
Algorithms for Dense Matrices I

Stefan Lang

Interdisciplinary Center for Scientific Computing (IWR)
University of Heidelberg

INF 368, Room 532
D-69120 Heidelberg

phone: 06221/54-8264
email: Stefan.Lang@iwr.uni-heidelberg.de

WS 14/15

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 1 / 25

Topics

Algorithms for dense matrices as data parallel algorithms
Data distribution of vectors and matrices
Matrix transposition

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 2 / 25

Partitioning of Vectors I

Vector x ∈ RN corresponds to an ordered list of numbers.
Each index i of the index set I = {0, . . . ,N − 1} is assigned a real number
xi .
Instead of RN we write R(I) to emphasize the dependency of the index
set.
The natural (and most efficient) data structure for a vector is the array.
Since arrays start in many programming languages with index 0, this is
also the case for the index set I.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 3 / 25

Partitioning of Vectors II

A data partitioning matches now a segmentation of the index set I

I =
⋃
p∈P

Ip, with p 6= q ⇒ Ip ∩ Iq = ∅,

where P is the process set.
With good load balancing the index sets Ip, p ∈ P should contain each
(nearly) an equal number of elements.
Process p ∈ P stores such the components xi , i ∈ Ip of the vector x .
In each process we would again like to work with a contiguous index set
Ĩp, that starts at 0, this means

Ĩp = {0, . . . , |Ip| − 1}.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 4 / 25

Partitioning of Vectors III

The mappings

p : I → P resp.
µ : I → N

assign each index i ∈ I invertible unique a process p(i) ∈ P and a local index
µ(i) ∈ Ĩp(i):

I 3 i 7→ (p(i), µ(i)).

The invertible mapping
µ−1 :

⋃
p∈P

{p} × Ĩp︸ ︷︷ ︸
⊂P×N

→ I

provides for each local index i ∈ Ĩp and process p ∈ P the global index
µ−1(p, i), thus

p(µ−1(p, i)) = p and µ(µ−1(p, i)) = i .

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 5 / 25

Partitioning of Vectors IV

Common partitionings are especially the cyclic partitioning with1

p(i) = i %P
µ(i) = i ÷P

and the blockwise partitioning with

p(i) =

{
i ÷(B + 1) if i < R(B + 1)
R + (i − R(B + 1))÷B otherwise

µ(i) =

{
i %(B + 1) if i < R(B + 1)
(i − R(B + 1))%B otherwise

with B = N ÷P and R = N %P. Here is the idea, that the first R processes
get B + 1 indices and the remaining B indices each.

1÷ means integer division; % the modulo function
Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 6 / 25

Partitioning of Vectors V

Cyclic and blockwise partitioning for N = 13 and P = 4:
cyclic partitioning:

I : 0 1 2 3 4 5 6 7 8 9 10 11 12
p(i) : 0 1 2 3 0 1 2 3 0 1 2 3 0
µ(i) : 0 0 0 0 1 1 1 1 2 2 2 2 3

z.B. I1 = {1,5,9},
Ĩ1 = {0,1,2}.

blockwise partitioning

I : 0 1 2 3 4 5 6 7 8 9 10 11 12
p(i) : 0 0 0 0 1 1 1 2 2 2 3 3 3
µ(i) : 0 1 2 3 0 1 2 0 1 2 0 1 2

z.B. I1 = {4,5,6},
Ĩ1 = {0,1,2}.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 7 / 25

Partitioning of Matrices I

For a matrix A ∈ RN×M each tuple (i , j) ∈ I × J, with I = {0, . . . ,N − 1}
and J = {0, . . . ,M − 1}, is assigned a real number aij .
In principle the assignment of matrix elements to processors is arbitrary
However the elements assigned to a processor can in general not be
represented as matrix again.
Exception: separate segmentation of the one-dimensional index sets I
and J.
Herefore we assume the processes as being organized as a
two-dimensional field , thus

(p,q) ∈ {0, . . . ,P − 1} × {0, . . . ,Q − 1}.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 8 / 25

Partitioning of Matrices II

The index sets I, J are partitioned into

I =
P−1⋃
p=0

Ip and J =
Q−1⋃
q=0

Jq

process (p,q) is then responsible for the indices Ip × Jq .

Locally process (p,q) stores its elements then as R(̃Ip × J̃q) matrix.
The partitioning of I and J are formally described by the mappings p and
µ as well as q and ν:

Ip = {i ∈ I | p(i) = p}, Ĩp = {n ∈ N | ∃i ∈ I : p(i) = p ∧ µ(i) = n}
Jq = {j ∈ J | q(j) = q}, J̃q = {m ∈ N | ∃j ∈ J : q(j) = q ∧ ν(j) = m}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 9 / 25

Partitioning of Matrices III
Examples for partitioning of a 6× 9 matrix onto four processors

(a) P = 1, Q = 4 (Columns), J: cyclic:
0 1 2 3 4 5 6 7 8 J
0 1 2 3 0 1 2 3 0 q
0 0 0 0 1 1 1 1 2 ν

. .

. .

. .

. .

. .

. .

(b) P = 4,Q = 1 (Rows), I: blockwise:
0 0 0 .
1 0 1 .
2 1 0 .
3 1 1 .
4 2 0 .
5 3 0 .
I p µ

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 10 / 25

Partitioning of Matrices IV

(c) P = 2, Q = 2 (Array), I: cyclic, J: blockwise:
0 1 2 3 4 5 6 7 8 J
0 0 0 0 0 1 1 1 1 q
0 1 2 3 4 0 1 2 3 ν

0 0 0 .
1 1 0 .
2 0 1 .
3 1 1 .
4 0 2 .
5 1 2 .
I p µ

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 11 / 25

Partitioning of Matrices V

Which data partitioning is now the best one?
In general the organisation of the processes as a nearly quadratic array leads to a
partitioning with good load balancing.

More important is however that different partitionings are suited differently good
for distinct algorithms.

We will see, that a process array with cyclic partitioning is suited quite well for row
as well as column indices for the LU partitioning.

This partitioning is however not optimal for the solution of the resulting triangular
systems. If one has to solve the equation system for many righthand sides then a
compromise has to be achieved.

This generally holds for nearly all tasks of linear algebra: The multiplication of two
matrices or the transposition of a matrix represents only a step in a larger
algorithm.

The data partitioning can thus not be optimized towards a partial step, but should
give a meaningful tradeoff. Eventually can be thought whether rearranging
(copying) the data into a different structure is advantegeous.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 12 / 25

Transposition of a Matrix I

Task description
Given: A ∈ RN×M distributed onto a set of processes;
Determine: AT with the same data partitioning as A.

In principle the problem is trivial.
We could distribute the matrix onto the processors such, that only
communication with nearest neighbors is necessary (since the processes
communicate pairwise).

12 1 3 5
0 13 7 9
2 6 14 11
4 8 10 15

Optimal data distribution for the matrix transposition (the numbers denote
the processor numbers).

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 13 / 25

Transposition of a Matrix II

Example with ring topology:
Obviously only communication is necessary between direct neighbors
(0↔ 1,2↔ 3, . . . ,10↔ 11).
Albeit these data partitioning does not coincide with the scheme, that we
just have introduced and is for example less suited for the multiplication of
two matrices.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 14 / 25

Transposition of a Matrix: 1D Partitioning
Let us consider without loss of generality a column-wise, blocked partitioning

N/P

{

N/P︷ ︸︸ ︷
(0,0) (0,1) (0,7)
(1,0) (1,1) to P0 to P0

...
. . .

...

to P1
. . . to P1

...

...
. . .

(7,0) to P2 to P2 (7,7)
P0 P1 P2

8× 8 matrix on three processors in column-wise, blocked distribution.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 15 / 25

Transposition of a Matrix: 1D Partitioning
Obviously in this case each processor has to send data to each other.
Thus an all-to-all communication with individual messages has to be
performed.
Let us assume a hypercube structure as connection topology, then we
get the following parallel runtime for a N × N matrix and P processors:

TP(N,P) = 2(ts + th) ld P︸ ︷︷ ︸
setup

+ tw
N2

P2 P ld P︸ ︷︷ ︸
data trans-mission

+ (P − 1)
N2

P2
te
2︸ ︷︷ ︸

transposition

≈

≈ ld P(ts + th)2 +
N2

P
ld Ptw +

N2

P
te
2

Also for fixed P and increasing N we cannot make the communication
share of the total runtime arbitrary small.
This is the same for all algorithms for transposition (also for an optimal
distribution as above).
Matrix transposition has therefore no iso-efficiency function and is not
scalable.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 16 / 25

Transposition of a Matrix: 2D Partitioning

We consider now the two-dimensional, blocked distribution of a N × N matrix
onto a

√
P ×
√

P processor array:

. .

. . . (0,0) (0,1) (0,2)

. .

. .

. . . (1,0) (1,1) (1,2)

. .

. .

. . . (2,0) (2,1) (2,2)

Example for a two-dimensional, blocked distribution N = 8,
√

P = 3.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 17 / 25

Transposition of a Matrix

Each processor has to exchange its partial matrix with exactly one other.
A naive transposition algorithm for these configuration is:

I Processors (p, q) below the main diagonal (p > q) send the partial matrix in
the column to above up to processor (q, q), thereafter the partial matrix is
routed to the right up to the final column to processor (q, p).

I Corresponding the data of processors (p, q) are routed above the main
diagonal (q > p) first in the column q to below up to (q, q) and then to the
left until (q, p) is reached.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 18 / 25

Transposition of a Matrix

}
N√
P

N√
P︷ ︸︸ ︷

h� ?

h

h� ?

h

h

6
-h

h6-h
Diverse pathes of partial matrices for

√
P = 8.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 19 / 25

Transposition of a Matrix

Obviously route the processors (p,q) with p > q data from below to
above resp. right to left and processors (p,q) with q > p correspondingly
data from above to below and left to right.
For synchronous communication in each step four send- resp. receive
operations are necessary, and in total one needs 2(

√
P − 1) steps.

The parallel runtime therefore amounts

TP(N,P) = 2(
√

P − 1) · 4

(
ts + th + tw

(
N√
P

)2
)

+
1
2

(
N√
P

)2

te ≈

≈
√

P8(ts + th) +
N2

P

√
P8tw +

N2

P
te
2

In comparison to a one-dimensional distribution with hypercube one has
in the data transmission the factor

√
P instead of ld P.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 20 / 25

Recursive Transposition Algorithm

This algorithm is based on the following observation: For a 2× 2 block matrix
partitioning of A applies

AT =

(
A00 A01
A10 A11

)T

=

(
AT

00 AT
10

AT
01 AT

11

)
thus the off-diagonal blocks change the places and then each partial matrix
has to be transposed. This of course happens recursively until a 1× 1 matrix
is reached. Is N = 2n, then n recursion steps are necessary.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 21 / 25

Recursive Transposition Algorithm
The hypercube is the ideal connection topology for this algorithm.
With N = 2n and

√
P = 2d with n ≥ d this mapping of indices

I = {0, . . . ,N − 1} is done on the processors via

p(i) = i ÷2m−d ,

µ(i) = i %2m−d

m︷ ︸︸ ︷
...

...
...

...
...

...
...

...︸ ︷︷ ︸
d

︸ ︷︷ ︸
m−d

The upper d bits of an index describe the processor, on which the index
is mappeed.
Consider as example d = 3, thus

√
P = 23 = 8.

In the recursion step the matrix has to be divided into 2× 2 blocks from
4× 4 partial matrices and 2 · 16 processors have to exchange data, for
example processor 101001 = 41 and 001101 = 13. This happens in two
steps over the processors 001001 = 9 and 101101 = 45.
These are both direct neighbors of the processors 41 and 13 in the
hypercube.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 22 / 25

Recursive Transposition Algorithm

000

001

010

011

100

101

110

111

000001010011100101110111

41

13

�
�
�
�
����
�

�
�

��	

9

45

6

-

?
�

Communication in the recursive transposition algorithm for d = 3.

The recursive transposition algorithm works now recursive on the processor topology.
Is a processor reached, the transposition is continued with the sequential algorithms.
The parallel runtime is described with

TP(N,P) = ld P(ts + th)2 +
N2

P
ld
√

P2tw +
N2

P
te
2

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 23 / 25

Recursive Transposition Algorithm
Program (Recursive transposition algorithm on hypercube)
parallel recursive transpose
{

const int d = . . . , n = . . . ;
const int P = 2d , N = 2n;

process Π[int (p, q) ∈ {0, . . . , 2d − 1} × {0, . . . , 2d − 1}]
{

Matrix A, B; // A is the input matrix
void rta(int r , int s, int k)
{

if (k == 0) { A = AT ; return; }
int i = p − r , j = q − s, l = 2k−1;
if (i < l)
{

if (j < l)
{ // left upper

recv(B,Πp+l,q); send(B,Πp,q+l);
rta(r ,s,k − 1);

}
else
{ // right upper

send(A,Πp+l,q); recv(A,Πp,q−l);
rta(r ,s + l ,k − 1);

}
}
. . .

}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 24 / 25

Recursive Transposition Algorithm cont.

Program (Recursive transposition algorithm on hypercube cont.)
parallel recursive transpose cont.
{

. . .
else
{

if (j < l) { // left lower
send(A,Πp−l,q); recv(A,Πp,q+l);
rta(r + l ,s,k − 1);

}
else
{ // right lower

recv(B,Πp−l,q); send(B,Πp,q−l);
rta(r + l ,s + l ,k − 1);

}
}

}
rta(0,0,d);

}
}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 25 / 25

