Programming of Graphics Cards

Stefan Lang

Interdisciplinary Center for Scientific Computing (IWR)
University of Heidelberg
INF 368, Room 532
D-69120 Heidelberg
phone: 06221/54-8264
email: sStefan.Lang@iwr.uni-heidelberg.de

WS 14/15

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 1/21

Motivation

@ Development of graphics processors (GPU) is dramatical:

120

100

GT200 /
1000
Bandwidth
p——
?’ 650 7

—e—intel CPU G0 @92 [GB/s
750

pe 40 NV40
en / Harpertown
o0 g - Wooderest
32GHz 20 -
2% Nvss N4 M@g 30GH: P Prescott EE
-

WM T Northwood et

Jan Jun Apr Jun i Jun 2003 2004 2005 2006 2007
2003 2004 2005 2006 2007 2008

Peak GFLOP/s

@ GPUs are highly parallel processors!
@ GPGPU computing: Use GPUs for parallel computation.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 2/21

GPU - CPU Comparison

Intel QX 9770 | NVIDIA 9800 GTX
Since Q1/2008 Q1/2008
Cores 4 16 x 8
Transistors 820 Mio 754 Mio
Clock 3200 MHz 1688 MHz
Cache 4 x 6 MB 16 x 16 KB
Peak 102 GFlop/s 648 GFlop/s
Bandwith 12.8 GB/s 70.4 GB/s
Price 1200 $ 150 $

Last model GTX 280 has 30x8 cores and a peak performance of 1 TFLOPs.

Stefan Lang (IWR)

Simulation on High-Performance Computers

WS 14/15

3/21

Chip Architecture: CPU vs. GPU

ALU =
Control ALU E}
AU | ALU =

CPU GPU

GPU tremendously more transistors for data processing, therefore fewer
transistors for cache

Stefan Lang (IWR) Simulation on High-Performance Computers

Hardware on Sight

s @ A multiprocessor (MP) consists of M = 8

Mutprocossor “processors”.

| @ MP has an instruction unit and 8 ALUs.
Threads, that execute different
instructions, are serialised!

@ 8192 registers per MP, are divided onto
threads at compile time.

@ 16 KB shared memory per MP, organised
in 16 banks.

@ Up to 4 GB global memory, latency 600
clock cycles, bandwidth up to 160 GB/s .

@ Constant- and texture memory is cached
and is read-only.

@ Graphics cards deliver high performance
for arithmetics with single precision,
double precision lower performance.

@ Arithmetics is not (completely) IEEE

conformina.
Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 5/21

Multiprocessor 2

Multiprocessor 1

CUDA

@ Stands for Compute Unified Device Architecture

@ Scalable hardware model with e.g. 4 x8 processors in a notebook and
30x8 processors on a high-end card.

@ C/C++ programming environment with language extensions. Special
compiler nvce.

@ The code, executable on the GPU, can only be written in C.
@ Runtime environment and different application libraries (BLAS, FFT).
@ Extensive set of examples.

@ Coprocessor architecture:

» Some code parts run on the CPU, that then initiates code on the GPU.
» Data has to be explicitly copied between CPU and GPU memory (no direct
access).

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 6/21

Programming Model on Sight

o @ Parallel threads cooperate with shared
TR |) | EEn@a variables.

§§§§§§§ §§§§§§ @ Threads are grouped in blocks of a
Block (0, 1) Block (1, 1) " Block (2, 1) “choosable” size.

W W @ Blocks can be 1-, 2- or 3-dimensional.

@ Blocks are organized in a grid with
variable size.

@ Grids can be 1- or 2-dimensional.

@ # threads is typically larger than # cores
(“hyperthreading”).

@ Block size is determined by HW/Problem,
grid size is determined by problem size.

@ No overhead through context switch.

Block (1, 1)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 7/21

Memory Hierarchy and Access of Instances

Memory hierarchy with specific access of
individal instances (thread, block and grid)
@ Per thread
» Register

» Local memory (uncached)
F ? F F @ Per block

» Shared memory
@ Per grid
» Global memory (uncached)

» Constant memory (read-only, cached)
» Texture memory (read-only,cached)

Grid

Block (0, 0) Block (1, 0)

Thread (0, 0)

Thread (1, 0) ‘ ‘ Thread (0, 0) ‘ ‘ Thread (1, 0)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 8/21

Example of a Kernel

1 __global__ wvoid scale_kernel (float xx, float a)
{
3 int index = blockIdx.x*blockDim.x + threadIdx.x;
x [index] *= a;

5 }

@ _ global___ function type qualifies this function for execution on the
device and can only be called from host (“*kernel”).

Built-in variable threadIdx contains position of threads within the block.
Built-in variable blockIdx stores position of block within the grid.
Built-in variable blockDim provides the size of the blocks.

Built-in variable gridbim contains dimension of the grid

In the example above each thread is responsible to scale an element of
the vector.

The total count of threads has to be adapted to the size of the vector.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 9/21

Execution and Performance Aspects

@ Divergence: Full performance can only be achieved if all threads of a
warp execute an identical instruction.

@ Threads are scheduled in warps of 32 threads.

@ Hyperthreading: A MP should execute more than 8 threads at a time
(recommended block size is 64) to hide the latency time.

@ Shared memory access uses 2 clock cycles.
@ Fastest instructions are 4 cycles (e.g. single precision multiply-add).

@ Access of shared memory is only fast if each thread accesses a different
bank, otherwise the bank access is serialized.

@ Access to global memory can be accelerated by collection of the access
to aligned memory locations. Necessitates special data types, e.g.
float4.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 10/21

Synchronisation / Branching

Synchronisation
@ Synchronisation with barrier on block level.
@ No synchronisation mechanisms between blocks.

@ But: Kernel calls are cheap, can be used for synchronisation between
blocks.

@ Atomic operations (not all models from compute capability 1.1).

Branching

@ Each stream processor has its own program counter and can branch
individual.

@ But: branch divergence within a warps (32 threads) is expensive,
deviating threads are executed serially.

@ No recursion

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15

11/21

Execution Model

Kernel 1

Kernel 2

Device
Grid 1
» Block Block Block
(0, 0) (1,0) (2,0
Block - i Block | Block
(0,1)" (1,1) (2,1)

Thread

—

Per-thread local
emory

Thread Block

Stefan

Block (1, 1)

(IWR)

Grid 0

Block (0, 0)

|
b

Block (1, 0)

Block (2, 0)

Block (0, 1)

L
L

Block (1, 1)

Block (2, 1)

Simulation on Hi

Grid 1

Global memory

Block (0, 0)

e
e

Block (1, 0)

Block (0, 1)

i
i
|

Block (1, 1)

Block (0, 2)

Block (1, 2)

E

WS 14/15 12/21

CUDA API

@ Extensions to standard C/C++
Application @ Runtime environment: Common,
i components
CUDA Libraries @ Software Development Kit (CUDA
' ' SDK) with many examples
CUDA Runtime @ CUFFT and CUBLAS libraries

! i @ Support for Windows, Linux and
CUDA Driver Mac OS X

Host

I
v

Device

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 13/21

CUDA Language Extensions

@ Function type delimiter

» _ device__ on device, callable from device.
» _ global__ on device, callable from host.
» __host___on host, callable from host (default).

@ Variable type delimiter

» _ device__ in global memory, validity for app.
» __constant___in constant memory, validity for app.
» _ shared__ in shared memory, validity for block.

@ Directive for kernel call (see below).

@ Built-in variables __gridbim_ ,_ blockIdx_ ,_ blockDim__,
_ threadIdx_ ,_ warpSize_ .

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15

14/21

CUDA Execution Configuration

@ Kernel instantiation:
kernelfunc «<Dg, Db, Ns»> (arguments)

@ dim3 Dg: size of the grid

@ Dg.x * Dg.y = number of blocks

@ dim3 Db: size of each block

@ Db.x * Db.y * Db.z = Number of threads per block

@ Ns: byte count of dynamically allocated shared memory per block

Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 15/21

IS

10

12

14

Hello CUDA |

// scalar product using CUDA
// compile with: nvcc hello.cu —o hello

// includes, system
#include<stdlib.h>
#include<stdio.h>

// kernel for the scale function to be executed on device
__global__ void scale_kernel (float +x, float a)
{
int index = blockIdx.x*blockDim.x + threadIdx.x;
x[index] *= a;
}

// wrapper executed on host that calls scale on device
// n must be a multiple of 32 !
void scale (int n, float +x, float a)
{
// copy x to global memory on the device
float xd;
cudaMalloc((voidxx) &xd, nxsizeof (float)); // allocate memory on device
cudaMemcpy (xd, x, n+sizeof (float), cudaMemcpyHostToDevice); // copy x to device

// determine block and grid size
dim3 dimBlock (32); // use BLOCKSIZE threads in one block
dim3 dimGrid(n/32); // n must be a multiple of BLOCKSIZE!

// call function on the device
scale_kernel<<<dimGrid, dimBlock>>> (xd,a);

// wait for device to finish
cudaThreadSynchronize () ;

// read result
cudaMemcpy (x, xd, n+sizeof (£loat) , cudaMemcpyDeviceToHost) ;

Simulation on WS 14/15

16/21

Hello CUDA I

// free memory on device
38 cudaFree (xd) ;
}
40
int main(int argc, charsx argv)
42 {
const int N=1024;
44 float sum=0.0;

float x[N];
46 for (int i=0; i<N; i++) x[i] = 1.0+i;

scale(N,x,3.14);
48 for (int i=0; i<N; i++) sum += (x[1]-3.14%i)*(x[1]-3.14%1);

printf ("$g\n", sum) ;
50 return 0;

}
Stefan L: (IWR)

i1

15

17

19

Scalarproduct |

// scalar product using CUDA
// compile with: nvcc scalarproduct.cu —o scalarproduct —arch sm_11

// includes, system
#include<stdlib.h>
#include<stdio.h>

#include<math.h>
#include<sm_11_atomic_functions.h>

#define PROBLEMSIZE 1024
#define BLOCKSIZE 32

// integer in global device memory
__device__ int lock=0;

// kernel for the scalar product to be executed on device

__global__ void scalar_product_kernel

{

extern _ shared _ float ss[];

int block = blockIdx.x;
int tid = threadIdx.x;
int index = block+BLOCKSIZE+tid;

// one thread computes one index
ss[tid] = x[index]*y[index];
__syncthreads () ;

// reduction for all threads

for (unsigned int d=1; d<BLOCKSIZE;

{

if (tid3(2xd)==0) {
ss[tid] += ss[tid+d];

}

__syncthreads ();

(float +x,

in this block

dx=2)

Simulation

float xy,

float «s)

// memory allocated per block in kernel launch

WS 14/15

18/21

Scalarproduct

37 // combine results of all blocks

if (tid==0)
39 {
while (atomicExch(slock,1)==1) ;
41 vs += ss[01;
atomicExch (slock, 0);
43 1
}
45

// wrapper executed on host that uses scalar product on device
47 float scalar_product (int n, float +x, float +y)
{

49 int size = nxsizeof (float);
51 // allocate x in global memory on the device

float »xd;
53 cudaMalloc((voidxx) &xd, size); // allocate memory on device

cudaMemcpy (xd, x, size, cudaMemcpyHostToDevice); // copy x to device
55 if (cudaGetLastError() != cudaSuccess)

{
57 fprintf (stderr, "error_in_memcpy\n") ;
exit (-1);

59 }
51 // allocate y in global memory on the device

float +yd;
53 cudaMalloc((void«x) &yd, size); // allocate memory on device

cudaMemcpy (yd, vy, size, cudaMemcpyHostToDevice); // copy y to device
65 if (cudaGetLastError() != cudaSuccess)

{
57 fprintf (stderr, "error_in_memcpy\n") ;
exit (-1);

59 }
71 // allocate s (the result) in global memory on the device

float «+sd;
73 cudaMalloc((voidxx) &sd, sizeof (float)); // allocate memory on device

Simulation Perfori

e Computers WS 14/15 19/21

75

77

79

Scalarproduct Il

float s=0.0f;
cudaMemcpy (sd, &s, sizeof (float) , cudaMemcpyHostToDevice); // initialize sum on device
if (cudaGetLastError() != cudaSuccess)
{
fprintf (stderr, "error,in_memcpy\n");
exit (-1);
1

// determine block and grid size
dim3 dimBlock (BLOCKSIZE) ; // use BLOCKSIZE threads in one block
dim3 dimGrid(n/BLOCKSIZE); // n is a multiple of BLOCKSIZE

// call function on the device
scalar_product_kernel<<<dimGrid, dimBlock, BLOCKSIZE+sizeof (float)>>> (xd, yd, sd) ;

// wait for device to finish
cudaThreadSynchronize () ;
if (cudaGetLastError() != cudaSuccess)
{
fprintf (stderr, "error_in_kernel_execution\n");
exit (-1);
}

// read result
cudaMemcpy (&s, sd, sizeof (£float) , cudaMemcpyDeviceToHost) ;
if (cudaGetLastError() != cudaSuccess)
{
fprintf (stderr, "error_in_memcpy\n");
exit (-1);
}

// free memory on device
cudaFree (xd) ;
cudaFree (yd) ;
cudaFree (sd) ;

// return result

Simulation WS 14/15

20/21

11

13

15

17

19

21

Scalarproduct IV

return s;

}

int main(int argc, charss argv)

{
float x[PROBLEMSIZE], y[PROBLEMSIZE];
float s;
for (int i=0; i<PROBLEMSIZE; i++) x[i]
s = scalar_product (PROBLEMSIZE, X,y) ;

= yl[i]l = sqrt(2.0f);

printf ("result_of _scalar_product_is_%f\n",s);

return 0;
}

Remark: This is not the most efficient version. See the CUDA tutorial for a

version that uses the full memory bandwidth.

Stefan Lang (IWR)

Simulation on High-Performance Computers

WS 14/15

21/21

