
Abbildung 0.6: Left: Sierpinski-Fractal of fourth stage, Right: Mandelbrot set. Source: Wikipedia.

IWR, University of Heidelberg Winter term 2014/15
Exercise Sheet 9 18. December 2014

Exercise for Course

Parallel High-Performance Computing
Dr. S. Lang

Return: 08. January 2015 at the beginning of the exercise or earlier

Task 20 New-Year task: Fractals with MPI (5 points)

In this task we want to calculate two fractals with MPI: The Sierpinski carpet and the Mandelbrot
set. The task is highly-experimental and can be regarded as new-year goodie. Points are deliverd for
all good ideas, hints, . . .

Sierpinski Carpet

The first fractal is the so-called Sierpinsky carpet, see Figure 0.6 left. A Sierpinski carpet nth stage is
generated in the following way:

• Start with a white square of side length l.
• Subdivide the square into 9 equal sized sub-squares.
• Color the mean square in black.
• Fill the other 8 sub-squares with Sierpinski carpets of stage (n− 1).

The Sierpinski carpet of 0th stage is a white square. On the homepage you find a sequential program,
that generates a Sierpinski carpet of stage n. As parameters are passed the side length s of the intial
square in pixels and the stage n, where should apply s = k · 3n, n = 1, 2, . . . and k ∈ N+, this means s
is a multiple of some three power and the initial square allows a subdivision in n stages. The program
generates a file sierpinsky.ppm, that you can display with almost any picture viewer.

Task

Extend the program such that it works in parallel with message passing (MPI), each process works
only on a part of the area. Difficulties are during file output. In principle there are multiple possibilites:

1. Since the ppm files can get very large every processor could output its share in a dedicated file.
Do not store all files, you have only about. 1 GB of disk space!

2. Test the parallel writing of files with the MPIfunctions MPI_File_write(), . . .
3. You find a better format (regarding memory consumption) than ppm. In principle we only need

black-white pictures and not the complete RGB color space.

Mandelbrot set

The Mandelbrot set (Figure 0.6, right) is defined by a complex sequence f
(n)
c (z) := z2

n + c, zn ∈
C ∀n ∈ N, where c is a given complex number. If the sequence is bounded for the initial value z0 = 0,
then c is in the Mandelbrot set. It is known, that all c with |c| > 2 are not part of the Mandelbrot
set. A picture of the Mandelbrot set can be displayed on the screen, where each pixel represents
a point of the complex plain. Now n iterations will be calculated and the Mandelbrot points with
|f (n)(c)| < 2 black colored. Interessing are the boundary points of the Mandelbrot set. These can be

colored in dependance of n, where n is smallest number for that holds |f (n)
c (n)| > 2. The boundary

can be investigated with increasing resolution. On the homepage you can find a sequential program,
that contains the boundaries of the intervals and keeps the increments in the complex plain. It finally
exports a ppm file.

Task

The program can be parallelized with the following strategy using message passing (MPI): The calcu-
lation of color values may be done for each pixel independently. Furthermore the number of iterations
for each pixel varies under circumstances strongly. Thus the display is subdivided into several squares
and one process controls as master. The slaves request from it after finishing their tasks new work
(remember the TSP problem). We further use the fact, that all points in a square have the same color,
if the boundary pixel also have the same color. With the initial square partitioning the slaves get now
the task of calculating a coloring of a square assigned to them. Are the points on the boundary not
all of the same color, the square is subdivided into four smaller ones and passed back to the master
as new tasks. The depth of the nesting has of course some upper limit. The implementation is a little
bit costly, therefore we consider a variant of Skjellum, Lusk and Gropp with parallel rendering of the
output across a parallel X server.

1. Copy the directory /export/home/phpc/phpc029/mandel into your home directory.
2. Write into your ~/mpihosts file just two lines, in each reads localhost. In this kind you can

execute MPI-parallel programs on a multicore computer, thus the MIMD model is emulated
without strict physical separation of the computers.

3. Now create a file ~/.bashrc (or edit a already present file):

1 PATH=/ export/home/dune/dunekurs/mpich -install/bin:$PATH;

export PATH

The program only functions with MPICH. I have compiled a current version of MPICH locally in
a folder and have adapted the Makefiles such that it is linked with an executable.

4. The new settings become present with source ~/.bashrc.
5. Compile the program pmandel by calling of make in the directory mandel.
6. Start the program by calling of

1 mpiexec -f ~/ mpihosts -n 2 ./ pmandel

in the directory mandel. Have fun!

After we have played a little bit, especially the following points are interesting from an implemen-
tational point of view:

• Dynamic distribution of the load by a master process,

• Usage of derived data types in MPI (methods MPI_Type_contiguos, MPI_Type_commit in
pm_genproc.c),

• The usage of the graphics library MPE for visual contral of the calculations. There a parallel
X11 is used.

After you have tested the program, look for documentation about the MPIdaten types and about the
MPE library. Try to understand the interesting parts of the implementation. That’s it!

! Watch out that you always log into a pool machine with the option -X: ssh -X phlr..., since
otherwise there is no graphical output!

! After testing the Mandelbrot program revert the changes in the file ~/.bashrc in any case, since
you always would work with this MPICH library!

• Truely parallel Mandelbrot computing with parallel output does not work in the pool, since the
graphical redirection had to be configured. (Eventually you discover, how that can be done as
non-superuser?)

• You can of course compile your own version of MPICH locally in your home directory.

