Solution of Tridiagonal and Sparse Linear Equation Systems

Stefan Lang

```
Interdisciplinary Center for Scientific Computing (IWR)
    University of Heidelberg
        INF 368, Room }53
        D-69120 Heidelberg
    phone: 06221/54-8264
email: Stefan.Lang@iwr.uni-heidelberg.de
```


WS 14/15

Topics

Solution of tridiagonal and sparse linear equation systems

- Optimal sequential algorithm
- Cyclic reduction
- Domain decomposition
- LU decomposition of sparse matrices
- Parallelisation

Optimal Sequential Algorithm

- As an extreme case of sparse equation systems we consider

$$
\begin{array}{llllll}
A x=b & (1) & \left(\begin{array}{ccccccc}
* & * & & & & \\
* & * & * & & & \\
& * & * & * & & \\
& & * & * & * & \\
& & & * & * & * \\
& & & & * & *
\end{array}\right)\left(\begin{array}{ll}
\\
& \\
& \\
& \\
& \\
&
\end{array}\right)
\end{array}
$$

with $A \in \mathcal{R}^{N \times N}$ tridiagonal.

- The optimal algorithm is the Gaussian elimination, sometimes also called Thomas algorithm.

Optimal Sequential Algorithm

- Gaussian elimination for tridiagonal systems
// Forward elimination (here solution, not $L U$ decomposition):

$$
\begin{aligned}
& \text { for }(k=0 ; k<N-1 ; k++)\{ \\
& \quad \quad=a_{k+1, k} / a_{k, k} ; \\
& \quad a_{k+1, k+1}=a_{k+1, k+1}-l \cdot a_{k, k+1} \\
& b_{k+1}=b_{k+1}-l \cdot b_{k} ;
\end{aligned}
$$

\} // $(N-1) \cdot 5$ fp operations
// Backward substitution

$$
\begin{aligned}
& x_{N-1}=b_{N-1} / a_{N-1, N-1} ; \\
& \text { for }(k=N-2 ; k \geq 0 ; k--)\{ \\
& \quad x_{k}=\left(b_{k}-a_{k, k+1} \cdot x_{k}+1\right) / a_{k, k}
\end{aligned}
$$

\}// $(N-1) 3+1 \mathrm{fp}$ operations

- The sequential complexity amounts to

$$
T_{S}=8 N t_{t}
$$

Obviously the algorithm is strictly sequential!

Cyclic Reduction

- Consider a tridiagonal matrix with $N=2 M$ (N even).
- Idea: Eliminate in each even row k the elements $a_{k-1, k}$ and $a_{k+1, k}$ with the help of the odd rows above resp. beneath.
- Each even row is therefore only coupled with the second previous and second next; since these are just even, the dimension has been reduced to $M=N / 2$.
- The remaining system is again tridiagonal, and the idea can be applied recursively.

0	$\begin{array}{ll} \hline * & \circledast \\ * & * \end{array}$	$\begin{aligned} & \square \\ & \hline \end{aligned}$			
2	$\square \circledast$	* \circledast	\square		
3		* *	*		
4		$\square \circledast$	* \circledast	\square	
5			* *	*	
6			$\square \circledast$	* *	\square
7				* *	*
8				$\square \circledast$	
9					* *

Cyclic Reduction

- Algorithm of cyclic reduction
// Elimination of all odd unknowns in even rows:
for $(k=1 ; k<N ; k+=2)$
\{
// row k modifies row $k-1$

$$
\begin{aligned}
& I=a_{k-1, k} / a_{k, k} ; \\
& a_{k-1, k-1}=a_{k-1, k-1}-I \cdot a_{k, k-1} ; \\
& a_{k-1, k+1}=-I \cdot a_{k, k+1} ; \quad / / \text { fill-in } \\
& b_{k-1}=b_{k-1}-I \cdot b_{k} ;
\end{aligned}
$$

\} // $\frac{N}{2} 6 t_{f}$
for ($k=2 ; k<N ; k+=2$);
\{
// row $k-1$ modifies row k
$I=a_{k, k-1} / a_{k-1, k-1} ;$
$a_{k, k-2}=/ \cdot a_{k-1, k-2} ; \quad / /$ fill-in
$a_{k, k}=I \cdot a_{k-1, k} ;$
\} // $\frac{N}{2} 3 t_{f}$

- All traversals of both loops can be processed in parallel (if we assume a machine with shared memory)!

Cyclic Reduction

- Result of this elimination is

	0	1	2	3	4	5	6	7	8	9
0	*		*							
1	*	*	*							
2	*		*		*					
3			*	*	*					
4			*		*		*			
5					*	*	*			
6					*				*	
7							*	*	*	
8							*		*	
9										*

- Are the $x_{2 k}, k=0, \ldots, M-1$, calculated, then the odd unknowns can be calculated with
for ($k=1 ; k<N-1 ; k+=2$)

$$
x_{k}=\left(b_{k}-a_{k, k-1} \cdot x_{k-1}-a_{k, k+1} \cdot x_{k+1}\right) / a_{k, k}
$$

// $\frac{N}{2} 5 t_{f}$
$x_{N-1}=\left(b_{N-1}-a_{N-1, N-2} \cdot x_{N-2}\right) / a_{N-1, N-1} ;$
completely in parallel.

Cyclic Reduction

- The sequential effort for the cyclic reduction is therefore

$$
\begin{aligned}
T_{S}(N) & =(6+3+5) t_{f}\left(\frac{N}{2}+\frac{N}{4}+\frac{N}{8}+\cdots+1\right) \\
& =14 N t_{f}
\end{aligned}
$$

- This is nearly twice as much as the optimal sequential algorithm needs. Therefore the cyclic reduction can be parallelised. The maximal achievable efficiency is however

$$
E_{\max }=\frac{8}{14} \approx 0.53
$$

where we have assumed, that all operations are executed optimally parallel and communication is for free (backward substitution needs only $\frac{N}{2}$ processors!). We have not taken into account that cyclic reduction neccesitates more index calculation!

Domain Decomposition Methods

- Another approach can be in principle be extended to more general problem formulations: domain decomposition methods
- Be P the number of processors and $N=M P+P-1$ for a $M \in \mathbf{N}$. We subdivide then the $N \times N$ matrix A in P blocks à M rows with a single row between the blocks:

Domain Decomposition Methods

- The unknowns between the blocks form the interface. Each block is at most coupled to two interface unknowns.
- Now we sort rows and columns of the matrix such that the interface unknowns are moved to the end. This results in the following shape:

where $A^{p, p}$ are the $M \times M$ tridiagonal partial matrices from A and $A^{l, l}$ is a $P-1 \times P-1$ diagonal matrix. The $A^{p, l}$ have the general form

$$
A^{p, I}=\left(\begin{array}{l|l|l}
\ldots & * & \\
\cdots & * & \ldots
\end{array}\right) .
$$

Domain Decomposition Methods

- Idea: Eliminate blocks $A^{l, *}$ in the block representation. Thereby $A^{l, l}$ is modified, more exact the following block representation is created:

mit $S=A^{\prime, I}-\sum_{p=0}^{P-1} A^{\prime, p}\left(A^{p, p}\right)^{-1} A^{p, l}$.
- S is in general denoted as "Schurcomplement". All eliminations in $\sum_{p=0}^{P-1}$ can be executed parallel.
- After solution of a system $S y=d$ for the interface unknowns the inner unknowns can again be calculated in parallel.
- S has dimension $P-1 \times P-1$ and is itself sparse, as we can see soon.

Execution of the Plan

1. Transform $A^{p, p}$ to diagonal shape. ($a_{i, j}$ denotes $\left(A^{p, p}\right)_{i, j}$, if not stated otherwise):
$\forall p$ parallel
```
for \((k=0 ; k<M-1 ; k++) \quad / / ~ l o w e r ~ d i a g o n a l ~\)
\{
    \(I=a_{k+1, k} / a_{k, k} ;\)
    \(a_{k+1, k+1}=a_{k+1, k+1}-l \cdot a_{k, k+1}\);
    if \((p>0) a_{k+1, p-1}^{p, I}=a_{k+1, p-1}^{p, I}-I \cdot a_{k, p-1}\);
```

// fill-in left boundary

$$
\begin{aligned}
& b_{k+1}^{p}=b_{k+1}^{p}-l \cdot b_{k}^{p} ; \\
& \} / /(M-1) 7 t_{f} \\
& \text { for }(k=M-1 ; k>0 ; k--) \\
& \text { // upper diagonal } \\
& \text { \{ } \\
& I=a_{k-1, k} / a_{k, k} ; \\
& b_{k-1}^{p}=b_{k-1}^{p}-l \cdot b_{k}^{p} \text {; } \\
& \text { if }(p>0) a_{k-1, p-1}^{p, l}=a^{p, I}-I \cdot a_{k, p-1}^{p, l} ; \quad / / \text { left boundary } \\
& \text { if }(p<P-1) a_{k-1, p}^{p, I}=a_{k-1, p}^{p, l}-l \cdot a_{k, p}^{p, l} ; \quad / / \text { right boundary, fill-in } \\
& \} / /(M-1) 7 t_{f}
\end{aligned}
$$

Execution of the Plan

2. Eliminate in $A^{\prime, *}$.
$\forall p$ parallel:

$$
\text { if }(p>0)
$$

// left boundary P - 1 in interfa

// diagonal in S
// upper diag. in S, fill-in
\}
if $(p<P-1)$
\{
// right boundary

$$
\begin{aligned}
& I=a_{p, M-1}^{I, p} / a_{M-1, M-1}^{p, p} ; \\
& \text { if }(p>0) a_{p, p-1}^{l, I}=a_{p, p-1}^{l, I}-I \cdot a_{M-1, p-1}^{p, I} ;
\end{aligned}
$$

$$
a_{p, p}^{l, l}=a_{p, p}^{l, l}-I \cdot a_{M-1, p}^{p, I}
$$

$$
b_{p}^{\prime}=b_{p}^{\prime}-l \cdot b_{M-1}^{p}
$$

Execution of the Plan

3. Solve Schurcomplement.
S is tridiagonal with dimension $P-1 \times P-1$. Assume that $M \gg P$ and solve sequential. $\longrightarrow 8 \mathrm{Pt}_{f}$ effort.
4. Calculate inner unknowns.

Here, only one diagonal matrix has to be solved per processor.
$\forall p$ parallel:

$$
\begin{aligned}
& \text { for }(k=0 ; k<M-1 ; k++) \\
& x_{k}^{p}=\left(b_{k}^{p}-a_{k, p-1}^{p, l} \cdot x_{p-1}^{\prime}-a_{k, p}^{p, I} \cdot x_{p}^{\prime}\right) / a_{k, k}^{p, p} ; \\
& \text { // M5t } t_{f}
\end{aligned}
$$

Analysis

- Total effort parallel:

$$
\begin{aligned}
T_{P}(N, P) & =14 M t_{f}+O(1) t_{f}+8 P t_{f}+5 M t_{f}= \\
& =19 M t_{f}+8 P t_{f}
\end{aligned}
$$

(without communication!)

$$
\begin{aligned}
E_{\max } & =\frac{8(M P+P-1) t_{f}}{\left(19 M t_{f}+8 P t_{f}\right) P} \approx \\
\underbrace{\approx}_{\text {für } P \ll M} & \frac{1}{\frac{19}{8}+\frac{P}{M}} \leq \frac{8}{19}=0.42
\end{aligned}
$$

- The algorithm needs additional memory for the fill-in. Cyclic reduction works with overwriting of old entries.

LU Decomposition of Sparse Matrices

What is a sparse matrix

- In general one speaks of a sparse matrix, if it has in (nearly) each row only a constant number of non-zero elements.
- If $A \in \mathcal{R}^{N \times N}$, then A has only $O(N)$ instead of N^{2} entries.
- For large enough N it is then advantegeous regarding computing time and memory not to process resp. to store this large number of zeros.

LU Decomposition of Sparse Matrices

Fill-in

- While $L U$ decomposition elements, that initially have been zero, can get non-zero during the elimination process.
- On speaks then of „Fill-in".
- This heavily depends on the structure of the matrix. As a extreme example consider the „arrow matrix"

$*$				$*$			
	$*$						
		$*$				0	
			$*$				
				\ddots			
				\ddots			
		0				$*$	
							$*$

- During elimination in the natural sequence (without pivoting) the whole matrix is "filled-in".

LU Decomposition of Sparse Matrices

Reordering of the matrix

- If we rearrange the matrix by row and column permutations to the form

- Obviously no fill-in is produced.
- An important point in the $L U$ decomposition of sparse matrices is to find a matrix ordering such that the fill-in is minimised.
- Reordering is strongly coupled to pivoting.

Pivoting

- If the matrix A is symmetric positive definite (SPD), then the $L U$ factorisation is always numerically stable, and no pivotng is necessary.
\rightarrow The matrix can thus be reordered in advance, that the fill-in gets small.
- For a general, invertible matrix one will need to use pivoting.
\rightarrow Then during elimination a compromise between numerical stability and fill-in has to be found dynamically.
- Therefore nearly all codes restrict to the symmetric positive case and determine an elimination sequence that minimizes the fill-in in advance.
- The exact solution of the minimization problem is $\mathcal{N P}$ complete.
\rightarrow One therefore uses heuristical methods.

Graph of a Matrix

Matrix graph

- In the symmetric positive case fill-in can be investigated purely by the zero structure of the matrix.
- For an arbitrary, now not necessarily symmetric $A \in \mathcal{R}^{N \times N}$ we define an undirected graph $G(A)=\left(V_{A}, E_{A}\right)$ by

$$
\begin{aligned}
V_{A} & =\{0, \ldots, N-1\} \\
(i, j) \in E_{A} & \Longleftrightarrow a_{i j} \neq 0 \vee a_{j i} \neq 0 .
\end{aligned}
$$

- This graph describes the direct dependencies of the unknowns beneath each other.

Graph of a Matrix

Example:

$G(A)$

Matrix Ordering Strategies

Nested Disection

- An important method to order SPD matrices for the purpose of fill-in minimisation is the „nested disection".
- Example:

The graph $G(A)$ of the matrix A be a quadratic grid

Matrix Ordering Strategies

Now we divide the node set V_{A} in three parts: V_{A}^{0}, V_{A}^{1} and V_{A}^{\prime}, such that

- V_{A}^{0} and V_{A}^{1} are as large as possible,
- V_{A}^{\prime} is a separator, this means when V_{A}^{\prime} is removed from the graph this is split into two parts. Thus there is $n o(i, j) \in E_{A}$, such that $i \in V_{A}^{0}$ and $j \in V_{A}^{1}$.
- V_{A}^{\prime} is as small as possible,
- The figure shows a possibility for such a partitioning.

Matrix Ordering Strategies

- Now one reorders the rows and columns such that first the indices V_{A}^{0} are present, then V_{A}^{1} and finally V_{A}^{\prime}.
- Then we apply the method recursively to the partial graphs with the node sets V_{A}^{0} and V_{A}^{1}.
- The method stops, if the graphs has reached a predefined size.
- Example graph after two steps:

Matrix Ordering Strategies

Complexity of the nested disection

- For the example above the nested disection numbering leads to a complexity of $O\left(N^{3 / 2}\right)$ for the $L U$ decomposition.
- For comparisoon one needs with lexicographic numbering (band matrix) $O\left(N^{2}\right)$ operations.

Data Structures for Sparse Matrices

- There are a series of data structures for storage of sparse matrices.
- Goal is an efficient implementation of algorithms.
- Thus one has to watch out for data locality and as few overhead as possible by additional index calculation.
- An often used data structure is "compressed row storage"
- If the $N \times N$ matrix has in total M non-zero elements, then one stores the matrix elements row-wise in an one-dimensional field: double $a[M]$;
- The management of index information happens via three arrays int $s[N], r[N], j[M]$;
- Their meaning shows the realisation of the matrix-vector product $y=A x$:

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++)\{ \\
& \quad y[i]=0 ; \\
& \quad \text { for }(k=r[i] ; k<r[i]+s[i] ; k++) \\
& \quad y[i]+=a[k] \cdot x[j[k]] ;
\end{aligned}
$$

\}.

- r provides row start, s the row length, and j the column index.

Elimination Forms

- In the $L U$ decomposition of dense matrices we have used the so-called kij form of the $L U$ decomposition.

- Here in each step k all $a_{i k}$ for $i>k$ are eliminated, which requires a modification of all $a_{i j}$ with $i, j>k$.
- This situation is shown left.
- In the $k j i$ variant one eliminates in step k all $a_{k j}$ with $j<k$.
- Here the $a_{k i}$ with $i \geq k$ are modified. Wach out, that the $a_{k j}$ have to be eliminated from left to right!
- For the following sequential $L U$ decomposition for sparse matrices we are going to start from this kji variant.

Sequential Algorithm

- In the following we assume:
- The matrix A can be factorized in the given ordering without pivoting. The ordering has been choosen in an appropriate way to minimize fill-in.
- The data structure stores all elements $a_{i j}$ with $(i, j) \in G(A)$. Because of the definiton of $G(A)$ applies:

$$
(i, j) \notin G(A) \Rightarrow a_{i j}=0 \wedge a_{j i}=0
$$

If $a_{i j} \neq 0$, then in every case also $a_{j i}$ is stored, also if this is zero. The matrix does not have to be symmetric.

- The extension of the structure of A happens purely because of the information in $G(A)$. Thus also a $a_{k j}$ is formally eliminated, if $(k, j) \in G(A)$ applies. This can possibly create a fill-in $a_{k i}$, albeit applies $a_{k i}=0$.
- The now presented algorithm uses the sets $S_{k} \subset\{0, \ldots, k-1\}$, that contain in step k exactly the column indices, that have to be eliminated.

Sequential Algorithm

```
for (k=0; k<N;k++) Sk=\emptyset;
for (k=0;k<N;k++)
{
    // 1. extend matrix graph
    for (j\in Sk)
    {
    G(A)=G(A)\cup{(k,j)};
    for (i=k;i<N;i++)
        if ((j,i) \inG(A))
        G(A)=G(A)\cup{(k,i)};
    }
    // 2. Eliminate
    for (j\inS Sk
    { // eliminate ak,j
        _ ak,j= = ak,j/ (aj,j;
    }
    // 3. update Si for i>k, holds because of symmetry of E}\mp@subsup{E}{A}{
    for (i=k+1;i<N;i++)
        if ((k,i) \inG(A))
            Si}=\mp@subsup{S}{i}{}\cup{k}
}
\[
/ / \Rightarrow(i, k) \in G(A)
\]
\[
S_{i}=S_{i} \cup\{k\}
\]

\section*{Sequential Algorithm}
- We consider in an example, how the \(S_{k}\) are mapped.

- At start \(G(A)\) shall contain the elements
\[
G(A)=\{(0,0),(m, m),(n, n),(0, n),(n, 0),(0, m),(m, 0)\}
\]
- For \(k=0\) is set in step \(1 S_{m}=\{0\}\) and \(S_{n}=\{0\}\).
- Now, next for \(k=m\) the \(a_{m, 0}\) is eliminated.
- This generates the fill-in ( \(m, n\) ), which again has in step 3 for \(k=m\) as consequence the instruction \(S_{n}=s_{n} \cup\{m\}\).
- Thus applies at start of traversal \(k=n\) correctly \(S_{n}=\{0, m\}\) and in step 1 the fill-in \(a_{n, m}\) is correctly generated, before the elimination of \(a_{n, 0}\) is performed. This is enabled because of the symmetry of \(G_{A}\).

\section*{Parallelisation}
\(L U\) decomposition of sparse matrices has the following possibilites for a parallelisation:
- coarse granularity: In all \(2^{d}\) partial sets of indices, that has been created by nested disection of depth \(d\), one can start in parallel with the elimination. First for the indices, that correspond to the separators, communication is necessary.
- medium granularity: Single rows can be processed in parallel, as soon as the according pivot row is locally available. This corresponds to the parallelisation of the dense \(L U\) decomposition.
- fine granularity: modifications of an individual row can be processed in parallel, as soon as the pivot line and the multiplicator are available. This is used for the two-dimensional data distribution in the dense case.

\section*{Parallelisation: Case \(N=P\)}

\section*{Program ( \(L U\) decomposition for sparse matrices and \(N=P\) )} parallel sparse-lu-1
```

const int N = ...;
process \Pi[int }k\in{0,···,N-1}
{// (only pseudo code!)
S = \emptyset;
for (j=0;j<k;j++)
if ((k,j) \inG(A))S = S \cup{j};
for (j=0;j<k;j++)
if (j\in\mp@subsup{S}{k}{})
recv(}\mp@subsup{\Pi}{j}{},r)
// extend pattern
for (i=j+1;i<N;i++)
{
if (i<k\wedge(j,i) \inG(A))
S=S\cup{i};
if ((j,i) \inG(A)\cup{(k,i)})
G(A)=G(A)\cup{(k,i)};
}
// eliminate }\mp@subsup{a}{k,j}{}=\mp@subsup{a}{k,j}{}/\mp@subsup{a}{j,j}{};\quad// info is in
for (i=j+1;i<N;i++)
ak,i}=\mp@subsup{a}{k,i}{}-\mp@subsup{a}{k,j}{}\cdot\mp@subsup{a}{j,i}{};\quad // info is in
for (i=k+1;i<N;i++)
if ((k,i) \inG(A))
send row k at 竝;
// 1. set S
// the start
// 2. process row k
// wait, until }\mp@subsup{\Pi}{j}{}\mathrm{ sends the row j
// info is in r
// processor i will send row i
// info is in r
// 3. send away
// local info!
// k knowns, that i needs row k.

```

\section*{Parallelisation for \(N \gg P\)}

For case \(N \gg P\)
- Each processor has now a complete block of rows. Three things have to happen:
- Receive pivot rows of other processors and store them in the set \(R\).
- Send finished rows from the send buffer \(S\) to the target processors.
- Local elimination
- choose a row \(j\) from the receive buffer \(R\).
- eliminate with this row locally all possible \(a_{k, j}\).
- if a row is going to be ready, put it into the send buffer (there may be several target processors).```

