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Client-Server Paradigm I
Server: Process, that processes in an endless loop requests (tasks) of
clients.
Client: Sends in irregular distances requests to a server.

For example the distributed philosophers have been the clients and the
servants the servers (that communicate beneath each other).
Practical Examples:

File Server (NFS: Network File Server)
Database Server
HTML Server

Further Example: File Server, Conversational Continuity
Access onto files shall be realized over the network.
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Client-Server Paradigm II

Client: opens file; performs an arbitrary number of read/write accesses;
closes file.
Server: serves exactly one client, until this closes the file again. Will be
releases after finalising the communication.
Allocator: maps a client to a server.

process C [ int i ∈ {0, . . . ,M − 1}]
{

send( A, OPEN , „foo.txt “);
recv( A , ok , j );
send( Sj , READ , where );
recv( Sj , buf );
send( Sj , WRITE , buf , where );
recv( Sj , ok );
send( Sj , CLOSE );
recv( Sj , ok );

}
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Client-Server Paradigm III
process A // Allocator
{

int free [N] = {1[N]} ; // all servers free
int cut = 0; // how many servers occupied?
while (1) {

if ( rprobe( who ) ) { // from whom may I receive?
if ( who ∈ {C0, . . . , CM−1} & & cut == N )

continue; // no servers free
recv( who , tag , msg );
if ( tag == OPEN ){

Find free server j ;
free [j] = 0 ;
cut++;
send( Sj , tag , msg , who );
recv( Sj , ok );
send( who , ok , j );

}
if ( tag == CLOSE )

for ( j ∈ {0, . . . , N − 1} )
if ( Sj == who ) {

free [j] = 1;
cut = cut - 1 ;

}
}

}
}
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Client-Server Paradigm IV
process S [ int j ∈ {0, . . . , N − 1}]
{

while (1) {
// wait for message of A
recv( A , tag , msg , C ); // my client
if ( tag 6= OPEN )→ error;
open file msg
send( A , ok );
while (1) {

recv( C , tag , msg );
if ( tag == READ ) {

. . .
send( C , buf );

}
if ( tag == WRITE ) {

. . .
send( C , ok ); }

}
if ( tag == CLOSE ){

close file;
send( C , ok );
send( A , CLOSE , dummy );
break;

}
}

}
}
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Remote Procedure Call I

Is abbreviated with RPC ( Remote Procedure Call ). A process calls a
procedure/function of another process.
Π1: Π2:
... int Square( int x )
y = Square(x); {
... return x · x;

}

It applies thereby:
I The processes can run on distinct (remote) processors.
I The caller blocks as long as the results have not arrived.
I A two-way communication is established, this means arguments are sent

forth and results are sent back. For the client-server paradigm this is the
ideal configuration.

I Many clients can call a remote procedure at a time.
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Remote Procedure Call II

We realise the RPC by assigning the key word remote to the procedure
of interest. These can then be called by other processes.

Program (RPC-Syntax)
parallel rpc-example
{

process Server
{

remote int Square(int x)
{

return x · x;
}
remote long Time ( void )
{

return time_of_day;
}
. . . initialisation code

}
process Client
{

y = Server.Square(5);
}

}
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Remote Procedure Call III
During a call of a function in another process via RPC the following happens:

The arguments are packed on the caller side into a message, sent across
the network and unpacked on the other side.
Now the function can be called completely normal.
The return value of the function is sent back to the caller in the same kind.

client process

client code

int square(int x)

client stub:

packing arg,

unpacking res

RPC runtime

server process

server stub:

unpacking arg,

call square()

packing res

RPC runtime

int square(int x)
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Remote Procedure Call IV

A quite frequently used implementation of RPC comes from the company
SUN. The most important properties are:

Portability (client/server applications on different architectures). This
means, that the arguments and return values have to be transported in a
architecture-independent representation over the network. This is
performed by the XDR library (external data representation).
Few knowledge about network programming is necessary.

We now realize step by step the example from above via SUN’s RPC.
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Client-Server Paradigm with RPC I

(1) Construct a RPC specification in file square.x

struct square_in { /* first argument */
int arg1;

} ;

struct square_out { /* return value */
int res1;

} ;

program SQUARE_PROG {
version SQUARE_VERS { /* procedure number */

square_out SQUAREPROC(square_in) = 1;
} = 1; /* version number */

} = 0x31230000 ; /* program number */

(2) Compile the description with the command

rpcgen -C square.x
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Client-Server Paradigm with RPC II
generates the following 4 files in a completely automatic way:
square.h: data types for arguments, procedure heads (cutout)
#define SQUAREPROC 1
extern square_out * squareproc_1(square_in *, CLIENT *); /* die ruft Client */
extern square_out * squareproc_1_svc(square_in *, struct svc_req *); /* Server */

square_clnt.c: client side of the function, packing of arguments
#include <memory.h> /* for memset */
#include "square.h"

/* Default timeout can be changed using clnt_control() */
static struct timeval TIMEOUT = { 25, 0 };

square_out * squareproc_1(square_in *argp, CLIENT *clnt)
{

static square_out clnt_res;

memset((char *)&clnt_res, 0, sizeof(clnt_res));
if (clnt_call (clnt, SQUAREPROC,

(xdrproc_t) xdr_square_in, (caddr_t) argp,
(xdrproc_t) xdr_square_out, (caddr_t) &clnt_res,
TIMEOUT) != RPC_SUCCESS) {
return (NULL);

}
return (&clnt_res);

}
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Client-Server Paradigm with RPC III

square_svc.c: Complete server, that reacts on the procedure call.
square_xdr.c: Function for data conversion in a heterogeneous
environment:

#include "square.h"

bool_t xdr_square_in (XDR *xdrs, square_in *objp)
{

register int32_t *buf;

if (!xdr_int (xdrs, &objp->arg1))
return FALSE;

return TRUE;
}

bool_t xdr_square_out (XDR *xdrs, square_out *objp)
{

register int32_t *buf;

if (!xdr_int (xdrs, &objp->res1))
return FALSE;

return TRUE;
}
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Client-Server Paradigm with RPC IV
(3) Now the client needs to be written, that calls the procedure.
(client.c):
#include "square.h" /* includes also rpc/rpc.h */
int main (int argc, char **argv)
{

CLIENT *cl;
square_in in;
square_out *outp; /* can only return a pointer */

if (argc!=3) {
printf("usage: client <hostname> <integer-value>\n");
exit(1);

}

cl = clnt_create(argv[1],SQUARE_PROG,SQUARE_VERS,"tcp");
if (cl==NULL) {

printf("clnt_create failed\n");
exit(1);

}
in.arg1 = atoi(argv[2]);
outp = squareproc_1(&in,cl); /* remote procedure call */
if (outp==NULL) {

printf("%s",clnt_sperror(cl,argv[1]));
exit(1);

}

printf("%d\n",outp->res1);
exit(0);

}
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Client-Server Paradigm with RPC V

(4) Now the client can be build:
gcc -g -c client.c
gcc -g -c square_xdr.c
gcc -g -c square_clnt.c
gcc -o client client.o square_xdr.o square_clnt.o

(5) Finally the function on the server side has to be written (server.c):
square_out * squareproc_1_svc(square_in *inp, struct svc_req *rqstp)
{

static square_out out; /* since we return pointers */

out.res1 = inp->arg1 * inp->arg1;
return (&out);

}

(6) Now the server can be build:
gcc -g -c server.c
gcc -g -c square_xdr.c
gcc -g -c square_svc.c
gcc -o server server.o square_xdr.o square_svc.o
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Client-Server Paradigm with RPC VI

(7) Starting of the processes works as follows:
Test, whether the portmapper runs: rpcinfo -p
Start server via server &
Start client:
josh> client troll 123
15129

By default the server answers the request sequentially after each other. A
multi-threaded server is created as follows:

generate RPC code via rpcgen -C -M ...

make the procedures reentrant. Trick with static variables does not
work anymore. Solution: Pass the result back in a call-by-value
parameter.
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Client-Server Paradigm: CORBA I

Example works with MICO (http://www.mico.org), an free CORBA
implementation (C++), that has been developed at the university of Frankfurt.

(1) IDL definition of the class account.idl:
interface Account {

void deposit( in unsigned long amount );
void withdraw( in unsigned long amount );
long balance();

};

(2) Automatic generation of client/server classes

idl account.idl

generates the files account.h (class definitions) and account.cc
(implementation of the client side).
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Client-Server Paradigm: CORBA II

(3) Call of the client side: client.cc
#include <CORBA-SMALL.h>
#include <iostream.h>
#include <fstream.h>
#include "account.h"

int main( int argc, char *argv[] )
{

// ORB initialization
CORBA::ORB_var orb = CORBA::ORB_init( argc, argv, "mico-local-orb" );
CORBA::BOA_var boa = orb->BOA_init (argc, argv, "mico-local-boa");

// read stringified object reference
ifstream in ("account.objid");
char ref[1000];
in » ref;
in.close();

// client side
CORBA::Object_var obj = orb->string_to_object(ref);
assert (!CORBA::is_nil (obj));
Account_var client = Account::_narrow( obj );

client->deposit( 100 );
client->deposit( 100 );
client->deposit( 100 );
client->deposit( 100 );
client->deposit( 100 );
client->withdraw( 240 );
client->withdraw( 10 );
cout « "Balance is " « client->balance() « endl;

return 0;
}
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Client-Server Paradigm: CORBA III
(4) Server contains the implementation of the class, generates the
objects and the server itself: server.cc:

#define MICO_CONF_IMR
#include <CORBA-SMALL.h>
#include <iostream.h>
#include <fstream.h>
#include <unistd.h>
#include "account.h"

class Account_impl : virtual public Account_skel {
CORBA::Long _current_balance;

public:
Account_impl ()
{

_current_balance = 0;
}
void deposit( CORBA::ULong amount )
{

_current_balance += amount;
}
void withdraw( CORBA::ULong amount )
{

_current_balance -= amount;
}
CORBA::Long balance()
{

return _current_balance;
}

};
Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 18 / 33



Client-Server Paradigm: CORBA IV

int main( int argc, char *argv[] )
{

cout « "server init" « endl;

// initialize CORBA
CORBA::ORB_var orb = CORBA::ORB_init( argc, argv, "mico-local-orb" );
CORBA::BOA_var boa = orb->BOA_init (argc, argv, "mico-local-boa");

// create object, produce global reference
Account_impl *server = new Account_impl;
CORBA::String_var ref = orb->object_to_string( server );
ofstream out ("account.objid");
out « ref « endl;
out.close();

// start server
boa->impl_is_ready( CORBA::ImplementationDef::_nil() );
orb->run ();

CORBA::release( server );
return 0;

}
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Client-Server Paradigm: CORBA V

To start the server is run again: server &

And the client is called:

josh > client
Balance is 250
josh > client
Balance is 500
josh > client
Balance is 750

Object naming: Here over a „stringified object reference“. Exchange over
shared readable file, email, etc. Is global unique and contains IP numbers,
server process, object.

Alternatively: Separate naming services.
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Advanced MPI

Some innovative aspects of MPI-2
Dynamic process creation and management
Communicators: Inter- and Intracommunicators
MPI and Threads
One-sided communication
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MPI-2 Process Control
MPI-1 specifies neither how the processes are spawned nor how they
create a communication infrastructure
MPI-2 enables dynamic creation of processes

I MPI_Comm_spawn() starts MPI processes and creates a communication
infrastructure

I MPI_Comm_spawn_multiple() starts binary-distinct programs or the
same program with different arguments below the same communicator
MPI_COMM_WORLD

MPI uses the existing group abstractions to represent processes. A
(group,rank) pair identifies a process in a unique way. A process
determines a unqiue (group,rank) pair, since it may be part of several
groups.
MPI does not provide any operating system services, e.g. starting and
stopping of processes , and therefore implies implicitly the existence of a
runtime environment, within which a MPI-application can run.
The newly created child processes possess their own communicator
MPI_COMM_WORLD. With int MPI_Comm_get_parent(MPI_Comm

*parent) you receive the same intercommunicator, that the parent
processes have received during their creation.
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MPI-2 Process Control

Interface to create new processes during runtime
Syntax:
int MPI_Comm_spawn( command, argv, maxprocs, info,
root, comm, intercomm, errorcodes)

int MPI_Comm_spawn() is a collective function. First if all child
processes have called MPI_Init() it is finished.
Arguments are specified in the following:

argument type name description
char * (IN) command name of the program to be created (only root)
char * (IN) argv arguments for command (only root)
int (IN) maxprocs maximal count of processes to be created
MPI_Info (IN) info a set of key-value pairs, that provides the runtime

system info, where and how the processes
are to be created (only root)

int (IN) root the rank of the process in which argv
is evaluated

MPI_Comm (IN) comm Intracommunicator for generated processes
MPI_Comm * (OUT) intercomm Intercommunicator between original

group and newly generated group
int (OUT) errorcodes[] A code per process
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MPI-2 Enhanced Shared Communication

MPI-1: shared communication operations for intracommunicators, only
MPI_Intercomm_create() and MPI_Comm_dup() to create
intercommunicators
MPI-2: extension of many MPI-1 communication operations to
intercommunicators, further possibilites to create intercommunicators, 2
new routines for shared communication.

constructors for intercommunicators:
MPI::Intercomm MPI::Intercomm::Create(const Group& group) const

MPI::Intracomm MPI::Intracomm::Create(const Group& group) const
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MPI-2: Intercommunicator Construction

from MPI-2 standard document
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MPI-2: Collective Communication inside
Intercommunicator

All-To-All
I MPI_Allgather, MPI_Allgatherv
I MPI_Alltoall, MPI_Alltoallv
I MPI_Allreduce, MPI_Reduce_scatter

All-To-One
I MPI_Gather, MPI_Gatherv
I MPI_Reduce

One-To-All
I MPI_Bcast
I MPI_Scatter, MPI_Scatterv

Other
I MPI_Scan
I MPI_Barrier
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MPI-2: Collective Communication in
Intercommunicator

Description of operations with source and target group.
I within intracommunicators these groups are identical
I within intercommunicators these groups are distinct

Messages and data flow within MPI_Allgather()

from MPI-2 standard document
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MPI-2: Collective Communication in the
Intracommunicator

Generalised Alltoall function (w) (we already known this one!)

Declaration:
void MPI::Comm::Alltoallw (const void* sendbuf, const int sendcounts[], const

int sdispls[], const MPI::Datatype sendtype[], void *recvbuf, const int

recvcounts[], const int rdispls[], const MPI::Datatype recvtypes[]) const =

0;

The j-th block that sends process i is stored by process j in the i-th block
of recvbuf.
The blocks can have different size
Type signatures and data extend have to be consistent:
sendcounts[j],sendtypes[j] of process i fits to
sendcounts[i],sendtypes[i] of prozess j
No in-place option
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MPI-2: Collective Communication in the
Intracommunicator

Exclusive scan operation, inclusive scan already in MPI-1

Declaration:
MPI::Intracomm:Exscan (const void* sendbuf, void* recvbuf, int count, const

MPI::Datatype& datatype, const MPI::Op& op) const

Performs a prefix reduction on data, that are distributed across the group
Value in recvbuf of process 0 is undefined
Value in recvbuf of process 1 is defined by the value of sendbuf of
process 0
Value in recvbuf of process i with i < 1 is the value of reduction
operation op applied to the sendbufs of processes 0, . . . , i − 1
no in-place option
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Hybrid Programming: MPI and Threads I
Basic Assumptions

Thread library according to POSIX standard
MPI process can be run multithreaded without limitations
Each thread can call MPI functions
Threads of an MPI process can not be distinguished
rank specifies a MPI process not thread
The user has to avoid conditions, that can be generated by
contradictionary communication calls
This can e.g. occur by thread specific communicators

Minimal requirements for thread-aware MPI
All MPI calls are thread save, this means two concurrent threads may
execute MPI calls, the result is invariant concerning the call sequence,
also by interleaving of the calls in time
Blocking MPI calls block only the calling thread, while further threads can
be active, especially these may execute MPI calls.
MPI calls can be made thread save when one only executes one call at a
time. This can be performed with one MPI process with individual lock.
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Hybrid Programming: MPI and Threads II
MPI_Init() and MPI_Finalize() should be called by the same
thread, so called main thread
Initialisation of MPI and thread environment with
int MPI::Init_thread (int& argc, char **& argv, int required)

The argument required specifies a necessary thread level
I MPI_THREAD_SINGLE: only a thread will be executed
I MPI_THREAD_FUNNELED: the process can be multi-threaded, MPI calls are

performed only by the main thread
I MPI_THREAD_SERIALIZED: the process can be multi-threaded and several

threads may execute MPI calls, but at each point in time only one (thus no
concurrency of MPI calls)

I MPI_THREAD_MULTIPLE: Several threads may call MPI without constraints

The user has to ensure the correspondence of MPI collective operations
on a communicator via interthread synchronisation
It is not guaranteed, that the exception handling is done by the same
thread, that has executed the MPI call causing the exception.
Request of the current thread level with int MPI::Query_thread()
determination whether main thread bool MPI::Is_thread_main()
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MPI-2 One-sided Communication
One-sided communication is an extension of communication mechanism
by Remote Memory Access (RMA)
Three communication calls:
MPI_Put(), MPI_Get() and MPI_Accumulate()

Different synchronization calls: Fence, Wait, Lock/Unlock
Advantage: Usage of architecture characteristics (shared memory,
hardware supported put/get operations, DMA engines)
Initialisation of memory window
Management via opaque object for storage of process group, that has
access, and of window attributes
MPI::Win MPI::Win::Create() and void MPI::Win::Free()

from MPI-2 standard document
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