Iterative Solution of Sparse Equation Systems

Stefan Lang

Interdisciplinary Center for Scientific Computing (IWR)
University of Heidelberg
INF 368, Room 532
D-69120 Heidelberg
phone: 06221/54-8264
email: Stefan.Lang@iwr.uni-heidelberg.de

WS 14/15

Topics

Iterative Solution of Sparse Linear Equation Systems

- Problem formulation
- Iteration methods
- Parallelisation
- Multigrid methods
- Parallelisation of multigrid methods

Problem Formulation: Example

A continuous problem and its discretisation:

- Example: A thin, quadratic metal plate is fixed at every side.
- The temporal constant temperature distribution at the boundary of the metal plate is known.
- Which temperature exists at each inner point of the metal plate, if the system is in a stationary state?

Problem Formulation: Continuous

- The process of heat conduction can be described (approximately) by a mathematical model.
- The geometry of the metal plate is decribed by an area $\Omega \subset \mathcal{R}^{2}$.
- Wanted is the temperature distribution $T(x, y)$ for all $(x, y) \in \Omega$.
- The temperature $T(x, y)$ for (x, y) on the boundary $\partial \Omega$ is known.
- Is the metal plate homogeneous (same heat conduction coefficient everywhere), then the temperature in the inner domain is described by the partial differential equation

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}=0, \quad T(x, y)=g(x, y) \text { auf } \partial \Omega \tag{1}
\end{equation*}
$$

Problem Formulation: Discrete

- In the computer one cannot determine the temperature at every position $(x, y) \in \Omega$ (innumerable many), but only at some selected ones.
- For that be $\Omega=[0,1]^{2}$ choosen specially (unit square).
- Via the parameter $h=1 / N$, for a $N \in \mathbf{N}$, we choose specially the points $\left(x_{i}, y_{j}\right)=(i h, j h)$, for all $0 \leq i, j \leq N$.
- One denotes this set of points also as regular, equidistant grid.

The points at the boundary have been marked with other symbols (squares) as the inner ones (circles).

Discretisation I

How can the temperature $T_{i j}$ at point $\left(x_{i}, y_{j}\right)$ be determined?

- By a standard method: the method of „Finite Differences"
- Idea: The temperature at point $\left(x_{i}, y_{j}\right)$ is expressed by the values of the four neighboring points:

$$
\begin{align*}
& T_{i, j}=\frac{T_{i-1, j}+T_{i+1, j}+T_{i, j-1}+T_{i, j+1}}{4} \tag{2}\\
\Longleftrightarrow \quad & T_{i-1, j}+T_{i+1, j}-4 T_{i, j}+T_{i, j-1}+T_{i, j+1}=0 \tag{3}
\end{align*}
$$

$$
\text { für } 1 \leq i, j \leq N-1 \text {. }
$$

- From the form of (3) one recognices, that all $(N-1)^{2}$ equations for $1 \leq i, j \leq N-1$ together form a linear equation system:

$$
\begin{equation*}
A T=b \tag{4}
\end{equation*}
$$

Discretisation II

- Here $G(A)$ corresponds exactly to the above drawn grid, if one neglects the boundary points (squares). The righthand side b of (3) is not even zero, but contains the temperature values at the boundary!
- The such calculated temperature values $T_{i, j}$ at the points $\left(x_{i}, y_{j}\right)$ are not identical with the solution $T\left(x_{i}, y_{i}\right)$ of the partial differential equation (1). Furthermore applies

$$
\begin{equation*}
\left|T_{i, j}-T\left(x_{i}, y_{i}\right)\right| \leq O\left(h^{2}\right) \tag{5}
\end{equation*}
$$

- This error is denoted as „discretisation error". An increase in the size of N corresponds such to an exacter temperature calculation.

Iteration Methods I

- We now want to solve the equation system (4) „iteratively". Herefore we determine an arbitrary value of the temperature $T_{i, j}^{0}$ at each point $1 \leq i, j \leq N-1$ (the temperature at the boundary is wellknown).
- Starting from this approximate solution we now want to calculate an improved solution. Herefore we use the formula (2) and set

$$
\begin{equation*}
T_{i, j}^{n+1}=\frac{T_{i-1, j}^{n}+T_{i+1, j}^{n}+T_{i, j-1}^{n}+T_{i, j+1}^{n}}{4} \quad \text { für alle } 1 \leq i, j \leq N-1 . \tag{6}
\end{equation*}
$$

- Obviously the improved values $T_{i, j}^{n+1}$ can be calculated simultaneously for each of the indices (i, j), since they only depend on the old values $T_{i, j}^{n}$.

Iteration Methods II

- One can indeed show, that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T_{i, j}^{n}=T_{i, j} \tag{7}
\end{equation*}
$$

applies.

- The error $\left|T_{i, j}^{n}-T_{i, j}\right|$ in the n-th approximate solution is denoted as "iteration error".
- How large is this iteration error then? One needs a criterium up to which n one needs to compute.

Iteration Methods III

- Herefore one considers how well the values $T_{i, j}^{n}$ fulfill the equation (3), this means we set

$$
E^{n}=\max _{1 \leq i, j \leq N-1}\left|T_{i-1, j}^{n}+T_{i+1, j}^{n}-4 T_{i, j}^{n}+T_{i, j-1}^{n}+T_{i, j+1}^{n}\right|
$$

- Commonly one uses this error only relatively, thus one iterates as long until

$$
E^{n}<\epsilon E^{0}
$$

applies. Then the initial error E^{0} has been reduced by the reduction factor ϵ.

- This leads us to the sequential method: choose N, ϵ;
choose $T_{i, j}^{0}$;
$E^{0}=\max _{1 \leq i, j \leq N-1}\left|T_{i-1, j}^{0}+T_{i+1, j}^{0}-4 T_{i, j}^{0}+T_{i, j-1}^{0}+T_{i, j+1}^{0}\right|$;
$n=0$;
while ($E^{n} \geq \epsilon E^{0}$)
\{

$$
\begin{aligned}
& \text { for }(1 \leq i, j \leq N-1) \\
& \quad T_{i, j}^{n+1}=\frac{T_{i-1, j}^{n}+T_{i+1, j}^{n}+T_{i, j-1}^{n}+T_{i, j+1}^{n}}{4} ; \\
& E^{n+1}=\max _{1 \leq i, j \leq N-1}\left|T_{i-1, j}^{n+1}+T_{i+1, j}^{n+1}-4 T_{i, j}^{n+1}+T_{i, j-1}^{n+1}+T_{i, j+1}^{n+1}\right| \\
& n=n+1
\end{aligned}
$$

\}

Iteration Methods IV

- All that can be written more compact in vector notation. Then $A T=b$ is the equation system (4) to be solved. The approximation values $T_{i, j}^{n}$ correspond to vectors T^{n} each.
- Formally T^{n+1} is calculated as

$$
T^{n+1}=T^{n}+D^{-1}\left(b-A T^{n}\right)
$$

with the diagonal matrix $D=\operatorname{diag}(A)$. This scheme is denoted as Jacobi method.

- The error E^{n} is constituted by

$$
E^{n}=\left\|b-A \cdot T^{n}\right\|_{\infty}
$$

where $\|\cdot\|_{\infty}$ is the maximum norm of a vector.

Parallelisation I

- The algorithm allows again a data parallel formulation.
- Therefore the $(N+1)^{2}$ grid points are subdivided onto a $\sqrt{P} \times \sqrt{P}$ processor array by partitioning of the index set $I=\{0, \ldots, N\}$.
- The partitioning happens here block-wise:

Parallelisation II

- Processor (p, q) computes then the values $T_{i, j}^{n+1}$ with $(i, j) \in\{\operatorname{start}(p), \ldots$, end $(p)\} \times\{\operatorname{start}(q), \ldots$, end $(q)\}$.
- To do this, he needs however also the values $T_{i, j}^{n}$ from the neighboring processors with $(i, j) \in\{\operatorname{start}(p)-1, \ldots$, end $(p)+1\} \times\{\operatorname{start}(q)-1, \ldots$, end $(q)+1\}$.
- These are the nodes, that have been marked with squares in the figure above!
- Each processor stores such beyond its assigned grid points an additional layer of grid points.

Parallelisation III

- The parallel algorithm therefore consists of the following steps: initial values $T_{i, j}^{0}$ are known by all processors. while ($E^{n}>\epsilon E^{0}$)
\{
calculate $T_{i, j}^{n+1}$ for $(i, j) \in\{\operatorname{start}(p), \ldots$, end $(p)\} \times\{\operatorname{start}(q), \ldots$, end $(q)\}$; exchange boundary values (squares) with neighbors; calculate E^{n+1} for $(i, j) \in\{\operatorname{start}(p), \ldots$, end $(p)\} \times\{\operatorname{start}(q), \ldots$, end $(q)\}$; Determine global maximum;

$$
n=n+1
$$

\}

- In the exchange step two neighboring processors exchange values:

(p, q)

Parallelisation IV

- For this exchange step one uses either asynchronous communication or synchronous communication with coloration.
- We calculate the scalability of a single iteration:

$$
\begin{aligned}
W & =T_{S}(N)=N^{2} t_{o p} \Longrightarrow N=\sqrt{\frac{W}{t_{o p}}} \\
T_{P}(N, P) & =\underbrace{\left(\frac{N}{\sqrt{P}}\right)^{2} t_{o p}}_{\text {calculation }}+\underbrace{\left(t_{s}+t_{h}+t_{w} \frac{N}{\sqrt{P}}\right)}_{\text {boundary exchange }} 4+\underbrace{\left(t_{s}+t_{h}+t_{w}\right) \operatorname{ld} P}_{\begin{array}{c}
\text { gomobal } \\
\text { comor max. } \\
\text { for } \mathbb{E}^{\text {ax }}
\end{array}} \\
T_{P}(W, P) & =\frac{W}{P}+\frac{\sqrt{W}}{\sqrt{P}} \frac{4 t_{w}}{\sqrt{t_{o p}}}+\left(t_{s}+t_{h}+t_{w}\right) \operatorname{ld} P+4\left(t_{s}+t_{h}\right) \\
T_{O}(W, P) & =P T_{P}-W= \\
& =\sqrt{W} \sqrt{P} \frac{4 t_{w}}{\sqrt{t_{o p}}}+P \operatorname{ld} P\left(t_{s}+t_{h}+t_{w}\right)+P 4\left(t_{s}+t_{h}\right)
\end{aligned}
$$

Parallelisation V

- Asymptotically we obtain the iso-efficiency function $W=O(P \operatorname{ld} P)$ from the second term, albeit the first term will be dominant for practical values of N dominant. The algorithm is nearly optimal scalable.
- Because of the block-wise partitioning one has a surface-to-volume effect: $\frac{N}{\sqrt{P}} /\left(\frac{N}{\sqrt{P}}\right)^{2}=\frac{\sqrt{P}}{N}$. In three space dimensions one obtains $\left(\frac{N}{P^{1 / 3}}\right)^{2} /\left(\frac{N}{P^{1 / 3}}\right)^{3}=\frac{P^{1 / 3}}{N}$.
- For same N and P the efficiency is such a little bit worse compared to two dimensions.

Multigrid Methods I

- If we ask about the total efficiency of a method, then the number of operations is distinctive.
- Hereby is

$$
T_{S}(N)=I T(N) \cdot T_{I T}(N)
$$

- How many iterationen have now indeed to be executed depends besides N of course on the used method.
- For that one obtains the following classifications:

$$
\begin{aligned}
\text { Jacobi, Gauß-Seidel : } & I T(N)=\mathcal{O}\left(N^{2}\right) \\
\text { SOR with } \omega_{\text {opt }}: & I T(N)=\mathcal{O}(N)
\end{aligned}
$$

Conjugated gradients (CG) : $\quad I T(N)=\mathcal{O}(N)$
Hierarchical basis $\mathrm{d}=2$: $\quad I T(N)=\mathcal{O}(\log N)$
Multigrid methods : $I T(N)=\mathcal{O}(1)$

- The time for an iteration $T_{I T}(N)$ is there for all schemes in $\mathcal{O}\left(N^{d}\right)$ with comparable constant (in the region of 1 to 5).

Multigrid Methods II

- We such see, that e.g. the multigrid method is much faster than the Jacobi method.
- Also the parallelisation of the Jacobi method does not help, since it applies:

$$
T_{P, \text { Jacobi }}(N, P)=\frac{\mathcal{O}\left(N^{d+2}\right)}{P} \quad \text { und } \quad T_{S, \mathrm{MG}}(N)=\mathcal{O}\left(N^{d}\right)
$$

- A doubling of N results in a fourfold increase of the effort for the parallelised Jacobi scheme in comparision to the sequential multigrid method!
- This leads to a fundamental paradigm of parallel programming:

> Parallelise the best sequential algorithm, if possible anyhow!

Multigrid Methods III

- Let us consider again the discretisation of the Laplace equation $\Delta T=0$.
- This leads to the linear equation system

$$
A x=b
$$

- Here the vector b is determined by the Dirichlet boundary values. Now be an approximation of the solution given by x^{i}. Herefore set the iteration error

$$
e^{i}=x-x^{i}
$$

- Because of the linearity of A we can conclude the following:

$$
A e^{i}=\underbrace{A x}_{b}-A x^{i}=b-A x^{i}=: d^{i}
$$

- Here we call d^{i} the defect.
- A good approximation for e^{i} is calculated by the solution of

$$
M v^{i}=d^{i} \quad \text { also } \quad v^{i}=M^{-1} d^{i}
$$

- Herefore be M easier to solve than A (in $\mathcal{O}(\mathrm{N})$ steps, if $x \in \mathbb{R}^{N}$).

Multigrid Methods IV

- For special M we get the already known iteration method:

$$
\begin{array}{lr}
M=I \quad \rightarrow \text { Richardson } \\
M=\operatorname{diag}(A) \quad \rightarrow \text { Jacobi } \\
M=L(A) \quad \rightarrow \text { Gauß-Seidel }
\end{array}
$$

- We obtain the linear iteration method of the form

$$
x^{i+1}=x^{i}+\omega M^{-1}\left(b-A x^{i}\right)
$$

- Here the $\omega \in[0,1]$ is a damping factor .
- For the error $e^{i+1}=x-x^{i+1}$ applies:

$$
e^{i+1}=\left(I-\omega M^{-1} A\right) e^{i}
$$

- Here we denote the iteration matrix $I-\omega M^{-1} A$ with S .
- The scheme is exactly then convergent if applies $\left(\lim _{i \rightarrow \infty} e^{i}=0\right)$. This holds if the largest absolut eigen value of S is smaller than one.

Smoothing Property I

- If the matrix A is symmetric and positive definite, then it has only real, positive eigen values λ_{k} for eigen vectors z_{k}.
- The Richardson iteration

$$
x^{i+1}=x^{i}+\omega\left(b-\boldsymbol{A} x^{i}\right)
$$

leads because of $\mathrm{M}=\mathrm{I}$ to error

$$
e^{i+1}=(I-\omega A) e^{i}
$$

- Now we set the damping factor $\omega=\frac{1}{\lambda_{\max }}$ and consider $e^{i}=z_{k}(\forall k)$.
- Then we obtain

$$
\begin{aligned}
e^{i+1}=\left(I-\frac{1}{\lambda_{\max }} A\right) z_{k}=z_{k}- & \frac{\lambda_{k}}{\lambda_{\max }} z_{k}=\left(1-\frac{\lambda_{k}}{\lambda_{\max }}\right) e^{i} \\
& \left(1-\frac{\lambda_{k}}{\lambda_{\max }}\right)= \begin{cases}0 & \lambda_{k}=\lambda_{\max } \\
\approx 1 & \lambda_{k} \operatorname{small}\left(\lambda_{\min }\right)\end{cases}
\end{aligned}
$$

Smoothing Property II

- In the case of small eigenvalues we thus have a bad damping of the error (it has the order of magnitude of $1-\mathcal{O}\left(h^{2}\right)$).
- This behaviour is qualitatively identical for the Jacobi and Gauß-Seidel iteration methods.
- But, to small eigenvalues belong long-wave eigenfunctions.
- This long-wave errors are such damped only very badly.
- With a pictorial view the iteration methods only offer a local smoothing of the error on which they work, since they get new iteration values only from values in the local neighborhood.
- Fast oscillations could be smoothed out fast, whilst long-wave errors survive the local smoothing operations quite unmodified.

Smoothing Property III

For illustration purposes we consider the following example:
The Laplacian equation $-\Delta u=f$ is discretized via a five-point stencil on a structured grid. The associated eigenfunctions are $\sin (\nu \pi x) \sin (\mu \pi y)$, where $1 \leq \nu$ and $\mu \leq h^{-1}-1$ apply. We set $h=\frac{1}{32}$ and the initial error to

$$
e^{0}=\sin (3 \pi x) \sin (2 \pi y)+\sin (12 \pi x) \sin (12 \pi y)+\sin (31 \pi x) \sin (31 \pi y)
$$

With $\omega=\frac{1}{\lambda_{\text {max }}}$ one obtains the damping factors (per iteration) for the Richardson iteration as $0.984,0.691$ and 0 for the individual eigenfunctions.
The graphs below show the initial error and the error after one resp. five iterations.

Smoothing Property IV

- From this the idea arises to represent the long wave error on coarser grids, after smoothing out the fast oscillations.
- On this coarser grids the effort is then smaller to smooth the error curve.
- Because the curve is somehow smooth after presmoothing, this restriction onto fewer grid points is well possible.

Grid Hierarchy I

- One constructs thus a complete sequence of grids of different accuracy.
- At first one smoothes out on the finest grid the short wave error functions.
- Then we restrict to the next coarser grid, and so on.

Grid Hierarchy II

- According to that one obtains a complete sequence of linear systems

$$
A_{l} x_{l}=b_{l}
$$

since the number of grid points N and therefore the length of x decreases on coarser grids.

- Of couse one wants to return after this restriction again to the original fine grid.
- Herefore we perform a coarse grid correction.
- Let us assume we are on grid level I, thus we consider the LES

$$
A_{l} x_{l}=b_{l}
$$

- On this level the iterate x_{l}^{i} is given with an error of e_{l}^{i}, thus the error equation

$$
A e_{l}^{i}=b_{l}-A_{l} x_{l}^{i}
$$

Lets suppose, x_{l}^{i} is the result of ν_{1} Jacobi, Gauß-Seidel or similar iterations.

- Then e_{l}^{i} is relatively smooth and thus also properly representable on a coarser grid, this means it can be interpolated well from a coarser grid to a finer one.

Grid Hierarchy III

- For this be v_{l-1} the error on the coarser grid.
- Then with good approximation applies

$$
e_{l}^{i} \approx P_{l} v_{l-1}
$$

- Here P_{l} is an interpolation matrix (prolongation), that performs a linear interpolation and changes the coarse grid vector into a fine grid vector.

1	0	0	0
$\frac{1}{2}$	$\frac{1}{2}$	0	0
0	1	0	0
$\frac{1}{2}$	0	$\frac{1}{2}$	0
$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
0	$\frac{1}{2}$	0	$\frac{1}{2}$
0	0	1	0
0	0	$\frac{1}{2}$	$\frac{1}{2}$
0	0	0	1
0	0	0	1
0			

Two-grid and Multigrid Methods I

- Through combination of the equations above one obtains the equation for v_{l-1} by

$$
R_{l} A P_{l} v_{l-1}=R_{l}\left(b_{l}-A_{l} x_{l}^{i}\right)
$$

- Here is $R_{l} A P_{l}=: A_{l-1} \in \mathbb{R}^{N_{l-1} \times N_{l-1}}$ and R_{l} is the restriction matrix, for that one takes e.g. $R_{l}=P_{l}^{T}$.
- The so called two-grid method consists now of the two steps:
(1) ν_{1} Jacobi iterations (on level I)
(2) coarse grid correction $x_{l}^{i+1}=x_{l}^{i}+P_{l} A_{l-1}^{-1} R_{l}\left(b_{l}-A_{l} x_{l}^{i}\right)$
- The recursive application leads to the multigrid methods.

```
mgc(l, \mp@subsup{x}{l}{},\mp@subsup{b}{l}{})
{
    if (I== 0) }\mp@subsup{x}{0}{}=\mp@subsup{A}{0}{-1}\mp@subsup{b}{0}{}
    else{
        \nu
        dl-1}=\mp@subsup{R}{l}{(}(\mp@subsup{b}{l}{}-\mp@subsup{A}{l}{}\mp@subsup{x}{l}{})
        v/-1 = 0;
        for (g=1,\ldots,\gamma)
            mgc(I-1, vl-1},\mp@subsup{d}{l-1}{})
        x}=\mp@subsup{x}{l}{}+\mp@subsup{P}{l}{}\mp@subsup{v}{l-1}{\prime}
        \nu _ { 2 } \text { iterations one-grid method on } A _ { l } x _ { l } = b _ { l } ; / / \text { postsmoothing}
    }
}
```


Two-grid and Multigrid Methods II

- It is sufficient to set $\gamma=1, \nu_{1}=1, \nu_{2}=0$ to get a iteration count of $\mathcal{O}(1)$.
- A single pass from level I to level 0 and back is denoted as V -cycle:

- Effort for two-dimensional structured grids: N is number of grid points in a row on the finest level, and $C:=t_{\mathrm{op}}$:

$$
\begin{aligned}
T_{\text {IT }}(N) & =\underbrace{C N^{2}}_{\text {levell }}+\underbrace{\frac{C N^{2}}{4}}_{\text {level l-1 }}+\frac{C N^{2}}{16}+\ldots+\underbrace{G\left(N_{0}\right)}_{\text {coarse grid }} \\
& =C N^{2} \underbrace{\left(1+\frac{1}{4}+\frac{1}{16}+\ldots\right)}_{\frac{4}{3}}+G\left(N_{0}\right)=\frac{4}{3} C N_{I}+G\left(N_{0}\right)
\end{aligned}
$$

Parallelisation I

For data partitioning in the grid hierarchy on the individual processors one has to consider:

- In the coarse grid correction has to be checked, whether communication is necessary to calculate the node values in the coarse grid.
- How to handle the coarsest grids, where the number of unknowns in each dimension get smaller than the number of processors?

Parallelisation II

- For illustration of the method we only consider the one-dimensional case. The distribution in the high-dimensional case is according to the tensor product (chessboard-like).
- The processor limits are choosen at $p \cdot \frac{1}{p}+\epsilon$, such the nodes, that reside on the boundary between two processors, are still assigned to the „previous ".
- It is to remark, that the defect, that is restringated in the coarse grid correction, can only calculated on the single master node, but not in the overlap!
- To solve the problem with the decreasing node count in the coarsest grids, one uses successively fewer processors. Be for that $a:=\operatorname{ld} P$ and again $C:=t_{\mathrm{op}}$. On level 0 only one processor calculates, first on level a all are busy.

Parallelisation III

level	nodes	processors	effort
I	$N_{l}=2^{I-a} N_{a}$	$P_{l}=P$	$T=2^{\prime-a} C N_{0}$
a+1	$N_{a+1}=2 N_{a}$	$P_{a+1}=P$	$T=2 C N_{0}$
a	N_{a}	$P_{a}=P$	$T=C N_{0}$
2	$N_{2}=4 N_{0}$	$P_{2}=4 P_{0}$	$T=\frac{C N_{2}}{C l}=C N_{0}$
1	$N_{1}=2 N_{0}$	$P_{1}=2 P_{0}$	$T=\frac{C N_{1}}{2}=\frac{C 2 N_{0}}{2}=C N_{0}$
0	N_{0}	$P_{0}=1$	$G\left(N_{0}\right) \approx C N_{0}$

- Let's consider the total effort: From level 0 to level a $\frac{N}{P}$ is constant, thus T_{P} grows like Id P. Therefore we get

$$
T_{P}=\operatorname{ld} P \cdot C N_{0}
$$

- In the higher levels we get

$$
T_{P}=C \cdot \frac{N_{l}}{P} \cdot\left(1+\frac{1}{2}+\frac{1}{4}+\ldots\right)=2 C \frac{N_{l}}{P}
$$

- The total effort is then given by the sum of both partial efforts.
- Here we have not taken into account the communication between the processors.

Parallelisation IV

How effects the usage of the multigrid method the number of iteration steps to be executed?

- We show the number of used processors against the choice of the grid spacing, that has been used.
- The minimal error reduction has been set to 10^{-6}.

P/I	5	6	7	8
1	10			
4	10	10		
16	11	12	12	
64	13	12	12	12

- The table shows the according iteration times in seconds for 2D (factor 4 of grid growths):

P / l	5	6	7	8
1	3.39			
4	0.95	3.56		
16	0.32	1.00	3.74	
64	0.15	0.34	1.03	3.85

Most Important Knowledge

- Jacobi scheme is one of the most simple iteration methods for the solution of linear equation systems.
- For fixed reduction factor ϵ one necessitates a specific number of iterations $I T$ to reach a certain error reduction.
- IT is independent on the choice of the starting value, but depends directly from the choice of the method (e.g. Jacobi scheme) and the grid spacing h (thus N).
- For the Jacobi method applies $I T=O\left(h^{-2}\right)$. For a halvening of the grid width h one needs the fourfold number of iterations to get the error reduction ϵ. Since an iteration costs also four times more, the effort has increased by a factor of 16 !
- There are a series of better iteration schemes for which e.g. $I T=O\left(h^{-1}\right)$, $I T=O\left(\log \left(h^{-1}\right)\right)$ or even $I T=O(1)$ applies (CG method, hierarchical basis, multigrid method).
- Of course asymptotically $(h \rightarrow \infty)$ each of these methods is superior to a parallel naive scheme.
- One should therefore at all parallelize the method with optimal sequential complexity, especially because we want to solve large problems (h small) on parallel machines.

