
IWR, University of Heidelberg Winter term 2014/15
Exercise Sheet 1 23. October 2014

Exercise for Course

Parallel High-Performance Computing
Dr. S. Lang

Return: 30. October 2014 in the exercise

Task 1 Efficient Cache Usage (5 points)

In the following program segment shall u be an array of dimension n× n:

1 for (int k=0; k <1000; ++k)

2 for (int i=1; i<n-1; ++i)

3 for (int j=1; j<n-1; ++j)

4 u[i][j] = 0.25 * (u[i-1][j] + u[i+1][j] + u[i][j-1] + u[i][j+1]);

The array u is initialized meaningful, in the inner of the array are therefore the averaged values of
the neighbors introduced. Watch out old (still not considered) and new (already considered) entries
are used for the average. The computer of interest has cache lines with size l = 32 byte, and floating
point numbers use 8 byte each. Therefore in a cache line fit 4 numbers. For simplicity the length n of
a matrix line is a multiple of the size m of a cache line, and furthermore n has an amount that the
matrix does not fit into the cache anymore.

1. Can we gain a better cache usage by reordering the loops?

2. Rewrite the algorithm such that blocking of data is introduced and discuss the influence onto
the cache usage.

Task 2 Instruction Level Parallelism (10 points)

Instruction Level Parallelism (ILP) is a meaure of how many operations of program can be executed
in parallel. In this task we examine how different data and control flow dependencies have influence
onto ILP. We consider the following dependencies:

• Data true dependence, DTD :
Instructions depend on results of prior executed instructions,
• Data antidependence, DA:

Instructions write in addresses, that are read by other instructions,
• Data output dependence, DOD :

Instructions write in addresses, that are written by another instruction,
• Control dependence, CD :

The execution of an instruction depends on control conditions (if, ...).

We investigate the dependencies for an incomplete implementation of a hash table. With hash tables
questions as

”
Does an element exist in the given set?“ can be answered. Herefore the hash table store

e.g. a linked, ordered list of elements. The elements can be accessed by keys, calculated by the hash
function. To test whether an element exist in the set, its key, the hash value, is calculated, and only
a search in the related list (the storing data structure is called bucket) is started. Our hash table can
store 1024 buckets each with a linked list of elements. The following listing shows how the hash table
is initialized:

1 /* ** */

2 /* an incomplete implementation of a hash table */

3 /* ** */

4

5 /* struct for elements to be inserted */

6 typedef struct Element {

7 int value;

8 struct Element *next;

9 }

10

11 Element myElements[N_ELEMENTS]; /* array of items */

12 Element *bucket [1024]; /* 1024 buckets , pointers in each */

13 /* bucket are initialized to NULL */

14

15 for (i=0; i<N_ELEMENTS; i++)

16 {

17 Element *ptrCurr , ** ptrUpdate;

18 int hashIndex;

19

20 /* find location where the new element is to be inserted */

21 hashIndex = myElements[i].value & 1023;

22 ptrUpdate = &bucket[hashIndex];

23 ptrCurr = bucket[hashIndex];

24

25 /* find place in chain to insert the new element */

26 while (ptrCurr && ptrCurr ->value =< myElements[i]. value)

27 {

28 ptrUpdate = &ptrCurr ->next;

29 ptrCurr = ptrCurr ->next;

30 }

31

32 /* update pointers to insert the new element into chain */

33 myElements[i].next = *ptrUpdate;

34 *ptrUpdate = &myElements[i];

35 }

The elements store each an integer, the N_ELEMENTS elements, that need to be inserted, are stored
in the array myElements. The has table bucket can store 1024 pointers onto linked element lists, all
pointers point at program start into void.

Now we iterate over the existing elements and in line 21 the hash value of the element is calculated by
a simple hash function: The hash value consists of the last ten bits of a value of an element, because the
operator & connects the value of the element with the bit pattern 11 1111 1111 of the decimal number
1023 with binary AND. Then it is iterated over the linked list. With the pointer ptrCurr the list is
traversed, the variable ptrUpdate stores the pointer, that need to be adapted, to insert an element
at an individual place in the list. Therefore in line 23 ptrCurr is set onto the first element of the
according bucket, and in the following while loop (l. 25-30) iterates until the fitting insertion entry is
found. Now the new element is inserted in the lines 33, 34, by setting the next pointer of the element
to insert onto the address of the following element, that is stored in ptrUpdate. In line 34 the pointer
is set onto the successor element. ptrCurr is a double pointer, thus the operator * dereferences once
and points then onto a pointer.

We interpret now each line as an assembly instruction and investigate the dependencies. From these
we gain a dynamic dependency graph similar to that in figure 0.1 (not all dependencies are shown, and
the instructions from l. 28, 29 are missing). Each node of the graph represents a machine instruction,
that is executed within the cycle. Each horizontal contains also instructions (line), that can be executed
in parallel. Arrows between the nodes describe dependencies. There exists e.g. between the lines 15
and 21 a DTD, since i is calculated in line 15 and used in line 21.

Subtask (a) (5 points)

(a1) What kind of dependency consists between the lines 21 and 22/23?

For different elements could be calculated the same hash value, that leads to dependencies between
the loop iterations.

(a2) What kind of dependency consists now between the lines 21 and the same line 21 for two different
elements with the same hash value?

(a3) What kind of dependency consists between the lines 34 and 22?

Subtask (b) (5 points)

We now consider a very simplified scenario, where the hash table is initially empty and the numbers
0 . . . 1023 have to be inserted, therefore for each bucket only one element exists. We consider the

Abbildung 0.1: Dynamic dependencies of the hash table. Each node is related to a single program line,
the arrows visualize different dependencies. Only the ideal case is shown (subtask b),
since the while loop is not entered (instructions 28, 29 are therefore missing). The
dashed arrows show possible dependencies in subtask (a).

dependencies when the four inital elements are inserted.

(b1) Which is the single dependency, that consists between the lines (consider the variable i in line
15).

(b2) Rewrite the for loop such that the dependency between the loop iterations is reduced (remark:
implement in a loop instructions for i and i+1).

(b3) According to the graph an iteration of the outer loop consists of 7 instructions, alltogether in 1024
iterations 7168 instructions in total. These instructions are executed in 4 cycles, the loop needs
thus 4 + 1024 = 1028 cycles in total, until it is completely finished. This gives an ILP (Available
Instruction Level Parallelism) of 7128/1028 = 6.97. Which influence has your optimization from
(b) onto the ILP?

