
Simulation on High-Performance Computers

Stefan Lang

Interdisciplinary Center for Scientific Computing (IWR)
University of Heidelberg

INF 368, Room 532
D-69120 Heidelberg

phone: 06221/54-8264
email: Stefan.Lang@iwr.uni-heidelberg.de

WS 15/16

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 1 / 38

Organisational Information

Course title: Parallel High Performance Computing

Lecturer: Stefan Lang, Scientific Computing, IWR, Room 425

Course extend: 4h lectures + 2h exercises, CP: 8

In total 30 lectures and 12 exercise sheets
Dates

◮ Lectures: Tu 9.00-11.00 (V R532), Th 9.00-11.00 (V R532)
◮ Exercises: Th 14.00-16.00 (E in CIP Pool, OMZ, INF 350 U.012)

Prerequisites:
Basic lectures in Computer Science and Numerics

Helpful:
Knowledge of C/C++

Literature: see course homepage
http://conan.iwr.uni-heidelberg.de/teaching/phlr_ws2015/index.html

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 2 / 38

What means Scientific Computing?

Scientific Computing is a rapdily growing novel discipline of science

In particular Numerical Simulation (NS):

Goal of NS is to simulate natural or technical processes with
computing machines

Approach accross disciplines: natural scientists, engineers,
mathematicians and computer scientists, all need to work together

Problems, that are relevant in practice, are handled systematically with
formal methods

NS enables insight into areas that are difficult to access in lab
experiments and field studies, for example neuroscience, cell biology,
water economics, astrophysics

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 3 / 38

Why Scientific High-Performance Computing?

Trends in Numerical simulation :
Treatment of global models instead of local partial models
(Models of entire brain areas, Complete water resource systems , virtual
prototyping in aircraft, naval and automobile design)

Analysis of coupled overall systems instead of isolated individual
processes
(multi-media, multi-phase, multi-scale processes,
convection-diffusion-reaction)

Computer gets a scientific observation instrument
(high resolution capacity,
measurement in some areas difficult/impossible,
parameter studies performable)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 4 / 38

Computational Neuroscience - Signal Processing
Goal: Development of a neuronal network model, that reflects an
observed or measured system behaviour

Simulation of neuronal network models, statistical analysis of realisations

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 5 / 38

A Supercomputer

ASCI Red Storm
Successor of the first TeraFlop computer ASCI Red 1997
Hardware:

11.646 × 2 GHz AMD Opteron CPUs

CPU boards vertically mounted in 108 cabinets

4 GFLOPS per CPU (40 TFLOPS total)

1 GB per CPU (10 TB total)

Shared memory inside the node

3D mesh full interconnect

Software:

Compute nodes: custom Sandia-developed light-weight OS code-named
Catamount

Service and storage nodes SuSE Linux.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 6 / 38

A Supercomputer

ASCI Red Storm

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 7 / 38

Scalability

Algorithmic complexity using the example of linear solvers

for an equation of the form

Ax = b

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 8 / 38

Scalability

Scalability means in simple words
A problem of steadily increasing size can be calculated on a s teadily
increasing computer (nearly) equally fast.

This is seldom the case (unfortunately)!

As a consequence we need

enabling software to handle such powerful computers

scalable algorithms + scalable implementations + scalable
architectures

. . . buying huge and expensive computers alone is not enough!!

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 9 / 38

A Biological System: The Barrel Cortex of the Rat

Goal: Mechanistic understanding of easy decision making

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 10 / 38

Modeling of Neuronal Activity

Hodgkin-Huxley equation:

The electric potential v(x, t) and gating particles
c(x, t) = (m(x, t), h(x, t), n(x, t))T obey

cm∂t v = ∂xga∂xv + iinj −
∑

ν∈C

iν(v , c) − is(v)

∂t cµ = αµ(v) · (1 − c
µ
) − βµ(v) · c

µ
,

with ν ∈ C =: {Na, L, K} and µ ∈ {m, h, n).
Boundary and initial conditions are given by

ga∂xv = gN on ∂ΩN ,

v = gD on ∂ΩD,

(v , c)(x, 0) = (v0
, c0

) for t = 0.

The ion currents are modeled with the gating par-
ticles and are given by

iNa(v) = gNa · m3h · (v − ENa),

iK (v) = gK · n4
· (v − EK),

iL(v) = gL · (v − EL)

Moreover currents of synapses are modeled by

is(v , t) = gs(t) · (v − Es)

with time-dependent synaptic strength gs .

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 11 / 38

Simulation Study: Passive Deflection of a Whisker

60 L5B neurons activated by VPM
Spatial and temporal activity

distribution

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 12 / 38

Problem study Norderney

Pliozän 70 bis 120 m

Pleistozän 15 bis 64 m

Ton/Torf zusammen 6m

Sand 5- 8 m

div. Tonlinsen

Holozän 17 bis 40 m

Project "coastal preservation"

Island typical fresh water lense (-85m)

Simulation of lense constitution and water
facilitation from two pumps

Strategy to preserve the water quality

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 13 / 38

Problem study Norderney

10km x 4km
x 150m

Initial grid (1516 elements, D. Feuchter, geomod2ng)

6 geological layers with varying permeability 10−10
− 10−15

Boundary conditions: influence of fresh water on upper boundary wells are sinks, in/outflow
in coastal areas, hydrostatic pressure

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 14 / 38

Density-driven Groundwater Flow

The equations of density-driven flow are derived from conservation laws.
Formulation uses salt mass fraction ω and pressure p

∂t(nρ) +∇ · (ρv) = Qρ, (f low)

∂t(nρω) +∇ · (ρvω − ρD∇ω) = Qρω (transp.)

with

v = −K/µ(∇p − ρg), (Darcy’s law)

D = (αL − αT)v/|v|+ αT |v| (Scheidegger)

Proper initial and boundary conditions have to be defined.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 15 / 38

Method and Software Development
Moreover realistic problems are difficult to handle

The realization of all these aspects together is a difficult task!

Software engineering is not subject of this course.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 16 / 38

TOP500 - List of SuperComputers

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 17 / 38

TOP500 - Trend

Petaflop machine in 2010! Exaflop until 2018?
Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 18 / 38

Parallelisation: An Introductory Example

Scalarproduct of two vectors

Introduction of an adequate notation

Interaction via shared variables

Interaction via passing of messages

Evaluation of parallel algorithms

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 19 / 38

A Simple Problem: Scalar Product Generation

Scalar product of two vectors of length N:

s = x · y =

N−1∑

i=0

xiyi .

Parallelisation idea:
1 Summands xi and yi are independent
2 N ≥ P, form Ip ⊆ {0, . . . ,N − 1}, Ip ∩ Iq = ∅ ∀p 6= q

Each processor calculates now the partial sum sp =
∑

i∈Ip xiyi

3 Summation of partial sums in example for P = 8:

s = s0 + s1
︸ ︷︷ ︸

s01

+ s2 + s3
︸ ︷︷ ︸

s23
︸ ︷︷ ︸

s0123

+ s4 + s5
︸ ︷︷ ︸

s45

+ s6 + s7
︸ ︷︷ ︸

s67
︸ ︷︷ ︸

s4567
︸ ︷︷ ︸

s

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 20 / 38

Fundamental Conceptions

Sequential program: Sequence of instructions that are processed

sequentially.

Sequential process: Active execution of a sequential program.

Parallel computation: Set of interacting sequential processes.

Parallel program: Describes parallel calculation. Given by a set

of sequential programs.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 21 / 38

Notation for Parallel Programs I
Preferably simple and detached of practical details
Allows different programming models

Program (Pattern of a parallel program)

parallel <program name>
{

// section with global variables (accessible by all processes)
process <processname-1> [<copyparameters>]
{

// local variables, that can be read and written
// by process <Prozessname-1> only
// Applications in C-like syntax. Mathematical
// formula or text allowed for simplification.

}
...
process <processname-n> [<copyparameters>]
{

...
}

}
Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 22 / 38

Notation for Parallel Programs II

Variable declaration

double x , y [P];

Initialisation

int n[P] = {1[P]};

Local/global variables

The execution of the parallel computation starts with initialisation of global
variables, then the the processes are executed

Remarks regarding process term: shared variables

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 23 / 38

Scalarproduct with Two Processes
Program (Scalarproduct with two processes)

parallel two-process-scalar-product
{

const int N=8; // problem size
double x [N], y [N], s=0; // vectors, result
process Π1
{

int i ;
double ss=0;
for (i = 0; i < N/2; i++)

ss += x[i]*y[i];
s=s+ss; // danger!

}
process Π2
{

int i ;
double ss=0;
for (i = N/2; i < N; i++)

ss += x[i]*y[i];
s=s+ss; // danger!

}
}

Variables are global, each process works on a part of the indices

Collision during write access!

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 24 / 38

Critical Section I

High level language instruction s = s + ss is transformed in assembly
instructions:

Process Π1 Process Π2

1 load s into R1 3 load s into R1
load ss into R2 load ss into R2
add R1 and R2 result in R3 add R1 and R2 result in R3

2 store R3 into s 4 store R3 into s

Execution sequence of instructions of different processes is not
determined.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 25 / 38

Critical Section II

Possible execution sequences are:

�
�
�

❅
❅
❅

1

3

�
�

❅
❅

�
�

❅
❅

2

3

1

4

�
�

❅
❅

3

2

4

2

4

1

4

4

2

4

2

2

Result of calculation

s = ssΠ1 + ssΠ2

s = ssΠ2

s = ssΠ1

s = ssΠ2

s = ssΠ1

s = ssΠ1 + ssΠ2

Only sequences 1-2-3-4 and 3-4-1-2 are correct.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 26 / 38

Critical Section III

Instruction block builds a critical section, that needs to be processed by
mutual exclusion.

We quote this at first with squared brackets

[〈instruction 1〉; . . . ; 〈instruction n〉;]

The symbol „[“ selects a process to work on the critical section, all others
are waiting.

Efficient realisation requires hardware instructions, that are introduced
later.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 27 / 38

Parameterisation of Processes
Processes contain partly identical code (using different data)
Parameterise the code with a process number, choose the data to be processed
using this number
SPMD = single program multiple data

Program (Scalarproduct with P processors)

parallel many-process-scalar-product
{

const int N; // problem size
const int P; // process count
double x [N], y [N]; // vectors
double s = 0; // result
process Π [int p ∈ {0, ...,P − 1}]
{

int i ; double ss = 0;
for (i = N ∗ p/P; i < N ∗ (p + 1)/P; i++)

ss += x [i]*y [i];
[s = s + ss]; // Here still all are waiting again

}
}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 28 / 38

Communication in Hierarchical Structure
Treelike organisation of the communication sequence with ld P levels

s0

000
��✒

s1

001
❅❅■

s2

010
��✒

s3

011
❅❅■

s4

100
��✒

s5

101
❅❅■

s6

110
��✒

s7

111
❅❅■

s0 + s1

000
✟✟✟✯

s2 + s3

010
❍❍❍❨

s4 + s5

100
✟✟✟✯

s6 + s7

110
❍❍❍❨

s0 + s1 + s2 + s3

000
✘✘✘✘✘✘✘✿

s4 + s5 + s6 + s7

100
❳❳❳❳❳❳❳②

∑
si

000

In level i = 0,1, . . .

Processes, whose last i + 1 bits are 0, fetch

results of processors whose last i bits are 0 und
whose bit i is 1

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 29 / 38

Parallelisation of Summation I
Program (Parallel Summation)

parallel parallel-sum-scalar-product
{

const int d = 4;
const int N = 100; // problem size
const int P = 2d ; // process count
double x [N], y [N]; // vectors
double s[P] = {0[P]}; // result
int flag[P] = {0[P]}; // process p is ready

process Π [int p ∈ {0, ..., P − 1}]
{

int i , r , m, k;

for (i = N ∗ p/P; i < N ∗ (p + 1)/P; i++)
s[p]+ = x [i] ∗ y [i];

for (i = 0; i < d; i++)
{

r = p &

[

∼

(

i
∑

k=0
2k

)]

; // delete last i + 1 bits

m = r | 2i ; // set bit i
if (p == m) flag[m]=1;
if (p == r)
{

while (!flag[m]); // conditional synchronisation
s[p] = s[p] + s[m];

}
}

}
} Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 30 / 38

Parallelisation of Summation II

New global variables: s[P] partial results flag[P] indicates, that a
processor has finished its computation

Waiting is called conditional synchronisation

In this example mutual exclusion could be exchanged by conditional
synchronisation. This does not work always!

Reason is that we have fixed the order in advance

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 31 / 38

Localisation
Goal: Avoid global variables
We advance in two steps: (I) Localise vectors x , y , (II) localise result s

Program (Scalarproduct with local data)

parallel local-data-scalar-product
{

const int P,N;
double s = 0;

process Π [int p ∈ {0, . . . , P − 1}]
{

double x [N/P], y [N/P]; // Assumption N is divisible by P
// Local section of vectors

int i ;
double ss=0;

for (i = 0;i < (p + 1) ∗ N/P − p ∗ N/P;i++) ss = ss + x [i] ∗ y [i];
[s = s + ss;]

}
}

Each stores only N/P indices (one more if not exactly divisible), these start always
with local number 0
Each local index x equates to a global index in the sequential program:

iglobal(p) = ilokal + p ∗ N/P

We have neglected in- and output
Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 32 / 38

Message Passing I

To completely avoid global variables we need a new concept: messages

Syntax:
send (<Process>,<Variable>)
receive (<Process>,<Variable>)

Semantics:
send operation sends content of variable to the specified process,
receive operation waits for message of the specified process and copies it to
the variable

send operation waits until the message is received successfully, receive
operation blocks the process until the message is received

Blocking, or synchronous communication (later other)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 33 / 38

Message Passing II
Program (Scalarproduct with message passing)

parallel message-passing-scalar-product
{

const int d, P= 2d , N; // constants!

process Π [int p ∈ {0, . . . , P − 1}]
{

double x [N/P], y [N/P]; // local section of vectors
int i, r , m;
double s, ss = 0;

for (i = 0;i < (p + 1) ∗ N/P − p ∗ N/P;i++) s = s + x [i] ∗ y [i];
for (i = 0;i < d;i++) // d steps
{

r = p &

[

∼

(

i
∑

k=0
2k

)]

;

m = r | 2i ;
if (p == m)

send (Πr ,s);
if (p == r)
{

receive (Πm ,ss);
s = s + ss;

}
}

}
}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 34 / 38

Evaluation of Parallel Algorithms I
Here: asymptotic behaviour in dependance of problem size and processor
count

Sequential runtime:
Ts(N) = 2Nta,

ta: Time for arithmetic operations

Parallel runtime of message-passing variant:

Tp(N,P) = 2
N
P

ta
︸ ︷︷ ︸

local scalarproduct

+ ld P(tm + ta)
︸ ︷︷ ︸

parallel sum

,

tm: time to send a number

speedup:

S(N,P) =
Ts(N)

Tp(N,P)
=

2Nta
2 N

P ta + ld P(tm + ta)

=
P

1 + P
N ld P tm+ta

2ta

It holds S(N,P) ≤ P !
Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 35 / 38

Evaluation of Parallel Algorithms II

Efficiency :

E(N,P) =
S(N,P)

P
=

1

1 + P
N ld P tm+ta

2ta

It applies E ≤ 1

Consideration of asymptotic limit cases:
Fixed N, growing P: limP→∞ E(N,P) = 0
Fixed P, growing N: limN→∞ E(N,P) = 1
For which relation of P

N „acceptable“ efficiency values are achieved is
regulated by the factor tm+ta

ta
. This is the relation of communication to

computation time.
Scalability for simultaneously growing of N and P in the form N = kP:

E(kP,P) =
1

1 + ld P tm+ta
2tak

Drops off slowly with P → good scalable.
Exemplary for many algorithms!

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 36 / 38

Topics

Hardware

(Parallel) computer architecture: SMP, vector computer, parallel computer

realisations: some architectures in detail (Paragon, ASCI Red Storm, IBM Blue
Gene)

Programming models

Programming models: OpenMP, MPI, PThreads

Fundamental numerical algorithms: matrix multiplication

Algorithms

Performance evaluation: Efficiency, speedup, scalability

Parallel sorting

Dense und sparse filled equation systems

Applications

Parallel (Numerical) applications (neuroscience, biology, soilphysics,
astrophysics)

Themes are without commitment.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 37 / 38

Organisational Stuff

Exercises Thursday 14.00-16.00
Theme: Introduction to (Advanced) C++
CIP Pool, OMZ, INF 350, U.012

Certificate: regular participation, 50% points

Exam: mostly oral after consultation

Course count: 8 credit points

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 38 / 38

	Motivation

