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Task 17 MPI: Communication in the ring (5 points)

With this task we want to perform first steps with MPI. Implement a communication of 8 processes
in the ring. Each process shall sent its rank within a message once in the ring and terminate, if it again
receives its rank within a message. Use synchronous sending resp. receiving and one of the techniques
presented in the lecture, to avoid deadlocks, e.g. coloring of the edges. Each process shall in each
send/receive step print its ranks and the just received message. Test your program in the pool and
hand in an output of the communication sequence.

More details for using of MPI in the pool is on the Homepage. Helpful for the right syntax are the
manpages about MPI (e.g. man MPI_Comm_rank).

Task 18 Parallel Computing of π with MPI (5 points)

From the identity π = 4(arctan 1) one gets by usage of the derivative of the arctan, (arctanx)′

= 1/(1 + x2), a formula for calculating π:

π =

∫ 1

0

4

1 + x2
dx.

By division of the interval into n equidistant partial pieces the integral can be evaluated with the
midpoint rule. You can find a sequential program in the file piseq.c on the homepage. We want to
parallelize it with MPI. The strategy is:

• process 0 reads the number of partial intervals and passes it to all other processes,
• The for loop over the partial intervals will be parallelised, each process calculates a local partial

sum. The results wil be collected by process 0 with a reduction operation MPI_Reduce and the
partial sums are added.

First determine the convergence order of the midpoint rule with the sequential program. Establish
a double-logarithmic plot with the integration error over the interval length h. The steepness of the
line give the order. Now implement a parallel version. Compare the accuracy in the calculations (last
digits) with the sequential solution and the exact value (short discussion).

Optional task

5 additional
The number of valid digit positions can be enhanced by using the Gnu Multiprecision Arithmetic

Library (GMP, you can find at www.gmplib.org, for the most Linux distributions there is a package).
Thus π could be calculated e.g. up to 40., 60. or 80 positions. Of course the choosen method with
quadratic convergence is much to slow for that, this means a up to 80. digit exact program would run
nearly forever. Implement a version of the sequential or parallel program, that uses the GMP. If you
want to gain high accuracy, you need to use a better method than the midpoint rule. Otherwise you
can test which accuracy you can achieve with GMP and the midpoint rule in a meaningful computing
time. You can get the reference value of pi by internet.

Task 19 Simple Parallelisation of the Jacobi method with MPI (10 points)

For linear equation systems Ax = b, A ∈ Rn×n, x,b ∈ Rn, n ∈ N, direct solution methods are mostly
inefficient for large n. Therefore one often uses iterative methods like the Jacobi method. You get the



method by additive spliting of the system matrix A in an upper and low triangular matrix U and L
and the diagonal matrix D, A = D+L+U . This leads to the fixpoint iteration x = D−1(b−(A−D)x),
that can be solved under certain circumstances: x(m+1) = D−1(b− (A−D)x(m)), Index m ∈ N is the
iteration step. The i.th equation for the (m+ 1). step of the method is then called

x
(m+1)
i =

bi −
∑

j 6=i aijx
(m)
j

aii
.

As starting vector x0 you can use each arbitrary vector. The calculation of the residual r provides a
termination condition in m.th step. rm := b − Ax(m): Is an adequate norm of the residual (e.g. the
maximum norm ||r||∞) smaller than a given tolerance ε ∈ R+, the iteration stops. The calculation of
the iteration depend only on the previous solution and therrre are no data dependencies between the
newly calculated values xi. Thus the Jacobi methods is easy to parallelize.

We want to use the Jacobi method, to calculate the discrete solution of the poisson equation

−4 u = f in Ω = (0, r)2,

u = 0 auf ∂Ω

on a square with side length r. The source f be f(x, y) := 2π2 sin(πx) · sin(πy). Then the analytic
solution is given by u(x, y) = sin(πx) · sin(πy). The unit square is covered from a grid with n2 points,
see Figure 0.5 left with r = 4 and n = 9. The distance h between two points (the

”
grid resolution“) is

h = r/(n− 1). In the Figure to the right a source f is shown.

An equation system in matrix shape is gotten by approximation of the second derivative through
a central difference quotient at each inner grid point (i, j) mit i, j = 1 . . . n − 1. At the boundary
points with i = 0 or i = n (also for j) the solution is predefined. The grid points can be enumerated
consecutively by k = i · n+ j, thus each index pair (i, j) is mapped onto an index k in a unique way.
Then we can consider the grid function

uh := (u01, u02, . . . , u0n, u11, . . . , u1n, . . . , un1, . . . unn)T = (u1, . . . uN )T

with N = n2. After the approximation of the second derivative the equation system for the unknown
grid function uh (details to the derivation soon) reads:
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The values f1 to fN are evaluations of the source f at the grid points. Each line correspoinds to a grid
point xii. The matrix contains on the diagonal the 4 as entry of uii, and in the direct neighbors left
and right the entry −1 at the indices ui−1j and ui+1j . Furthermore there are in each row two further
entries −1. This are exactly the one of the neighbors above and below uij+1 and uij−1. Therefore the
distane between the −1 right beneath a 4 and the next −1 just n.

At a boundary point the assigned matrix line has to be substituted through a null line with a 1 on
the diagonal entry, the solution u has to be set in this case to 0 as well as the right side also to 0.

Task

1. Develop a MPI-parallel variant of the Jacobi method. A possible strategy is to split the matrix A
and the vectors in stripes of size (row or column count) α, each processor works with one stripe.
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Abbildung 0.5: Left: area Ω with discretization, right: source f(x, y).

Each processor gets in the Jacobi step m a copy of the previous solution x(m−1), to calculate
the new values xi of a stripe. Then in each iteration each process hat to communicate its new
values of its partial domain to all other processes, e.g. using multi broadcast.

2. Initialize the initial solution uh with 0.0. Set r = 1.0 and use a tolerance for ε = 10−4. Don’t
forget when assembling the matrix and the initialisation of the vectors the treatment of the
boundary points! Test with your code the convergence of the error ‖u− uh‖∞ between analytic
u and numerical solution uh at the grid points for n = 4, 8, 16, 32 and 64. Establish a plot of the
error over the grid width h. Can you determine the consistency order?

3. Measure the speedup in the pool against the sequential version (P = 1) for different problem
sizes n ≤ 32 and processor counts P .

Hints

• If you like you can implement another strategy, that you can find in a textbook on numerical
solution methods for linear equation systems.

• If you have any difficulties you can make the task easier and choose a another matrix without
physical application. For convergence of the Jacobi method the matrix A needs to be strictly
diagonal dominant: It should apply for each line

∑n
j=1;j 6=i |aij | < |aii|, ∀i ∈ {1, .., n} (the absolute

value of diagonal element of each line should be greater than the sum of absolute values of the
off diagonal entries).


