Algorithms for Dense Matrices III

Stefan Lang

Interdisciplinary Center for Scientific Computing (IWR)
University of Heidelberg
INF 368, Room 532
D-69120 Heidelberg
phone: 06221/54-8264
email: Stefan.Lang@iwr.uni-heidelberg.de

WS 14/15

Topics

Data parallel algorithms for dense matrices

- LU decomposition

LU Decomposition: Problem Formulation

Be the linear equation system to solve

$$
\begin{equation*}
A x=b \tag{1}
\end{equation*}
$$

with a $N \times N$ matrix A and according vectors x and b.
Gaussian Elimination Method (sequential)
(1) for $(k=0 ; k<N ; k++)$
(2) \quad for $(i=k+1 ; i<N ; i++)\{$
(3) $\quad l_{i k}=a_{i k} / a_{k k}$;
(4) \quad for $(j=k+1 ; j<N ; j++)$
(5) $\quad a_{i j}=a_{i j}-l_{i k} \cdot a_{k j}$;
(6) $\quad b_{i}=b_{i}-l_{i k} \cdot b_{k}$;
\}

transforms the equation system (1) into the equation system

$$
\begin{equation*}
U x=d \tag{2}
\end{equation*}
$$

with an upper triangular matrix U.

LU Decomposition: Properties

Above formulation has the following properties:

- The matrix elements $a_{i j}$ for $j \geq i$ contain the according entries of U, this means A will be overwritten.
- Vector b is overwritten with the elements of d.
- It is assumed, that the $a_{k k}$ in line (3) is always non zero (no pivoting).

LU Decomposition: Derivation of Gaussian Elimination

The $L U$ decomposition can be derived from Gaussian elimination:

- Each individual transformation step, that consists for fixed k and i from the lines (3) to (5), can be written as a multiplication of the equation system with a matrix $\hat{L}_{i k}$ from left:

$$
\hat{L}_{i k}=\left(\begin{array}{cccccc}
1 & & & k & & \\
& 1 & & & & \\
& & \ddots & & & \\
& & & \ddots & & \\
& & -l_{i k} & & \ddots & \\
& & & & & 1
\end{array}\right)=I-l_{i k} E_{i k}
$$

$E_{i k}$ is the matrix whose single element is $e_{i k}=1$, and that otherwise consists of zeros, with $l_{i k}$ from line (3) of the Gaussian elimination method.

LU Decomposition

- Thus applies

$$
\begin{align*}
& \hat{L}_{N-1, N-2} \cdots \cdots \hat{L}_{N-1,0} \cdots \cdots \hat{L}_{2,0} \hat{L}_{1,0} A= \tag{3}\\
& =\hat{L}_{N-1, N-2} \cdots \cdot \hat{L}_{N-1,0} \cdots \cdots \hat{L}_{2,0} \hat{L}_{1,0} b
\end{align*}
$$

and because of (2) applies

$$
\begin{equation*}
\hat{L}_{N-1, N-2} \cdots \cdots \hat{L}_{N-1,0} \cdots \cdots \hat{L}_{2,0} \hat{L}_{1,0} A=U . \tag{4}
\end{equation*}
$$

LU Decomposition: Properties

- There apply the following properties:
(1) $\hat{L}_{i k} \cdot \hat{L}_{i^{\prime}, k^{\prime}}=I-l_{i k} E_{i k}-l_{i^{\prime} k^{\prime}} E_{i^{\prime} k^{\prime}}$ for $k \neq i^{\prime}\left(\Rightarrow E_{i k} E_{i^{\prime} k^{\prime}}=0\right)$.
(2) $\left(I-l_{i k} E_{i k}\right)\left(I+l_{i k} E_{i k}\right)=I$ für $k \neq i$, thus $\hat{L}_{i k}^{-1}=I+l_{i k} E_{i k}$.
- Because of 2 and the relationship (4)

$$
\begin{equation*}
A=\underbrace{\hat{L}_{1,0}^{-1} \cdot \hat{L}_{2,0}^{-1} \cdots \hat{L}_{N-1,0}^{-1} \cdots \cdots \hat{L}_{N-1, N-2}^{-1}}_{=: L} U=L U \tag{5}
\end{equation*}
$$

- Because of 1 , which also holds in its meaning for $\hat{L}_{i k}^{-1} \cdot \hat{L}_{i^{\prime} k^{\prime}}^{-1}, L$ is a lower triangular matrix with $L_{i k}=l_{i k}$ for $i>k$ and $L_{i i}=1$.
- The algorithm for $L U$ decomposition of A is obtained by leaving out line (6) in the Gaussian algorithm above. The matrix L will be stored in the lower triangle of A.

LU Decomposition: Parallel Variant with Row-wise Partitioning

Row-wise partitioning of a $N \times N$ matrix for the case $N=P$:

P_{0}								
P_{1}			(k, k)					
P_{2}								
P_{3}								
P_{4}								
P_{5}								
P_{6}								
P_{7}								

- In step k processor P_{k} sends the matrix elements $a_{k, k}, \ldots, a_{k, N-1}$ to all processors P_{j} with $j>k$, and these eliminate in their row.
- Parallel runtime:

$$
\begin{align*}
T_{P}(N) & =\underbrace{\sum_{m=N-1}^{1}}_{\substack{\text { Number of } \\
\text { eows to } \\
\text { eliminate }}}(t_{s}+t_{h}+\underbrace{t_{w} \cdot m}_{\substack{\text { Rest of row } \\
k}}) \underbrace{\operatorname{Id} N}_{\text {Broadcast }}+\underbrace{m 2 t_{f}}_{\text {Elimination }} \tag{6}\\
& =\frac{(N-1) N}{2} 2 t_{f}+\frac{(N-1) N}{2} \operatorname{Id} N t_{w}+N \operatorname{ld} N\left(t_{s}+t_{h}\right) \\
& \approx N^{2} t_{f}+N^{2} \operatorname{ld} N \frac{t_{w}}{2}+N \operatorname{ld} N\left(t_{s}+t_{h}\right)
\end{align*}
$$

LU Decomposition: Analysis of Parallel Variant

- Sequential runtime of LU decomposition:

$$
\begin{align*}
T_{S}(N) & =\sum_{m=N-1}^{1} \underbrace{m}_{\begin{array}{c}
\text { rowsare to } \\
\text { elim. }
\end{array}} \underbrace{2 m t_{f}}_{\text {Elim. of a row }}= \tag{7}\\
& =2 t_{f} \frac{(N-1)(N(N-1)+1)}{6} \approx \frac{2}{3} N^{3} t_{f}
\end{align*}
$$

- As you can see from (6), $N \cdot T_{P}=O\left(N^{3} \operatorname{ld} N\right)$ (consider $P=N!$) increases asymptotically faster than $T_{S}=O\left(N^{3}\right)$.
- The algorithm is thus not cost optimal (efficiency cannot be kept constant for $P=N \longrightarrow \infty)$.
- The reason is, that processor P_{k} waits within its broadcast until all other processors have received the pivot row.
- We describe now an asynchronous variant, where a processor immediately starts calculating as soon as it receives the pivot row.

LU Decomposition: Asynchronous Variant

```
Program ( Asynchronous LU decomposition for P=N)
parallel lu-1
{
const int N = . . .;
process }\Pi[\mathrm{ int }p\in{0,\ldots,N-1}
    double }A[N]; // my row
    double }rr[2][N]; // buffer for pivot ro
    double *r;
    msgid m;
    int j, k;
    if (p>0)m=\operatorname{arecv}(\mp@subsup{\Pi}{p-1}{},rr[0]);
    for (k=0;k<N-1;k++)
    {
        if (p==k) send( }\mp@subsup{\Pi}{p+1}{},A)
        if ( }p>k
        {
            while (\neg\operatorname{success(m)); // wait for pivot row}
            if (p<N-1) asend( }\mp@subsup{\Pi}{p+1}{},rr[k%2])
```



```
            r=rr[k%2];
            A[k] = A[k]/r[k];
            for (j=k+1;j<N;j++)
            A[j] =A[j] - A[k] \cdotr[j];
        }
    }
    }
}
```


LU Decomposition: Temporal Sequence

How does the parallel algorithm behave over time?

	Time P_{0}
send $k=0$	

$P_{1} \quad$| recv send | |
| :--- | :---: |
| | |
| $=0 k=0$ | |
| | |
| | |

$\begin{array}{cccc} \\ P_{3} & \longmapsto \text { recv } & \text { send } \quad \text { recv } & \text { send } \\ & k=0 & k=0 & k=1 \\ & & \text { Eliminate } & \\ & & k=0 & \text { Eliminate } \\ & & & k=1\end{array}$

LU Decomposition: Parallel Runtime and Efficiency

- After a fill-in time of p message transmissions the pipeline is filled completely, and all processors are always busy with elimination. Then one obtains the following runtime ($N=P$, still!):

$$
\begin{align*}
T_{P}(N) & =\underbrace{(N-1)\left(t_{s}+t_{h}+t_{w} N\right)}_{\text {fil-in time }}+\sum_{m=N-1}^{1}(\underbrace{2 m t_{f}}_{\text {elim. }}+\underbrace{t_{s}}_{\begin{array}{c}
\text { setup time } \\
\text { (compute+send } \\
\text { parallel) }
\end{array}})= \tag{8}\\
& =\frac{(N-1) N}{2} 2 t_{f}+(N-1)\left(2 t_{s}+t_{h}\right)+N(N-1) t_{w} \approx \\
& \approx N^{2} t_{f}+N^{2} t_{w}+N\left(2 t_{s}+t_{h}\right)
\end{align*}
$$

- The factor Id N of (6) is now vanished. For the efficiency we obtain

$$
\begin{align*}
E(N, P) & =\frac{T_{S}(N)}{N T_{P}(N, P)}=\frac{\frac{2}{3} N^{3} t_{f}}{N^{3} t_{f}+N^{3} t_{w}+N^{2}\left(2 t_{s}+t_{h}\right)}= \tag{9}\\
& =\frac{2}{3} \frac{1}{1+\frac{t_{w}}{t_{f}}+\frac{2 t_{s}+t_{h}}{N t_{f}}} .
\end{align*}
$$

- The efficiency is such limited by $\frac{2}{3}$. The reason for this is, that processor k remains after k steps idle. This can be avoided by more rows per processor (coarser granularity).

LU Decomposition: The Case $N \gg P$

LU decomposition for the case $N \gg P$:

- Program 0.1 from above can be easily extended to the case $N \gg P$. Herefore the rows are distributed cyclicly onto the processors $0, \ldots, P-1$. A processor's current pivot row is obtained from the predecessor in the ring.
- The parallel runtime is

$$
\begin{aligned}
T_{P}(N, P) & =\underbrace{(P-1)\left(t_{s}+t_{h}+t_{w} N\right)}_{\text {fill-in time of pipeline }}+\sum_{m=N-1}^{1}(\underbrace{\frac{m}{P}}_{\begin{array}{c}
\text { rows per } \\
\text { processor }
\end{array}} \cdot m 2 t_{f}+t_{s})= \\
& =\frac{N^{3}}{P} \frac{2}{3} t_{f}+N t_{s}+P\left(t_{s}+t_{h}\right)+N P t_{w}
\end{aligned}
$$

and thus one has the efficiency

$$
E(N, P)=\frac{1}{1+\frac{P t_{s}}{N^{2} \frac{2}{3} t_{f}}+\ldots} .
$$

LU Decomposition: The case $N \gg P$

- Because of row-wise partitioning applies however in average, that some processors have a row more than others.
- A still better load balancing is achieved by a two-dimensional partitioning of the matrix. Herefore we assume that the segmentation of the row and column index set

$$
I=J=\{0, \ldots, N-1\}
$$

is done with the mappings p and μ for I and q and ν for J.

LU decomposition: General Partitioning

- The following implementation is simplified, if we additonally assume, that the data partitioning fulfills the following monotony condition:

$$
\begin{array}{lll}
\text { Ist } i_{1}<i_{2} \text { and } p\left(i_{1}\right)=p\left(i_{2}\right) & \text { such applies } & \mu\left(i_{1}\right)<\mu\left(i_{2}\right) \\
\text { ist } j_{1}<j_{2} \text { and } q\left(j_{1}\right)=q\left(j_{2}\right) & \text { such applies } & \nu\left(j_{1}\right)<\nu\left(j_{2}\right)
\end{array}
$$

- Therefore an interval of global indices $\left[i_{\text {min }}, N-1\right] \subseteq I$ corresponds to a number of intervals of local indices in different processors, that can be calculated by:

Set

$$
\begin{aligned}
& \tilde{I}(p, k)=\{m \in \mathbf{N} \mid \exists i \in I, i \geq k: p(i)=p \wedge \mu(i)=m\} \\
& \text { and }
\end{aligned} \begin{aligned}
\text { ibegin }(p, k) & = \begin{cases}\min \tilde{I}(p, k) & \text { if } \tilde{I}(p, k) \neq \emptyset \\
N & \text { otherwise }\end{cases} \\
\text { iend }(p, k) & = \begin{cases}\max \tilde{I}(p, k) & \text { if } \tilde{I}(p, k) \neq \emptyset \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- Then one can substitute a loop

$$
\text { for }(i=k ; i<N ; i++) \ldots
$$

by local loops in the processors p of shape

$$
\text { for }(i=i \operatorname{ibegin}(p, k) ; i \leq \operatorname{iend}(p, k) ; i++) \ldots
$$

LU Decomposition: General Partitioning

Analogous we perform with the column indices:

$$
\begin{aligned}
& \text { Set } \\
& \tilde{J}(q, k)=\{n \in \mathbf{N} \mid \exists j \in j, j \geq k: q(j)=q \wedge \nu(j)=n\} \\
& \text { and } \\
& \begin{aligned}
\text { jbegin }(q, k) & = \begin{cases}\min \tilde{J}(q, k) & \text { if } \tilde{J}(q, k) \neq \emptyset \\
N & \text { otherwise }\end{cases} \\
\text { jend }(q, k) & = \begin{cases}\max \tilde{J}(q, k) & \text { if } \tilde{J}(q, k) \neq \emptyset \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
\end{aligned}
$$

Now we can go on with the implementation of the $L U$ decomposition for a general data partitioning.

LU Decomposition: Algorithm with General Partitioning

Program (Synchronous LU decompositon with general data partitioning)
 parallel $l u-2$

```
const int \(N=\ldots, \sqrt{P}=\ldots\);
process \(\Pi[\operatorname{int}(p, q) \in\{0, \ldots, \sqrt{P}-1\} \times\{0, \ldots, \sqrt{P}-1\}]\)
\{
    double \(A[N / \sqrt{P}][N / \sqrt{P}], r[N / \sqrt{P}], c[N / \sqrt{P}]\);
    int \(i, j, k\);
for \((k=0 ; k<N-1 ; k++)\)
\{
    \(I=\mu(k) ; J=\nu(k) ; \quad / /\) local indices
    // distribute pivot row:
    if ( \(p==p(k)\) )
    \{ I/ I have pivot row
        for \((j=j \operatorname{jbegin}(q, k) ; j \leq j e n d(q, k) ; j++) \quad\) // copy segment of pivot row
        Send \(r\) to all processors \((x, q) \forall x \neq p\)
    \}
    else recv( \(\left.\Pi_{p(k), q}, r\right)\);
    // distribute pivot column:
    if \((q==q(k))\)
    \{ // I have part of column \(k\)
        for \((i=\operatorname{ibegin}(p, k+1) ; i \leq \operatorname{iend}(p, k+1) ; i++)\)
                        \(c[i]=A[i][J]=A[\bar{i}[J] / r[J] ;\)
        Send \(c\) to all processors \((p, y) \forall y \neq q\)
    \}
    else \(\operatorname{recv}\left(\Pi_{p, q(k)}, c\right)\);
    // elimination:
    for \((i=i \operatorname{begin}(p, k+1) ; i \leq \operatorname{iend}(p, k+1) ; i++)\)
        for \((j=j \operatorname{begin}(q, k+1) ; j \leq j e n d(q, k+1) ; j++)\)
        \(A[i][j]=A[i][j]-c[i] \cdot r[j] ;\)
\}
\}
```


LU Decomposition: Analysis I

- Let us analyse this implementation (synchronous variant):

$$
\begin{aligned}
T_{P}(N, P) & =\sum_{m=N-1}^{1} \underbrace{\left(t_{s}+t_{h}+t_{w} \frac{m}{\sqrt{P}}\right) \operatorname{ld} \sqrt{P} 2}_{\begin{array}{c}
\text { Broadcast pivot } \\
\text { row/-column }
\end{array}}+\left(\frac{m}{\sqrt{P}}\right)^{2} 2 t_{f}= \\
& =\frac{N^{3}}{P} \frac{2}{3} t_{f}+\frac{N^{2}}{\sqrt{P}} \operatorname{ld} \sqrt{P} t_{w}+N \operatorname{ld} \sqrt{P} 2\left(t_{s}+t_{h}\right)
\end{aligned}
$$

- Mit $W=\frac{2}{3} N^{3} t_{f}$, d.h. $N=\left(\frac{3 W}{2 t_{f}}\right)^{\frac{1}{3}}$, gilt

$$
T_{P}(W, P)=\frac{W}{P}+\frac{W^{\frac{2}{3}}}{\sqrt{P}} \operatorname{ld} \sqrt{P} \frac{3^{2 / 3} t_{w}}{\left(2 t_{f}\right)^{\frac{2}{3}}}+W^{\frac{1}{3}} \operatorname{ld} \sqrt{P} \frac{3^{1 / 3} 2\left(t_{s}+t_{h}\right)}{\left(2 t_{f}\right)^{\frac{1}{3}}}
$$

LU Decomposition: Analysis II

- The isoefficiency function can be obtained from $P T_{P}(W, P)-W \stackrel{!}{=} K W$:

$$
\begin{aligned}
& \sqrt{P} W^{\frac{2}{3}} \operatorname{ld} \sqrt{P} \frac{3^{2 / 3} t_{w}}{\left(2 t_{f}\right)^{\frac{2}{3}}}=K W \\
\Leftrightarrow \quad & W=P^{\frac{3}{2}}(\operatorname{ld} \sqrt{P})^{3} \frac{9 t_{w}^{3}}{4 t_{f}^{2} K^{3}}
\end{aligned}
$$

thus

$$
W \in O\left(P^{3 / 2}(\operatorname{ld} \sqrt{P})^{3}\right)
$$

- Program 0.2 can also be realized in an asynchronous variant. Hereby the communication shares can be effectively hidden behind the calculation.

LU Decomposition: Pivoting

- The $L U$ factorisation of general, invertible matrices requires pivoting and is also meaningful by reasons of minimisation of rounding errors.
- One speaks of full pivoting, if the pivot element in step k can be choosen from all $(N-k)^{2}$ remaining matrix elements, resp. of partial pivoting, if the pivot element can only be choosen from a part of the elements. Usual for example is the maximal row- or column pivot this means one chooses $a_{i k}, i \geq k$, with $\left|a_{i k}\right| \geq\left|a_{m k}\right| \quad \forall m \geq k$.
- The implementation of $L U$ decomposition has now to consider the choice of the new pivot element during the elimination. Herefore one has two possibilites:
- Explicit exchange of rows and/or columns: Here a rest of the algorithm then remains unchanged (for row exchanges the righthand side has to be permuted).
- The actual data is not moved, but one remembers the interchange of indices (in an integer array, that maps old indices to new).

LU Decomposition: Pivoting

- The parallel versions have different properties regarding pivoting.

The following points have to be considered for the parallel $L U$ partitioning with partial pivoting:

- If the area, in which the pivot element is searched, is stored in a single processor (e.g. row-wise partitioning with maximal row pivot), then the search is to be performed purely sequential. In the other case it can be parallelized.
- But this parallel search for a pivot element requires communication (and such synchronisation), that renders the pipelining in the asynchronous variant impossible.
- To permute the indices is faster than explicit exchange, especially if the exchange requries data exchange between processors. Besides that a favourable load balancing can such be distroyed, if randomly the pivot elements reside always in the same procesor.
- A quite good compromise is given by the row-wise cyclic partitioning with maximal row pivot and and explicit exchange, since:
- pivot search in row k is pure sequential, but needs only $O(N-k)$ operations (compared to $O\left((N-k)^{2} / P\right)$ for the elimination); besides the pipelining is not destroyed.
- explicit exchange requires only communication of the index of the pivot column, but no exchange of matrix elements between processors. The pivot column index is sent with the pivot row.
- load balancing is not influenced by the pivoting.

LU Decomposition: Solution of Triangular Systems

- We assume the matrix A be factorized into $A=L U$ as above, and continue with the solution of the system of the form

$$
\begin{equation*}
L U x=b \tag{10}
\end{equation*}
$$

This happens in two steps:

$$
\begin{align*}
L y & =b \tag{11}\\
U x & =y \tag{12}
\end{align*}
$$

- We shortly consider the sequential algorithm:

```
// Ly = b:
for (k=0;k<N;k++) {
    yk=\mp@subsup{b}{k}{};\quad\mp@subsup{I}{kk}{}=1
    for (i=k+1;i<N;i++)
            b}=\mp@subsup{b}{i}{}-\mp@subsup{a}{ik}{}\mp@subsup{y}{k}{}
}
// Ux = y:
for (k=N-1;k\geq0;k--){
    xk}=\mp@subsup{y}{k}{}/\mp@subsup{a}{kk}{
    for (i=0;i<k;i++)
        y}=\mp@subsup{y}{i}{}-\mp@subsup{a}{ik}{}\mp@subsup{x}{k}{}
}
```

- This is a column oriented version, since after calculation of y_{k} resp. x_{k} immediately the righthand side is modified for all indices $i>k$ resp. $i<k$.

LU Decomposition: Parallelisation

- The parallelisation has of course to be oriented at the data partitioning of the $L U$ decomposition (if one wants to avoid copying, which seems not to be meaningful because of $O\left(N^{2}\right)$ data and $O\left(N^{2}\right)$ operations We consider for this a two-dimensional block-wise partitioning of the matrix:

- The sections of b are copied across processors rows and the sections of y are copied across the processor columns. Obviously after calculation of y_{k} only the processors of column $q(k)$ can be busy with the modification of b. According to that during the solution of $U x=y$ only the processors $(*, q(k))$ can be busy at a time. Thus, with a row-wise partitioning $(Q=1)$ always all processors can be kept busy.

LU Decomposition: Parallelisation for General Partitioning

Program (Resolving of $L U x=b$ for general data partitioning) parallel lu-solve

```
const int \(N=\). . ;
const int \(\sqrt{P}=\ldots\);
process \(\Pi[\operatorname{int}(p, q) \in\{0, \ldots, \sqrt{P}-1\} \times\{0, \ldots, \sqrt{P}-1\}]\)
\{
    double \(A[N / \sqrt{P}][N / \sqrt{P}]\);
    double \(b[N / \sqrt{P}] ; x[N / \sqrt{P}]\);
    int \(i, j, k, l, K\);
    // Solve Ly \(=b\), store \(y\) in \(x\).
    // b column-wise distributed onto diagonal processors.
    if \((p==q)\) send \(b\) to all \((p, *)\);
    for ( \(k=0 ; k<N ; k++\) )
    \{
    \(I=\mu(k) ; K=\nu(k) ;\)
    if \((q(k)==q) \quad\) // only they have something to do
    \{
            if \((k>0 \wedge q(k) \neq q(k-1)) \quad / /\) need current \(b\)
                \(\operatorname{recv}\left(\Pi_{p, q(k-1)}, b\right) ;\)
            if \((p(k)==p)\)
                \(x[K]=b[I] ;\)
                            // have diagonal element
                            // store \(y\) in \(x\) !
                send \(x[K]\) to all \((*, q)\);
            \}
            else recv( \(\left.\Pi_{p(k), q(k)}, x[k]\right)\);
            for ( \(i=\operatorname{ibegin}(p, k+1) ; i \leq \operatorname{iend}(p, k+1) ; i++)\)
                        \(b[i]=b[i]-A[i][K] \cdot x[K]\);
            if \((k<N-1 \wedge q(k+1) \neq q(k))\)
                \(\operatorname{send}\left(\Pi_{p, q(k+1)}, b\right)\);
    \}
    \}
```


LU Decomposition: Parallelisation

Program (Resolving of $L U x=b$ for general data partitioning cont.) parallè lu-solve cont. \{

```
    // \(\{y\) is stored in \(x ; x\) is distributed colum-wise and is copied row-wise. For \(U x=y\) we want to store \(y\) in \(b\).
    " \(\left\{\begin{array}{l}\text { It is such to copy } x \text { into } b \text {, where } b \text { shall be distributed row-wise and copied column-wise. }\end{array}\right.\)
for ( \(i=0 ; i<N / \sqrt{P} ; i++\) )
                                // extinquish
        \(b[i]=0\);
for \((j=0 ; j<N-1 ; j++\) )
    if \((q(j)=q \wedge p(j)=p) \quad\) // one has to be it
        \(b[\mu(j)]=x[\nu(j)] ;\)
    sum \(b\) across all \((p, *)\), result in \((p, p)\);
    // Resolving of \(U x=y\) ( \(y\) is stored in \(b\) )
    if \((p==q\) ) send \(b\) and all \((p, *)\);
    for ( \(k=N-1 ; k \geq 0 ; k--\) )
\{
    \(I=\mu(k) ; K=\nu(k) ;\)
    if \((q(k)==q)\)
    \}
        if \((k<N-1 \wedge q(k) \neq q(k+1))\)
                \(\operatorname{recv}\left(\Pi_{p, q(k+1)}, b\right)\);
            if \((p(k)==p\) )
            \{
                \(x[K]=b[I / A[I[K] ;\)
                send \(x[K]\) to all \((*, q)\);
            \}
            else \(\operatorname{recv}\left(\Pi_{p(k), q(k)}, x[K]\right) ;\)
            for \((i=\operatorname{ibegin}(p, 0) ; i \leq \operatorname{iend}(p, 0) ; i++)\)
                \(b[i]=b[i]-A[[\bar{i}[K] \cdot x[K]\);
            if \((k>0 \wedge q(k) \neq q(k-1))\)
            send \(\left(\square_{p, q(k-1)}, b\right)\);
    \}
\}
```

 \}
 \}

LU Decomposition: Parallelisation

- Since at a time always only \sqrt{P} processors are busy, the algorithm cannot be cost optimal. The total scheme consisting of $L U$ decomposition and solution of triangular systems can still always be scaled iso-efficiently, since the sequential complexity of solution is only $O\left(N^{2}\right)$ compared to $O\left(N^{3}\right)$ for the factorisation.
- If one needs to solve the equation system for many righthand sides, one should use a rectangular processor array $P \times Q$ with $P>Q$, or in the extreme case choose as $Q=1$. If pivoting has been required, this was already a meaningful configuration.

