Algorithms for Dense Matrices III

Stefan Lang

Interdisciplinary Center for Scientific Computing (IWR)
University of Heidelberg
INF 368, Room 532
D-69120 Heidelberg
phone: 06221/54-8264

email: Stefan.Lang@iwr.uni-heidelberg.de

WS 14/15

1/26

Topics

Data parallel algorithms for dense matrices

LU decomposition

LU Decomposition: Problem Formulation

Be the linear equation system to solve

$$Ax = b (1)$$

with a $N \times N$ matrix A and according vectors x and b. Gaussian Elimination Method (sequential)

(1) for
$$(k = 0; k < N; k + +)$$

(2) for $(i = k + 1; i < N; i + +)$ {
(3) $l_{ik} = a_{ik}/a_{kk};$
(4) for $(j = k + 1; j < N; j + +)$
(5) $a_{ij} = a_{ij} - l_{ik} \cdot a_{kj};$
(6) $b_i = b_i - l_{ik} \cdot b_k;$
}

transforms the equation system (1) into the equation system

$$Ux = d$$
 (2)

with an upper triangular matrix U.

LU Decomposition: Properties

Above formulation has the following properties:

- The matrix elements a_{ij} for $j \ge i$ contain the according entries of U, this means A will be overwritten.
- Vector b is overwritten with the elements of d.
- It is assumed, that the a_{kk} in line (3) is always non zero (no pivoting).

LU Decomposition: Derivation of Gaussian Elimination

The *LU* decomposition can be derived from Gaussian elimination:

• Each individual transformation step, that consists for fixed k and i from the lines (3) to (5), can be written as a multiplication of the equation system with a matrix \hat{L}_{ik} from left:

 E_{ik} is the matrix whose single element is $e_{ik} = 1$, and that otherwise consists of zeros, with I_{ik} from line (3) of the Gaussian elimination method.

LU Decomposition

Thus applies

$$\hat{L}_{N-1,N-2} \cdot \dots \cdot \hat{L}_{N-1,0} \cdot \dots \cdot \hat{L}_{2,0} \hat{L}_{1,0} A =$$

$$= \hat{L}_{N-1,N-2} \cdot \dots \cdot \hat{L}_{N-1,0} \cdot \dots \cdot \hat{L}_{2,0} \hat{L}_{1,0} b$$
(3)

and because of (2) applies

$$\hat{L}_{N-1,N-2} \cdot \dots \cdot \hat{L}_{N-1,0} \cdot \dots \cdot \hat{L}_{2,0} \hat{L}_{1,0} A = U. \tag{4}$$

LU Decomposition: Properties

- There apply the following properties:
 - $\hat{\mathbf{L}}_{ik} \cdot \hat{\mathbf{L}}_{i',k'} = I I_{ik} E_{ik} I_{i'k'} E_{i'k'} \text{ for } k \neq i' \ (\Rightarrow E_{ik} E_{i'k'} = 0) \ .$
 - (1 $l_{ik}E_{ik}$)(1 + $l_{ik}E_{ik}$) = I für $k \neq i$, thus $\hat{L}_{ik}^{-1} = I + l_{ik}E_{ik}$.
- Because of 2 and the relationship (4)

$$A = \underbrace{\hat{L}_{1,0}^{-1} \cdot \hat{L}_{2,0}^{-1} \cdot \cdots \cdot \hat{L}_{N-1,0}^{-1} \cdot \cdots \cdot \hat{L}_{N-1,N-2}^{-1}}_{=:/} U = LU$$
 (5)

- Because of 1, which also holds in its meaning for $\hat{L}_{ik}^{-1} \cdot \hat{L}_{i'k'}^{-1}$, L is a lower triangular matrix with $L_{ik} = I_{ik}$ for i > k and $L_{ii} = 1$.
- The algorithm for LU decomposition of A is obtained by leaving out line
 (6) in the Gaussian algorithm above. The matrix L will be stored in the lower triangle of A.

LU Decomposition: Parallel Variant with Row-wise Partitioning

Row-wise partitioning of a $N \times N$ matrix for the **case** N = P:

P_0					
P_1					
P_2		(k, k)			
P_3					
P_4					
P_5					
P_6					
P_7					

- In step k processor P_k sends the matrix elements $a_{k,k}, \ldots, a_{k,N-1}$ to all processors P_i with j > k, and these eliminate in their row.
- Parallel runtime:

$$T_{P}(N) = \sum_{\substack{m=N-1 \\ \text{Number of rows to eliminate}}}^{1} (t_{s} + t_{h} + \underbrace{t_{w} \cdot m}_{\text{Rest of row}}) \underbrace{\text{Id } N}_{\text{Broadcast}} + \underbrace{m2t_{f}}_{\text{Elimination}}$$
(6)
$$= \frac{(N-1)N}{2} 2t_{f} + \frac{(N-1)N}{2} \text{Id } Nt_{w} + N \text{Id } N(t_{s} + t_{h})$$

$$\approx N^{2}t_{f} + N^{2} \text{Id } N\frac{t_{w}}{2} + N \text{Id } N(t_{s} + t_{h})$$

LU Decomposition: Analysis of Parallel Variant

Sequential runtime of LU decomposition:

$$T_{S}(N) = \sum_{m=N-1}^{1} \underbrace{m}_{\substack{\text{rows are to} \\ \text{elim. of a row}}} \underbrace{2mt_{f}}_{\text{Elim. of a row}} =$$

$$= 2t_{f} \frac{(N-1)(N(N-1)+1)}{6} \approx \frac{2}{3}N^{3}t_{f}.$$

$$(7)$$

- As you can see from (6), $N \cdot T_P = O(N^3 \text{ ld } N)$ (consider P = N!) increases asymptotically faster than $T_S = O(N^3)$.
- The algorithm is thus not cost optimal (efficiency cannot be kept constant for $P = N \longrightarrow \infty$).
- The reason is, that processor P_k waits within its broadcast until all other processors have received the pivot row.
- We describe now an asynchronous variant, where a processor immediately starts calculating as soon as it receives the pivot row.

LU Decomposition: Asynchronous Variant

```
Program (Asynchronous LU decomposition for P = N)
parallel lu-1
     const int N = \dots:
     process \Pi[\text{int } p \in \{0, \ldots, N-1\}]
           double A[N]:
                                                                 // my row
           double rr[2][N]:
                                                                 // buffer for pivot row
           double *r:
           msqid m:
           int j, k;
           if (p > 0) m = arecv(\Pi_{p-1}, rr[0]);
           for (k = 0: k < N - 1: k + +)
                 if (p == k) send(\Pi_{p+1}, A);
                 if (p > k)
                       while (\neg success(m));
                                                                // wait for pivot row
                       if (p < N - 1) asend(\Pi_{p+1}, rr[k\%2]);
                       if (p > k + 1) m = \operatorname{arecv}(\Pi_{p-1}, rr[(k + 1)\%2]);
                       r = rr[k\%2];
                       A[k] = A[k]/r[k];
                       for (j = k + 1; j < N; j + +)
                             A[j] = A[j] - A[k] \cdot r[j];
```

LU Decomposition: Temporal Sequence

How does the parallel algorithm behave over time?

$$P_0 \xrightarrow{\text{Time}} P_0$$

$$P_1 \begin{tabular}{ll} \hline \textbf{recv.send} \\ \hline k = 0k = 0 \\ \hline \hline & Eliminate \\ \hline \hline & k = 0 \\ \hline \\ \hline & k = 1 \\ \hline \end{tabular}$$

$$P_2$$
 $k = 0$
 $k = 0$
 $k = 0$
 $k = 1$
 $k = 0$
 $k = 1$
 $k = 0$
 $k = 1$
 $k = 0$
 $k = 1$

LU Decomposition: Parallel Runtime and Efficiency

• After a fill-in time of p message transmissions the pipeline is filled completely, and all processors are always busy with elimination. Then one obtains the following runtime (N = P, still!):

$$T_{P}(N) = \underbrace{(N-1)(t_{s}+t_{h}+t_{w}N)}_{\text{fil-in time}} + \underbrace{\sum_{m=N-1}^{1} \left(\underbrace{2mt_{f}}_{\text{elim.}} + \underbrace{t_{s}}_{\text{setup time}}\right) = (8)$$

$$= \underbrace{\frac{(N-1)N}{2}2t_{f} + (N-1)(2t_{s}+t_{h}) + N(N-1)t_{w}}_{\text{elim.}} \approx N^{2}t_{f} + N^{2}t_{w} + N(2t_{s}+t_{h}).$$

• The factor ld N of (6) is now vanished. For the efficiency we obtain

$$E(N,P) = \frac{T_{S}(N)}{NT_{P}(N,P)} = \frac{\frac{2}{3}N^{3}t_{f}}{N^{3}t_{f} + N^{3}t_{w} + N^{2}(2t_{s} + t_{h})} =$$

$$= \frac{2}{3}\frac{1}{1 + \frac{t_{w}}{t_{f}} + \frac{2t_{s} + t_{h}}{t_{h}}}.$$
(9)

• The efficiency is such limited by $\frac{2}{3}$. The reason for this is, that processor k remains after k steps idle. This can be avoided by more rows per processor (coarser granularity).

LU Decomposition: The Case $N \gg P$

LU decomposition for the **case** $N \gg P$:

- Program 0.1 from above can be easily extended to the case $N \gg P$. Herefore the *rows* are distributed cyclicly onto the processors $0, \ldots, P-1$. A processor's current pivot row is obtained from the predecessor in the ring.
- The parallel runtime is

$$T_{P}(N,P) = \underbrace{(P-1)(t_{s}+t_{h}+t_{w}N)}_{\text{fill-in time of pipeline}} + \sum_{m=N-1}^{1} \left(\underbrace{\frac{m}{P}}_{\text{rows per processor}} \cdot m2t_{f} + t_{s}\right) =$$

$$= \underbrace{\frac{N^{3}}{P} \frac{2}{3} t_{f} + Nt_{s} + P(t_{s}+t_{h}) + NPt_{w}}_{\text{fill-in time of pipeline}}$$

and thus one has the efficiency

$$E(N,P)=\frac{1}{1+\frac{Pt_s}{N^2\stackrel{?}{\leq}t_t}+\ldots}.$$

LU Decomposition: The case $N \gg P$

- Because of row-wise partitioning applies however in average, that some processors have a row more than others.
- A still better load balancing is achieved by a two-dimensional partitioning of the matrix. Herefore we assume that the segmentation of the row and column index set

$$I = J = \{0, \dots, N-1\}$$

is done with the mappings p and μ for I and q and ν for J.

LU decomposition: General Partitioning

 The following implementation is simplified, if we additionally assume, that the data partitioning fulfills the following monotony condition:

$$\begin{aligned} &\text{Ist } i_1 < i_2 \text{ and } p(i_1) = p(i_2) & \text{ such applies } & \mu(i_1) < \mu(i_2) \\ &\text{ist } j_1 < j_2 \text{ and } q(j_1) = q(j_2) & \text{ such applies } & \nu(j_1) < \nu(j_2) \end{aligned}$$

• Therefore an interval of global indices $[i_{min}, N-1] \subseteq I$ corresponds to a number of intervals of local indices in different processors, that can be calculated by:

Set
$$\widetilde{I}(p,k) = \{ m \in \mathbf{N} \mid \exists i \in I, i \geq k \colon p(i) = p \land \mu(i) = m \}$$
 and
$$ibegin(p,k) = \left\{ \begin{array}{ll} \min \widetilde{I}(p,k) & \text{if } \widetilde{I}(p,k) \neq \emptyset \\ N & \text{otherwise} \end{array} \right.$$

$$iend(p,k) = \left\{ \begin{array}{ll} \max \widetilde{I}(p,k) & \text{if } \widetilde{I}(p,k) \neq \emptyset \\ 0 & \text{otherwise.} \end{array} \right.$$

Then one can substitute a loop

for
$$(i = k; i < N; i + +) \dots$$

by local loops in the processors p of shape

for
$$(i = ibegin(p, k); i \leq iend(p, k); i + +) \dots$$

LU Decomposition: General Partitioning

Analogous we perform with the column indices:

Set
$$\tilde{J}(q,k) = \{n \in \mathbf{N} \mid \exists j \in j, j \geq k \colon q(j) = q \land \nu(j) = n\}$$
 and
$$jbegin(q,k) = \left\{ \begin{array}{ll} \min \tilde{J}(q,k) & \text{if } \tilde{J}(q,k) \neq \emptyset \\ N & \text{otherwise} \end{array} \right.$$

$$jend(q,k) = \left\{ \begin{array}{ll} \max \tilde{J}(q,k) & \text{if } \tilde{J}(q,k) \neq \emptyset \\ 0 & \text{otherwise.} \end{array} \right.$$

Now we can go on with the implementation of the *LU* decomposition for a general data partitioning.

LU Decomposition: Algorithm with General Partitioning

Program (Synchronous *LU* decompositon with general data partitioning)

```
const int N = \dots, \sqrt{P} = \dots:
process ∏[int (p, q) \in \{0, ..., \sqrt{P} - 1\} \times \{0, ..., \sqrt{P} - 1\}]
        double A[N/\sqrt{P}][N/\sqrt{P}], r[N/\sqrt{P}], c[N/\sqrt{P}];
        int i, j, k;
        for (k = 0; k < N - 1; k + +)
                I = \mu(k); J = \nu(k);
                                                                                          // local indices
                // distribute pivot row:
                if (p == p(k))
                                                                                          // I have pivot row
                        for (j = jbegin(q, k); j < jend(q, k); j + +)
                                 r[i] = A[I][j];
                                                                                          // copy seament of pivot row
                         Send r to all processors (x, a) \forall x \neq p
                else recv(\Pi_{D(k),q},r);
                // distribute pivot column:
                if (a == a(k))
                                                                                          // I have part of column k
                        for (i = ibeain(p, k + 1); i < iend(p, k + 1); i + +)
                                 c[i] = A[i][J] = A[i][J]/r[J];
                        Send c to all processors (p, y) \forall y \neq q
                else recv(\Pi_{p,q(k)}, c);
                // elimination:
                for (i = ibegin(p, k + 1); i < iend(p, k + 1); i + +)
                        for (i = ibegin(q, k + 1); j < jend(q, k + 1); j + +)
                                 A[i][j] = A[i][j] - c[i] \cdot r[j]:
```

LU Decomposition: Analysis I

Let us analyse this implementation (synchronous variant):

$$T_{P}(N,P) = \sum_{m=N-1}^{1} \underbrace{\left(t_{s} + t_{h} + t_{w} \frac{m}{\sqrt{P}}\right) \operatorname{Id} \sqrt{P} \, 2}_{\text{Broadcast pivot row/-column}} + \left(\frac{m}{\sqrt{P}}\right)^{2} \, 2t_{f} =$$

$$= \frac{N^{3}}{P} \frac{2}{3} t_{f} + \frac{N^{2}}{\sqrt{P}} \operatorname{Id} \sqrt{P} t_{w} + N \operatorname{Id} \sqrt{P} \, 2(t_{s} + t_{h}).$$

• Mit $W = \frac{2}{3}N^3t_f$, d.h. $N = \left(\frac{3W}{2t_f}\right)^{\frac{1}{3}}$, gilt

$$T_P(W,P) = \frac{W}{P} + \frac{W^{\frac{2}{3}}}{\sqrt{P}} \operatorname{Id} \sqrt{P} \frac{3^{2/3}t_w}{(2t_f)^{\frac{2}{3}}} + W^{\frac{1}{3}} \operatorname{Id} \sqrt{P} \frac{3^{1/3}2(t_s + t_h)}{(2t_f)^{\frac{1}{3}}}.$$

LU Decomposition: Analysis II

• The isoefficiency function can be obtained from $PT_P(W, P) - W \stackrel{!}{=} KW$:

$$\sqrt{P}W^{\frac{2}{3}}\operatorname{Id}\sqrt{P}\frac{3^{2/3}t_{w}}{(2t_{f})^{\frac{2}{3}}}=KW$$

$$\iff W=P^{\frac{3}{2}}(\operatorname{Id}\sqrt{P})^{3}\frac{9t_{w}^{3}}{4t_{f}^{2}K^{3}}$$

thus

$$W \in O(P^{3/2}(\operatorname{Id}\sqrt{P})^3).$$

 Program 0.2 can also be realized in an asynchronous variant. Hereby the communication shares can be effectively hidden behind the calculation.

LU Decomposition: Pivoting

- The LU factorisation of general, invertible matrices requires pivoting and is also meaningful by reasons of minimisation of rounding errors.
- One speaks of full pivoting, if the pivot element in step k can be choosen from all $(N-k)^2$ remaining matrix elements, resp. of partial pivoting, if the pivot element can only be choosen from a part of the elements. Usual for example is the maximal row- or column pivot this means one chooses a_{ik} , $i \geq k$, with $|a_{ik}| \geq |a_{mk}| \quad \forall m \geq k$.
- The implementation of LU decomposition has now to consider the choice of the new pivot element during the elimination. Herefore one has two possibilities:
 - Explicit exchange of rows and/or columns: Here a rest of the algorithm then remains unchanged (for row exchanges the righthand side has to be permuted).
 - The actual data is not moved, but one remembers the interchange of indices (in an integer array, that maps old indices to new).

LU Decomposition: Pivoting

- The parallel versions have different properties regarding pivoting.
 The following points have to be considered for the parallel LU partitioning with partial pivoting:
 - If the area, in which the pivot element is searched, is stored in a single processor (e.g. row-wise partitioning with maximal row pivot), then the search is to be performed purely sequential. In the other case it can be parallelized.
 - But this parallel search for a pivot element requires communication (and such synchronisation), that renders the pipelining in the asynchronous variant impossible.
 - To permute the indices is faster than explicit exchange, especially if the exchange requries data exchange between processors. Besides that a favourable load balancing can such be distroyed, if randomly the pivot elements reside always in the same procesor.
- A quite good compromise is given by the row-wise cyclic partitioning with maximal row pivot and and explicit exchange, since:
 - ▶ pivot search in row k is pure sequential, but needs only O(N-k) operations (compared to $O((N-k)^2/P)$ for the elimination); besides the pipelining is not destroyed.
 - explicit exchange requires only communication of the index of the pivot column, but no exchange
 of matrix elements between processors. The pivot column index is sent with the pivot row.
 - load balancing is not influenced by the pivoting.

LU Decomposition: Solution of Triangular Systems

 We assume the matrix A be factorized into A = LU as above, and continue with the solution of the system of the form

$$LUx = b. (10)$$

This happens in two steps:

$$Ly = b ag{11}$$

$$Ux = y. (12)$$

We shortly consider the sequential algorithm:

• This is a column oriented version, since after calculation of y_k resp. x_k immediately the righthand side is modified for all indices i > k resp. i < k.

LU Decomposition: Parallelisation

• The parallelisation has of course to be oriented at the data partitioning of the LU decomposition (if one wants to avoid copying, which seems not to be meaningful because of $O(N^2)$ data and $O(N^2)$ operations We consider for this a two-dimensional block-wise partitioning of the matrix:

• The sections of b are copied across processors rows and the sections of y are copied across the processor columns. Obviously after calculation of y_k only the processors of column q(k) can be busy with the modification of b. According to that during the solution of Ux = y only the processors (*, q(k)) can be busy at a time. Thus, with a row-wise partitioning (Q = 1) always all processors can be kept busy.

LU Decomposition: Parallelisation for General Partitioning

```
Program (Resolving of LUx = b for general data partitioning)
       const int N = \dots;
       const int \sqrt{P} = \dots;
       process \Pi[\text{int}(p,q) \in \{0,\ldots,\sqrt{P}-1\} \times \{0,\ldots,\sqrt{P}-1\}]
               double A[N/\sqrt{P}][N/\sqrt{P}];
               double b[N/\sqrt{P}]: x[N/\sqrt{P}]:
               int i. i. k. l. K:
               // Solve Lv = b, store v in x.
               // b column-wise distributed onto diagonal processors.
               if (p == a) send b to all (p, *):
               for (k = 0: k < N: k + +)
                      I = \mu(k); K = \nu(k);
                      if(a(k)) == a
                                                                                                  // only they have something to do
                              if (k > 0 \land q(k) \neq q(k-1))
                                                                                                  // need current b
                                      recv(\Pi_{p,q(k-1)},b);
                              if (p(k) == p)
                                                                                                  // have diagonal element
                                      x[K] = b[I]:
                                                                                                  // store y in x!
                                      send x[K] to all (*, q):
                              else recv(\Pi_{D(k), a(k)}, x[k]);
                              for (i = ibegin(p, k + 1); i < iend(p, k + 1); i + +)
                                      b[i] = b[i] - A[i][K] \cdot x[K]
                              if (k < N-1 \land q(k+1) \neq q(k))
                                      send(\Pi_{p, a(k+1)}, b);
```

LU Decomposition: Parallelisation

Program (Resolving of LUx = b for general data partitioning cont.) // y is stored in x; x is distributed colum-wise and is copied row-wise. For Ux = y we want to store y in b. It is such to copy x into b, where b shall be distributed row-wise and copied column-wise. for $(i = 0; i < N/\sqrt{P}; i + +)$ // extinguish b[i] = 0: for (i = 0; i < N - 1; i + +)if $(q(i) = q \land p(i) = p)$ // one has to be it $b[\mu(i)] = x[\nu(i)]$ sum b across all (p, *), result in (p, p); // Resolving of Ux = y (y is stored in b) if (p == q) send b and all (p, *): for (k = N - 1; k > 0; k - -) $I = \mu(k); K = \nu(k);$ if (q(k)) == qif $(k < N-1 \land q(k) \neq q(k+1))$ $recv(\Pi_{p, a(k+1)}, b);$ if (p(k) == p)x[K] = b[I]/A[I][K];send x[K] to all (*, a): else $recv(\Pi_{p(k), q(k)}, x[K]);$ for (i = ibegin(p, 0); i < iend(p, 0); i + +) $b[i] = b[i] - A[i][K] \cdot x[K];$ if $(k > 0 \land q(k) \neq q(k-1))$ $send(\Pi_{p,q(k-1)}, b);$

LU Decomposition: Parallelisation

- Since at a time always only \sqrt{P} processors are busy, the algorithm cannot be cost optimal. The total scheme consisting of LU decomposition and solution of triangular systems can still always be scaled iso-efficiently, since the sequential complexity of solution is only $O(N^2)$ compared to $O(N^3)$ for the factorisation.
- If one needs to solve the equation system for many righthand sides, one should use a rectangular processor array $P \times Q$ with P > Q, or in the extreme case choose as Q = 1. If pivoting has been required, this was already a meaningful configuration.