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LU Decomposition: Problem Formulation
Be the linear equation system to solve

Ax = b (1)

with a N × N matrix A and according vectors x and b.
Gaussian Elimination Method (sequential)

(1) for (k = 0; k < N; k ++)
(2) for (i = k + 1; i < N; i ++) {
(3) lik = aik/akk ;
(4) for (j = k + 1; j < N; j ++)
(5) aij = aij − lik · akj ;
(6) bi = bi − lik · bk ;

}

k

k

i

�
�

��	

Pivot

transforms the equation system (1) into the equation system

Ux = d (2)

with an upper triangular matrix U.
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LU Decomposition: Properties

Above formulation has the following properties:
The matrix elements aij for j ≥ i contain the according entries of U, this
means A will be overwritten.
Vector b is overwritten with the elements of d .
It is assumed, that the akk in line (3) is always non zero (no pivoting).
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LU Decomposition: Derivation of Gaussian Elimination
The LU decomposition can be derived from Gaussian elimination:

Each individual transformation step, that consists for fixed k and i from
the lines (3) to (5), can be written as a multiplication of the equation
system with a matrix L̂ik from left:

L̂ik =

k

i



1
1

. . .
. . .

−lik
. . .

1


= I − lik Eik

Eik is the matrix whose single element is eik = 1, and that otherwise
consists of zeros, with lik from line (3) of the Gaussian elimination
method.
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LU Decomposition

Thus applies

L̂N−1,N−2 · · · · · L̂N−1,0 · · · · · L̂2,0L̂1,0A = (3)

= L̂N−1,N−2 · · · · · L̂N−1,0 · · · · · L̂2,0L̂1,0b

and because of (2) applies

L̂N−1,N−2 · · · · · L̂N−1,0 · · · · · L̂2,0L̂1,0A = U. (4)
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LU Decomposition: Properties

There apply the following properties:
1 L̂ik · L̂i′,k′ = I − lik Eik − li′k′Ei′k′ for k 6= i ′ (⇒ Eik Ei′k′ = 0) .
2 (I − lik Eik )(I + lik Eik ) = I für k 6= i , thus L̂−1

ik = I + lik Eik .

Because of 2 and the relationship (4)

A = L̂−1
1,0 · L̂

−1
2,0 · · · · L̂

−1
N−1,0 · · · · · L̂

−1
N−1,N−2︸ ︷︷ ︸

=:L

U = LU (5)

Because of 1, which also holds in its meaning for L̂−1
ik · L̂

−1
i′k ′ , L is a lower

triangular matrix with Lik = lik for i > k and Lii = 1.
The algorithm for LU decomposition of A is obtained by leaving out line
(6) in the Gaussian algorithm above. The matrix L will be stored in the
lower triangle of A.
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LU Decomposition: Parallel Variant with Row-wise
Partitioning
Row-wise partitioning of a N × N matrix for the case N = P:

P0
P1
P2 (k, k)
P3
P4
P5
P6
P7

In step k processor Pk sends the matrix elements ak,k , . . . ,ak,N−1 to all
processors Pj with j > k , and these eliminate in their row.
Parallel runtime:

TP(N) =
1∑

m=N−1︸ ︷︷ ︸
Number of

rows to
eliminate

(ts + th + tw ·m︸ ︷︷ ︸
Rest of row

k

) ld N︸︷︷︸
Broadcast

+ m2tf︸︷︷︸
Elimination

(6)

=
(N − 1)N

2
2tf +

(N − 1)N
2

ld Ntw + N ld N(ts + th)

≈ N2tf + N2 ld N
tw
2

+ N ld N(ts + th)
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LU Decomposition: Analysis of Parallel Variant

Sequential runtime of LU decomposition:

TS(N) =
1∑

m=N−1

m︸︷︷︸
rows are to

elim.

2mtf︸︷︷︸
Elim. of a row

= (7)

= 2tf
(N − 1) (N(N − 1) + 1)

6
≈ 2

3
N3tf .

As you can see from (6), N · TP = O(N3 ld N) (consider P = N!)
increases asymptotically faster than TS = O(N3).
The algorithm is thus not cost optimal (efficiency cannot be kept constant
for P = N −→∞ ).
The reason is, that processor Pk waits within its broadcast until all other
processors have received the pivot row.
We describe now an asynchronous variant, where a processor
immediately starts calculating as soon as it receives the pivot row.
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LU Decomposition: Asynchronous Variant
Program ( Asynchronous LU decomposition for P = N)
parallel lu-1
{

const int N = . . . ;
process Π[int p ∈ {0, . . . , N − 1}]
{

double A[N]; // my row
double rr [2][N]; // buffer for pivot row
double ∗r ;
msgid m;
int j , k ;

if (p > 0) m =arecv(Πp−1,rr [0]);
for (k = 0; k < N − 1; k + +)
{

if (p == k) send(Πp+1,A);
if (p > k)
{

while (¬success(m)); // wait for pivot row
if (p < N − 1) asend(Πp+1,rr [k%2]);
if (p > k + 1) m =arecv(Πp−1,rr [(k + 1)%2]);
r = rr [k%2];
A[k ] = A[k ]/r [k ];
for (j = k + 1; j < N; j + +)

A[j] = A[j]− A[k ] · r [j];
}

}
}

}
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LU Decomposition: Temporal Sequence
How does the parallel algorithm behave over time?

-Time

P0
send
k = 0

P1

recv
k = 0

send
k = 0

Eliminate
k = 0

send
k = 1

P2

recv
k = 0

send
k = 0

recv
k = 1

send
k = 1

Eliminate
k = 0

Eliminate
k = 1

P3

recv
k = 0

send
k = 0

recv
k = 1

send
k = 1

Eliminate
k = 0

Eliminate
k = 1

P4 . . .
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LU Decomposition: Parallel Runtime and Efficiency
After a fill-in time of p message transmissions the pipeline is filled
completely, and all processors are always busy with elimination. Then
one obtains the following runtime (N = P, still!):

TP(N) = (N − 1)(ts + th + tw N)︸ ︷︷ ︸
fil-in time

+
1∑

m=N−1

( 2mtf︸︷︷︸
elim.

+ ts︸︷︷︸
setup time

(compute+send
parallel)

) = (8)

=
(N − 1)N

2
2tf + (N − 1)(2ts + th) + N(N − 1)tw ≈

≈ N2tf + N2tw + N(2ts + th).

The factor ld N of (6) is now vanished. For the efficiency we obtain

E(N,P) =
TS(N)

NTP(N,P)
=

2
3 N3tf

N3tf + N3tw + N2(2ts + th)
= (9)

=
2
3

1
1 + tw

tf
+ 2ts+th

Ntf

.

The efficiency is such limited by 2
3 . The reason for this is, that processor k

remains after k steps idle. This can be avoided by more rows per
processor (coarser granularity).
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LU Decomposition: The Case N � P

LU decomposition for the case N � P:

Program 0.1 from above can be easily extended to the case N � P. Herefore the
rows are distributed cyclicly onto the processors 0, . . . ,P − 1. A processor’s
current pivot row is obtained from the predecessor in the ring.

The parallel runtime is

TP(N,P) = (P − 1)(ts + th + tw N)︸ ︷︷ ︸
fill-in time of pipeline

+
1∑

m=N−1

( m
P︸︷︷︸

rows per
processor

·m2tf + ts
)
=

=
N3

P
2
3

tf + Nts + P(ts + th) + NPtw

and thus one has the efficiency

E(N,P) =
1

1 + Pts
N2 2

3 tf
+ . . .

.
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LU Decomposition: The case N � P

Because of row-wise partitioning applies however in average, that some
processors have a row more than others.
A still better load balancing is achieved by a two-dimensional partitioning
of the matrix. Herefore we assume that the segmentation of the row and
column index set

I = J = {0, . . . ,N − 1}

is done with the mappings p and µ for I and q and ν for J.
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LU decomposition: General Partitioning
The following implementation is simplified, if we additonally assume, that the data
partitioning fulfills the following monotony condition:

Ist i1 < i2 and p(i1) = p(i2) such applies µ(i1) < µ(i2)

ist j1 < j2 and q(j1) = q(j2) such applies ν(j1) < ν(j2)

Therefore an interval of global indices [imin,N − 1] ⊆ I corresponds to a number of
intervals of local indices in different processors, that can be calculated by:

Set

Ĩ(p, k) = {m ∈ N | ∃i ∈ I, i ≥ k : p(i) = p ∧ µ(i) = m}
and

ibegin(p, k) =

{
min Ĩ(p, k) if Ĩ(p, k) 6= ∅
N otherwise

iend(p, k) =

{
max Ĩ(p, k) if Ĩ(p, k) 6= ∅
0 otherwise.

Then one can substitute a loop
for (i = k ; i < N; i ++) . . .

by local loops in the processors p of shape
for (i = ibegin(p, k); i ≤ iend(p, k); i ++) . . .
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LU Decomposition: General Partitioning

Analogous we perform with the column indices:

Set
J̃(q, k) = {n ∈ N | ∃j ∈ j , j ≥ k : q(j) = q ∧ ν(j) = n}

and

jbegin(q, k) =

{
min J̃(q, k) if J̃(q, k) 6= ∅
N otherwise

jend(q, k) =

{
max J̃(q, k) if J̃(q, k) 6= ∅
0 otherwise.

Now we can go on with the implementation of the LU decomposition for a
general data partitioning.
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LU Decomposition: Algorithm with General Partitioning
Program ( Synchronous LU decompositon with general data partitioning)
parallel lu-2
{

const int N = . . . ,
√

P = . . . ;

process Π[int (p, q) ∈ {0, . . . ,
√

P − 1} × {0, . . . ,
√

P − 1}]
{

double A[N/
√

P][N/
√

P], r [N/
√

P], c[N/
√

P];
int i , j , k ;

for (k = 0; k < N − 1; k + +)
{

I = µ(k); J = ν(k); // local indices

// distribute pivot row:
if (p == p(k))
{ // I have pivot row

for (j = jbegin(q, k); j ≤ jend(q, k); j + +)
r [j] = A[I][j]; // copy segment of pivot row

Send r to all processors (x, q) ∀x 6= p
}
else recv(Πp(k),q ,r );

// distribute pivot column:
if (q == q(k))
{ // I have part of column k

for (i = ibegin(p, k + 1); i ≤ iend(p, k + 1); i + +)
c[i] = A[i][J] = A[i][J]/r [J];

Send c to all processors (p, y) ∀y 6= q
}
else recv(Πp,q(k) , c);

// elimination:
for (i = ibegin(p, k + 1); i ≤ iend(p, k + 1); i + +)

for (j = jbegin(q, k + 1); j ≤ jend(q, k + 1); j + +)
A[i][j] = A[i][j] − c[i] · r [j];

}
}
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LU Decomposition: Analysis I

Let us analyse this implementation (synchronous variant):

TP(N,P) =
1∑

m=N−1

(
ts + th + tw

m√
P

)
ld
√

P 2︸ ︷︷ ︸
Broadcast pivot

row/-column

+

(
m√
P

)2

2tf =

=
N3

P
2
3

tf +
N2

√
P

ld
√

Ptw + N ld
√

P 2(ts + th).

Mit W = 2
3 N3tf , d.h. N =

(
3W
2tf

) 1
3 , gilt

TP(W ,P) =
W
P

+
W

2
3

√
P

ld
√

P
32/3tw
(2tf )

2
3
+ W

1
3 ld
√

P
31/32(ts + th)

(2tf )
1
3

.
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LU Decomposition: Analysis II

The isoefficiency function can be obtained from PTP(W ,P)−W !
= KW :

√
PW

2
3 ld
√

P
32/3tw
(2tf )

2
3
= KW

⇐⇒ W = P
3
2 (ld
√

P)3 9t3
w

4t2
f K 3

thus
W ∈ O(P3/2(ld

√
P)3).

Program 0.2 can also be realized in an asynchronous variant. Hereby the
communication shares can be effectively hidden behind the calculation.
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LU Decomposition: Pivoting

The LU factorisation of general, invertible matrices requires pivoting and is also
meaningful by reasons of minimisation of rounding errors.

One speaks of full pivoting, if the pivot element in step k can be choosen from all
(N − k)2 remaining matrix elements, resp. of partial pivoting, if the pivot element
can only be choosen from a part of the elements. Usual for example is the
maximal row- or column pivot this means one chooses aik , i ≥ k , with
|aik | ≥ |amk | ∀m ≥ k .

The implementation of LU decomposition has now to consider the choice of the
new pivot element during the elimination. Herefore one has two possibilites:

I Explicit exchange of rows and/or columns: Here a rest of the algorithm then remains unchanged
(for row exchanges the righthand side has to be permuted).

I The actual data is not moved, but one remembers the interchange of indices (in an integer array,
that maps old indices to new).
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LU Decomposition: Pivoting

The parallel versions have different properties regarding pivoting.
The following points have to be considered for the parallel LU partitioning with
partial pivoting:

I If the area, in which the pivot element is searched, is stored in a single processor (e.g. row-wise
partitioning with maximal row pivot), then the search is to be performed purely sequential. In the
other case it can be parallelized.

I But this parallel search for a pivot element requires communication (and such synchronisation),
that renders the pipelining in the asynchronous variant impossible.

I To permute the indices is faster than explicit exchange, especially if the exchange requries data
exchange between processors. Besides that a favourable load balancing can such be distroyed, if
randomly the pivot elements reside always in the same procesor.

A quite good compromise is given by the row-wise cyclic partitioning with maximal
row pivot and and explicit exchange, since:

I pivot search in row k is pure sequential, but needs only O(N − k) operations (compared to
O((N − k)2/P) for the elimination); besides the pipelining is not destroyed.

I explicit exchange requires only communication of the index of the pivot column, but no exchange
of matrix elements between processors. The pivot column index is sent with the pivot row.

I load balancing is not influenced by the pivoting.
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LU Decomposition: Solution of Triangular Systems
We assume the matrix A be factorized into A = LU as above, and continue with
the solution of the system of the form

LUx = b. (10)

This happens in two steps:

Ly = b (11)

Ux = y . (12)

We shortly consider the sequential algorithm:
// Ly = b:
for (k = 0; k < N; k + +) {

yk = bk ; lkk = 1
for (i = k + 1; i < N; i + +)

bi = bi − aik yk ;
}
// Ux = y :
for (k = N − 1; k ≥ 0; k −−) {

xk = yk/akk
for (i = 0; i < k ; i + +)

yi = yi − aik xk ;
}

This is a column oriented version, since after calculation of yk resp. xk

immediately the righthand side is modified for all indices i > k resp. i < k .
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LU Decomposition: Parallelisation
The parallelisation has of course to be oriented at the data partitioning of the LU
decomposition (if one wants to avoid copying, which seems not to be meaningful
because of O(N2) data and O(N2) operations We consider for this a
two-dimensional block-wise partitioning of the matrix:

b

y

The sections of b are copied across processors rows and the sections of y are
copied across the processor columns. Obviously after calculation of yk only the
processors of column q(k) can be busy with the modification of b. According to
that during the solution of Ux = y only the processors (∗, q(k)) can be busy at a
time. Thus, with a row-wise partitioning (Q = 1) always all processors can be kept
busy.
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LU Decomposition: Parallelisation for General
Partitioning
Program (Resolving of LUx = b for general data partitioning)
parallel lu-solve
{

const int N = . . . ;
const int

√
P = . . . ;

process Π[int (p, q) ∈ {0, . . . ,
√

P − 1} × {0, . . . ,
√

P − 1}]
{

double A[N/
√

P][N/
√

P];
double b[N/

√
P]; x [N/

√
P];

int i , j , k , I, K ;

// Solve Ly = b, store y in x.
// b column-wise distributed onto diagonal processors.
if (p == q) send b to all (p, ∗);
for (k = 0; k < N; k + +)
{

I = µ(k); K = ν(k);
if(q(k) == q) // only they have something to do
{

if (k > 0 ∧ q(k) 6= q(k − 1)) // need current b
recv(Πp,q(k−1) , b);

if (p(k) == p)
{ // have diagonal element

x [K ] = b[I]; // store y in x!
send x [K ] to all (∗, q);

}
else recv(Πp(k),q(k) , x [k ]);
for (i = ibegin(p, k + 1); i ≤ iend(p, k + 1); i + +)

b[i] = b[i] − A[i][K ] · x [K ];
if (k < N − 1 ∧ q(k + 1) 6= q(k))

send(Πp,q(k+1) , b);
}

}
. . .
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LU Decomposition: Parallelisation
Program (Resolving of LUx = b for general data partitioning cont.)
parallel lu-solve cont.
{

. . .

//
{

y is stored in x; x is distributed colum-wise and is copied row-wise. For Ux = y we want to store y in b.
It is such to copy x into b, where b shall be distributed row-wise and copied column-wise.

for (i = 0; i < N/
√

P; i + +) // extinquish
b[i] = 0;

for (j = 0; j < N − 1; j + +)
if (q(j) = q ∧ p(j) = p) // one has to be it

b[µ(j)] = x [ν(j)];
sum b across all (p, ∗), result in (p, p);

// Resolving of Ux = y (y is stored in b)
if (p == q) send b and all (p, ∗);
for (k = N − 1; k ≥ 0; k − −)
{

I = µ(k); K = ν(k);
if (q(k) == q)
{

if (k < N − 1 ∧ q(k) 6= q(k + 1))
recv(Πp,q(k+1) , b);

if (p(k) == p)
{

x [K ] = b[I]/A[I][K ];
send x [K ] to all (∗, q);

}
else recv(Πp(k),q(k) , x [K ]);
for (i = ibegin(p, 0); i ≤ iend(p, 0); i + +)

b[i] = b[i] − A[i][K ] · x [K ];
if (k > 0 ∧ q(k) 6= q(k − 1))

send(Πp,q(k−1) , b);
}

}
}

}
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LU Decomposition: Parallelisation

Since at a time always only
√

P processors are busy, the algorithm
cannot be cost optimal. The total scheme consisting of LU decomposition
and solution of triangular systems can still always be scaled
iso-efficiently, since the sequential complexity of solution is only O(N2)
compared to O(N3) for the factorisation.
If one needs to solve the equation system for many righthand sides, one
should use a rectangular processor array P ×Q with P > Q, or in the
extreme case choose as Q = 1. If pivoting has been required, this was
already a meaningful configuration.
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