
IWR, University of Heidelberg Winter term 2014/15

Exercise Sheet 5 20. November 2014

Exercise for Course

Parallel High-Performance Computing
Dr. S. Lang

Return: 27. November 2014 at the beginning of the exercise or earlier

Task 10 Bakery Algorithm (5 points)

In the lecture multiple possibilities to realize mutual exclusion have been discussed (spin locks,
ticketing, . . .). The following algorithm presented in our abstract notation realizes mutual exclusion
without special machine instructions for P processes.

1 parallel bakery

2 {

3 const int P = 8;

4 int number[P] = {0[P]};

5 int choosing[P] = {0[P]};

6

7 process Proc [int i in {0,...,P-1}]

8 {

9 int mine;

10 while (true)

11 {

12 // entry protocol

13 choosing[i] = 1;

14 mine = 0;

15

16 for (int k=0; k<P; k++) mine = max(mine ,number[k]);

17 number[i] = mine +1;

18 choosing[i] = 0;

19

20 for (int k=0; k<P; k++)

21 {

22 while (choosing[k]);

23 while (number[k]!=0 &&

24 (number[k]<number[i] || (number[k]== number[i] && k

<i)));

25 }

26

27 // critical section follows here

28 // exit protocol

29 number[i] = 0;

30 // uncritical section follows here

31 }

32 }

33 }

Explain how the algorithm works to achieve mutual exclusion (Hint: Remember the ticket algorithm).
Investigate why two processes cannot enter the critical section at a time, if one assumes sequential
consistency of memory. Discuss, whether the algorithm guarantees deadlock-freeness and final entry
(no formal proof necessary!).

Task 11 Goldbach theorem with OpenMP (10 points)

After the non-proofen Satz (
”
Goldbach theorem“) each even number p ≥ 4 can be represented as

sum of two prime numbers (where 1 is not regarded as prime). A simple realisation of the test would
be by example:

• An array 1 . . . N stores a bool value, whether the array index i ∈ 1 . . . N is a prime number.
• By iteration with i over the array test for simultaneous primeness for i and N − i, whether the

number pair (N−i, i) fulfills the condition. Since i+(N−i) = N has eventually a representation
by a prime sum been found.

Therefore one necessitates a function, that determines (and stores in an array), whether i is a prime
number:

1 inline bool is_prime(long i)

2 {

3 const long j = (long) std::sqrt(i);

4 for (long k=2; k<j+1; ++k)

5 if (i % k == 0)

6 return false;

7

8 return true;

9 }

Here there are of course still better alternatives, phrase sieve of Eratosthenes.
Write a program, that for all numbers i up to an upper limit N counts the number of possible repre-

sentation sums. The program shall be parallelized with OpenMP this means each thread shall check a
fraction of the numbers and count the number of representations. There are of course severeal possible
realizations. There might be a global field read and written by all threads, that stores primeness of the
numbers from 1 to N ; or each thread stores its own array. Alternatively one can calculate primeness
of a number also On the fly for each i with the above function. Take the approach that seems to be
most efficient in your opinion and state shortly why.

Measure for your sequential (one thread) and parallel (with 2, 4 and 8 threads) program the runtime
in s. Herefore you can use the already known OpenMP time measurement. What is the speedup you
achieve in parallel execution? Measure for N = 100 up to at least N = 105 with sufficient many
measurement points. Average over several measurements, avoid outlyers, and also provide information
which optimization level you have used. Since the computing effort increases almost exponentially,
the load distribution is inhomogenous. Test therefore also the scheduling parameters static, guided
and dynamic. Discuss your results using your self-generated figures of computing time, speedup and
problem size.

