
IWR, University of Heidelberg Winter term 2014/15

Exercise Sheet 4 13. November 2014

Exercise for Course

Parallel High-Performance Computing
Dr. S. Lang

Return: 20. November 2014 at the beginning of the exercise or earlier

Task 8 Fat-tree Network (5 points)

We consider a static Fat-tree network. The network topology is a tree, where the connection count
between two nodes increases with decreasing distance to the root node: Leafs of the tree are connected
with a single (here for simplicity duplex-) wire with their parent node, the next higher level has
two of such connections, then four and so on. The topology is shown schematically in Figure 0.3.
Determine for this topology the node degree, the total count of connections, the network diameter and
the bisection bandwidth.

Abbildung 0.3: Static Fat-tree network, schematically. Source: Wikipedia

Task 9 OpenMP: Matrix Multiplication (10 points)

In Exercise 4 we have multiplied two (quadratic) matrices. We now parallelize this program using
OpenMP and investigate the scalability of the problem concerning the number of threads. In general
we measure in this task computing times and FLOPs related to problem size or count of the involved
threads. Hints on time measurement are provided at the end of the task description.

(a) Write a program that realizes the matrx multiplication algorithm with OpenMP based paralle-
lism. The outer for loop of the multiplication algorithm shall be processed each by an individual
thread, such that each row traversal is started in a single thread that is forked. Measure the
computing times and FLOPs rate for m = 2n, n ∈ 0, 1, . . . , 11 involved threads and for matrix
sizes (side length of the matrix not total entries!) N = 16, 32, 64, 128, 256, 512, 1024 using static

scheduling. Plot a time-m diagram for each problem size. Discuss when the overhead introduced
by parallelisation pays off, and when not.

(b) Investigate and discuss how your program behaves with dynamic scheduling.

(c) Modify the program, that through nested parallel blocks also the instructions of the inner loop
can be executed in parallel. Thus also for each scalar product within the row traversal a new
threasd is started. For the nested parallelisation there is the OpenMP function omp_set_nested

(int k), that allows depending on the value of k several nested levels. The maximal possible
nesting depth is controlled with the function omp_set_max_active_levels(int max). For each
level an individual #pragma omp parallel environment has to be used.
Perform a compute-time vs. m measurement as above with m ∈ 1, 2, 4, . . . , 128 for e. g. N =
256, 512 and 1024 with static scheduling. Does the additional overhead of this variant pay off?



Remarks:

• On *nix systems you can compile OpenMP programs with the gcc-compiler beginning at version
4.1.2 using the option -fopenmp. If this option is suppressed the program is compiled as a serial
one. To use OpenMP you have to include the file omp.h:

1 #ifdef _OPENMP

2 #include <omp.h>

3 #endif

The thread count can be set by the environment variable OMP_NUM_THREADS in the shell or within
the program by calling the function omp_set_num_threads(int m). On the course homepage
you find a small program, that illustrates the fundamental ingredients of an OpenMP program.

• For time measurement we cannot use the timing functions from timer.h, since these measure
the CPU time and therefore the summed-up user time of all threads. Thus we measure the
elapsed wallclock time of the main thread with the OpenMP method, e.g.

1 double tstart = omp_get_wtime ();

2 // do something with multiple threads

3 double tend = omp_get_wtime ();

with the unit of s (seconds). Hereby you should ensure, that the time measurement is not
influenced too much by other running processe. To execute sufficiently many floating point
operations you should execute serveral iterations if necessary.


