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Task 12 Peterson Lock with ThreadTools (5 points)

Consider the following program segment, where two threads increment a common shared variable.
Of course the processes are in general not executed sequential after each other, because of that one
will not get the expected result 20 000 000 that had been computed by pure sequential execution:

1 parallel increment

2 {

3 const int sections = 10000000;

4 int count = 0;

5

6 Process Π1 Process Π2

7 { {

8 for (int i=0; i<sections; i++) for (int i=0; i<sections; i++)

9 { {

10 count += 1; count += 1;

11 } }

12 } }

13 }

The critical section (critical section, CS) can for example be locked with the peterson algorithm
presented in the lecture. This is shown with our abstract notation in the following listing:

1 parallel increment -peterson

2 {

3 const int sections = 10000000;

4 int in1 = 0, in2 = 0, last = 1;

5 int count = 0;

6

7 Process Π1 Process Π2

8 { {

9 for (int i=0; i<sections; i++) for (int i=0; i<sections; i++)

10 { {

11 in1 = 1; in2 = 1;

12 // * // *

13 last = 1; last = 2;

14 // * // *

15 while (in2 ∧ last == 1); while (in1 ∧ last == 2);

16 count += 1; count += 1; // CS

17 in1 = 0; in2 = 0;

18 } }

19 } }

20 }

Subtask (a)

On the lecture webpage the ThreadTools are provided for you in a zip compressed file threadtools

.zip. These implement some wrapper classes, that simplify the functionality of PThreads by object-
oriented realization. In the lecture these have been called ActiveObjects. Please consider the hints
regarding the ThreadTools at the end of the sheet and on the webpage. You find with the ThreadTools
an implementation of the above shown naive Peterson lock in the file checkpeterson.cc. You can
compile the program with the command make. Test with at least 10 runs, whether the variable count

stores the
”
correct“ result. Look next into the Makefile at lines 4 and 5:

4 CFLAGS = -g -O0 -c -Wall

5 #CFLAGS = -O3 -c



Comment out line 4 and in line 5, and compile new with make clean and then make. Hereby you
generate the optimized code. Repeat the measurements. Do you obtain with the non-optimized as well
as the optimized code the correct results? Can you explain, why the Peterson lock does also not work
in the non-optimized case?

Subtask (b)

In the file membarrier.hh you can find a so-called memory barrier, that is realized by an assembly
instruction. By means of this memory barrier the out-of-order-execution can be influenced manually
resp. avoided. For repetition: By out-of-order execution machine instructions can be executed in ad-
vance, if the data, that is needed, is already available calculated in memory. The memory barrier can
now instruct the sequence that is used to execute instructions or memory operations:

1 OP_1;

2 . . .
3 OP_n;

4 memBarrier ();

5 OP_{n+1};

The memory barrier forces here, that the operations OP_1 to OP_n have been finished completely,
before OP_{n+1} may be executed. Insert now at the locations, that are signed with a star // *,
a memory barrier, and test again several times with and without optimization (perform before a
make unconditionally always a make clean!). How does your program behave? Discuss shortly your
observations.

Subtask (c)

Now, remove the memBarrier() calls again. In C/C++ you can mark memory areas in such a way, that
the sequence of read- and write operations onto these memory areas is preserved during compilation of
the program. This is perfored with the keyword volatile. Read- and write operations for volatile

variables always are exactly in programcode sequence inside the compiled program and may not be
removed by optimization. Designate the four common variables in[0], in[1], last and count as
volatile. Recompile again with and without optimization and repeat the experiments of (a) and (b)
several times. What can you observe? Try to explain the effects, that you have observed!

Subtask (d)

Repeat Subtask (c) again, but now with the call of the memory barrier at the signed locations. Which
effects can you observe now?

Task 13 ThreadTools: Semaphores (5 points)

In the lectures you have learned about the semaphore concept as well as the inactive waiting with
condition variables. In the ThreadTools, that have been introduced in the last task, there is a class
Semphore, that realizes the data type Semaphore by condition variables. Herefore it is derived from
the class Condition and has the following code:

1 /** Implements a semaphore deriving from a condition variable.

2 */

3 class Semaphore : private Condition <unsigned int >

4 {

5 public:

6

7 //! \brief make a semaphore with initial value

8 Semaphore (int init);

9

10 //! \brief make a semaphore with initial value 0

11 Semaphore ();

12

13 //! \brief decrement value

14 void P ();

15



16 //! \brief release semaphore

17 void V ();

18 };

It is your task to implement P () and V () methods of semaphores. For this you need the methods
acquire(), wait(), release() and signal() of the base class Condition. The class Condition

contains moreover a variable value, that is incremented or decremented by the semaphore. The
provided ThreadTools contain a file semaphore.hh with the above header information as well as
additionally in the file semaphore.cc the skeletal structure, whose methods you have to implement.

Task 14 ThreadTools: producer-consumer problem with ring buffer (10 points)

In the lecture you have discussed, how producer-consumer problems can be solved with semaphores.
This problem shall now be implemented with the ThreadTools (in the lecture called ActiveObjects):
A buffer is filled from a producer. Has the producer reached the end of the buffer, he rewrites the
beginning of the buffer, older requests stored there shall not be overwritten. A consumer reads requests
to be processed from buffer. For the program you need

• a buffer, that can store the desired data type,
• a semaphore, that locks free buffer locations,
• a semaphore, that locks occupied buffer locations,
• initialize the semaphore, that locks free buffer locations, at the beginning with the number of

buffer locations, that are initially available.

Now write classes, that implement producer and consumer. These shall be derived from the class
BasicThread and have to overload the virtual method run(), where producers and consumers perform
their tasks. Use for the implementation the provided empty code skeleton producerconsumer.cc. This
can be compiled with the command make without modification of the Makefile. For this task you
need the solution of the prior Semaphore task. Who cannot solve it, may inform the instructor via
email to get a solution.

Test your program with a buffer length of 5. The buffer may store arbitrary data types. The producer
shall generate in a loop 20 pieces and write the current loop count as virtual good into the buffer. Let
both threads print which buffer location they currently process and which good (loop iteration) they
have actually stored or resp. retrieved.

Hints for ThreadTools (ActiveObjects)

The ActiveObjects introduced in the lecture are called in the exercises ThreadTools. A thread is
realized by the base class BasicThread.

• On the lecture webpage you find a zip archive threadtools.zip, that provides the classes for
the BasicThreads, general tools for thread-handling and several examples. It is also a Makefile
added, compilation with Linux is done with make.
• You can use all methods from ThreadTools by inclusion of the file tt.hh. For the solution of

Semaphore task you do not need to adapt the Makefile.
• For the solution of the Producer-Consumer-Problem please use the provided skeleton producerconsumer

.cc. This is in the Makefile a target and is compiled when issueing a make.
• The skeleton resources.cc is needed for the next exercise sheet.
• Further read the detailed information on the webpage.


