has no effect.

When calling the thread should be owner of the associated lock.

After the call the lock should be releases. First the release of the lock

allows the waiting thread to return from pthread_wait() function.

int pthread_cond_broadcast(pthread_cond_t *cond);

awakes all threads that have executed a pthread_wait() on the

condition variable. These then apply for the lock.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 25 / 36

Condition Variables: Ping-Pong Example

#include<stdio.h>

#include<pthread.h> /* for threads */

int arrived_flag=0,continue_flag=0;

pthread_mutex_t arrived_mutex, continue_mutex;

pthread_cond_t arrived_cond, continue_cond;

pthread_attr_t attr;

int main (int argc, char *argv[])

{

pthread_t thread_p, thread_c;

pthread_mutex_init(&arrived_mutex,NULL);

pthread_cond_init(&arrived_cond,NULL);

pthread_mutex_init(&continue_mutex,NULL);

pthread_cond_init(&continue_cond,NULL);

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 26 / 36

Example cont. I
pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr,

PTHREAD_CREATE_JOINABLE);

pthread_create(&thread_p,&attr,

(void*(*)(void*)) prod,NULL);

pthread_create(&thread_c,&attr,

(void*(*)(void*)) con ,NULL);

pthread_join(thread_p, NULL);

pthread_join(thread_c, NULL);

pthread_attr_destroy(&attr);

pthread_cond_destroy(&arrived_cond);

pthread_mutex_destroy(&arrived_mutex);

pthread_cond_destroy(&continue_cond);

pthread_mutex_destroy(&continue_mutex);

return(0);

} Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 27 / 36

Example cont. II

void prod (void* p) /* Producer thread */

{

int i;

for (i=0; i<100; i++) {

printf("ping\n");

pthread_mutex_lock(&arrived_mutex);

arrived_flag = 1;

pthread_cond_signal(&arrived_cond);

pthread_mutex_unlock(&arrived_mutex);

pthread_mutex_lock(&continue_mutex);

while (continue_flag==0)

pthread_cond_wait(&continue_cond,&continue_mutex);

continue_flag = 0;

pthread_mutex_unlock(&continue_mutex);

}

}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 28 / 36

Example cont. III

void con (void* p) /* Consumer thread */

{

int i;

for (i=0; i<100; i++) {

pthread_mutex_lock(&arrived_mutex);

while (arrived_flag==0)

pthread_cond_wait(&arrived_cond,&arrived_mutex);

arrived_flag = 0;

pthread_mutex_unlock(&arrived_mutex);

printf("pong\n");

pthread_mutex_lock(&continue_mutex);

continue_flag = 1;

pthread_cond_signal(&continue_cond);

pthread_mutex_unlock(&continue_mutex);

}

}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 29 / 36

Thread Safety

Hereby is understood whether a function/library can be used by multiple

threads at the same time.

A function is reentrant if it may be called by several threads

synchronously.

A function, that does not use a global variable, is reentrant

The runtime system has to use shared resources (e.g. the stack) under

mutual exclusion

The GNU C compiler has to be configured for compilation with an

appropriate thread model. With gcc -v you can see the type of thread

model.

STL: Allocation is thread save, access of multiple threads onto a single

container has to be protected by the user.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 30 / 36

Threads and OO

Obviously are PThreads relatively impractical to code.

Mutexes, conditional variables, flags and semaphores should be realized

in an object-oriented way. Complicated init/destroy calls can be

hidden in constructors/destructors.

Threads are transformed into Active Objects.

An active object „is executed“ independent of other objects.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 31 / 36

Active Objects

class ActiveObject

{

public:

//! constructor

ActiveObject ();

//! destructor waits for thread to complete

~ActiveObject ();

//! action to be defined by derived class

virtual void action () = 0;

protected:

//! use this method as last call in constructor of derived class

void start ();

//! use this method as first call in destructor of derived class

void stop ();

private:

...

};

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 32 / 36

Active Objects cont. I

#include<iostream>

#include"threadtools.hh"

Flag arrived_flag,continue_flag;

int main (int argc, char *argv[])

{

Producer prod; // start prod as active object

Consumer con; // start con as active object

return(0);

} // wait until prod and con are finished

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 33 / 36

Active Objects cont. II

class Producer : public ActiveObject

{

public:

// constructor takes any arguments the thread might need

Producer () {

this->start();

}

// execute action

virtual void action () {

for (int i=0; i<100; i++) {

std::cout « "ping" « std::endl;

arrived_flag.signal();

continue_flag.wait();

}

}

// destructor waits for end of action

~Producer () {

this->stop();

}

};

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 34 / 36

Active Objects cont. III

class Consumer : public ActiveObject

{

public:

// constructor takes any arguments the thread might need

Consumer () {

this->start();

}

// execute action

virtual void action () {

for (int i=0; i<100; i++) {

arrived_flag.wait();

std::cout « "pong" « std::endl;

continue_flag.signal();

}

}

// destructor waits for end of action

~Consumer () {

this->stop();

}

};

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 35 / 36

Links

1 PThreads tutorial from LLNL

http://www.llnl.gov/computing/tutorials/pthreads/

2 Linux Threads Library

http://pauillac.inria.fr/∼xleroy/linuxthreads/

3 Thread safety of GNU standard library

http://gcc.gnu.org/onlinedocs/libstdc++/17_intro/howto.html#3

4 Resources for PThreads Functions

http://as400bks.rochester.ibm.com/iseries/v5r1/ic2924/index.htm?info/apis/rzah4mst.htm

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 36 / 36

http://www.llnl.gov/computing/tutorials/pthreads/
http://pauillac.inria.fr/~xleroy/linuxthreads/
http://gcc.gnu.org/onlinedocs/libstdc++/17_intro/howto.html#3
http://as400bks.rochester.ibm.com/iseries/v5r1/ic2924/index.htm?info/apis/rzah4mst.htm

