
Distributed-Memory Programming Models I

Stefan Lang

Interdisciplinary Center for Scientific Computing (IWR)
University of Heidelberg

INF 368, Room 532
D-69120 Heidelberg

phone: 06221/54-8264
email: Stefan.Lang@iwr.uni-heidelberg.de

WS 15/16

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 1 / 20

Distributed-Memory Programming Models I

Communication via message passing

Synchronous message passing

Asynchronous message passing
Global communication with

◮ Store-and-Forward or
◮ Cut-Through routing

Global communication using different topologies
◮ Ring
◮ Array (2D / 3D)
◮ Hypercube

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 2 / 20

Synchronous Message Passing I

For the passing of messages we need at least two functions:
◮ send: Transmits a memory area from the address space of the source

process into the network with specification of the receiver.
◮ recv: Receives a memory area from the network and writes it to the address

space of the destination process.

We distinguish:
◮ Point in time at which the communication function is finished.
◮ Point in time at which the communication has really taken place.

At synchronous communication these points in time are identical,
◮ send blocks until the receiver has accepted the message.
◮ recv blocks until the message has arrived.

Syntax in our programming language:
◮ send(dest − process,expr 1,. . . ,expr n)
◮ recv(src − process, var 1,. . . , var n)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 3 / 20

Synchronous Message Passing II

idle

Πs Πr

(a)

send

recv
t

Zeit

Π1:

Π2:

Π3:

(b)

recv(Π3,i)
send(Π2,i)

recv(Π1,i)
send(Π3,i)

recv(Π2,i)
send(Π1,i)

(a) Synchronisation of two processes by a pair of send/recv ops

(b) Example for a deadlock

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 4 / 20

Synchronous Message Passing III

There are a series of implementation possibilities.

Senderinitiated, three-way handshake:
◮ Source Q sends ready-to-send to target Z.
◮ Target sends ready-to-receive if recv has been executed.
◮ Source transmits message (variable length, single copy).

Receiver initiated, two-phase protocol :
◮ Z sends ready-to-receive to Q if recv has been executed.
◮ Q transmits message (variable length, single copy).

Buffered Send
◮ Q transmits message at once, target has eventually to buffer it.
◮ Here arises the problem of finite memory space!

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 5 / 20

Synchronous Message Passing IV

Synchronous send/recv is not enough to solve all communication tasks!

Example: In the producer-consumer-problem the bufferr is realized as an
individual process. In this case the process cannot know with which of the
producers or consumers it has to communicate next. In consequence a
blocking send can result in a deadlock.
Solution: Introduction of additional guard functions, that check whether a
send or recv would result in a deadlock:

◮ int sprobe(dest − process)
◮ int rprobe(src − process).

sprobe returns 1 if the receiver process is ready to receive, this means a
send will not block:

◮ if (sprobe(Πd)) send(Πd ,. . .);

Analogous for rprobe.

Guard functions never block!

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 6 / 20

Synchronous Message Passing V

Just one of both functions is needed.
◮ rprobe is easy to integrate into the sender-initiated protocol.
◮ sprobe is easy to integrate into the receiver-initiated protocol.

An instruction with similar effect as rprobe is:
◮ recv_any(who,var 1,. . . ,var n).

It allows the receiving from an arbitrary process, which ID is stored in the
variable who.

recv_any is implemented simplest with sender-initiated protocol.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 7 / 20

Asynchronous Message Passing I

Instructions for asynchronous message passing:
◮ asend(dest − process,expr 1,. . . ,expr n)
◮ arecv(src − process, var 1,. . . , var n)

Here the return of the communication function does not indicate, that the
communication has actually taken place. This has to be queried with
additional functions.

We imagine, that a request is passed to the system to execute the
corresponding communication, as soon as it is possible. The calculating
process can meanwhile do other things (communication hiding).
Syntax:

◮ msgid asend(dest − process,var 1,. . . ,var n)
◮ msgid arecv(src − process,var 1,. . . ,var n)

these do never block! msgid is a bill for the communication request.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 8 / 20

Asynchronous Message Passing II

Caution: The variable var1,. . . ,varn may not be modified anymore when
the communication instruction has been initiated!

This means that the program has to manage the memory space for the
communication variable by itself. Alternative would be the buffered send,
which is connected with subtilities and need of double-copying.
Finally one has to test whether the communication has already taken
place (this means the request is processed):

◮ int success(msgid m)

Thereafter the communication variables may be modified, the bill is then
invalidated.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 9 / 20

Synchonous/Asynchronous Message Passing

Synchronous and asynchronous operations may be mixed. This is
specified in the MPI standard.

Up-to-now all operations have been without connection.

Alternatively there exist channel oriented communication operations (or
virtual channels):

send recv
‘‘Kanal’’

◮ Before first send/receive to/from a process a connection has to be
established by connect.

◮ send/recv operations are assigned a channel instead of a process id as
address.

◮ Several processes can send on a channel but only one can receive.
⋆ send(channel ,expr1,. . . ,exprn)
⋆ recv(channel ,var1,. . . ,varn).

We will use no channel-oriented functions.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 10 / 20

Global Communication

A process wants to send identical data to all other processes

one-to-all broadcast

dual operation is the collection of individual results on a single process,
e.g. sum generation (all associative operators are possible)

We consider distribution across different topologies and calculate the
time demand for store & forward as well as cut-through routing

Algorithms for the collection result from reversing the sequence and
direction of the communications
The following cases are discussed in detail:

◮ One-to-all
◮ All-to-one
◮ One-to-all with individual messages
◮ All-to-all with individual messages

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 11 / 20

One-to-all: Ring
A process wants to send identical data to all other processes:

320 1

before:

after:

before:

after;

distribute

M_0 M_3

M = SUM(M_i)

collect

M

M M M M

M_1 M_2

P−1

i=0

Here: Communication in ring topology with store & forward:

3 0 1 24

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 12 / 20

One-to-all: Ring
Program (One-to-all in the ring)
parallel one-to-all-ring
{

const int P;
process Π[int p ∈ {0, . . . , P − 1}]{

void one_to_all_broadcast(msg *mptr) {
// receive messages
if (p > 0 ∧ p ≤ P/2) recv(Πp−1, *mptr);
if (p > P/2) recv(Π(p+1)%P , *mptr);
// pass messages to successor
if (p ≤ P/2 − 1) send(Πp+1, *mptr);
if (p > P/2 + 1 ∨ p == 0) send(Π(p+P−1)%P , *mptr);

}
. . . ;
m=. . . ;
one_to_all_broadcast(&m);

}
}

The time consumption for the operation is (nearest-neighbor communication!):

Tone−to−all−ring = (ts + th + tw · n)
⌈

P
2

⌉

,

where n = |∗mptr | denotes the length of the message.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 13 / 20

One-to-all: Array

Now we assume a 2D array structure for communication. The messages are
routed along the following pathes:

1

2
0 1 2 3

 4 5 6 7

1110 9 8

12 13 1514

3 4

2

3 4 5

3

4 5 6

4 5 6

Look at the two-dimensional process index:

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 14 / 20

One-to-all: Array
Program (One to all on the array)
parallel one-to-all-array
{

int P, Q; // Array size in x and y direction
process Π[int[2] (p, q) ∈ {0, . . . , P − 1} × {0, . . . , Q − 1}] {

void one_to_all_broadcast(msg *mptr) {
if (p == 0)
{ // first column

if (q > 0) recv(Π(p,q−1),*mptr);
if (q < Q − 1) send(Π(p,q+1),*mptr);

}
else recv(Π(p−1,q),*mptr);
if (p < P − 1) send(Π(p+1,q),*mptr);

}

msg m=. . . ;
one_to_all_broadcast(&m);

}
}

The execution time for P = 0 is in a 2d array

Tone−to−all−array2D = 2(ts + th + tw · n)(
√

P − 1)

and in a 3d array

Tone−to−all−array3D = 3(ts + th + tw · n)(P1/3
− 1).

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 15 / 20

One-to-all: Hypercube
We advance in a recursive manner. For a hypercube of dimension d = 1
the problem can be solved in a trivial way:

0 1

In a hypercube of dimension d = 2 node 0 sends first to node 2 and the
problem is reduced to 2 hypercubes of dimension 1:

1

2

2
01

10

00

11

In general for step k = 0, . . . d − 1 the processes

pd−1 . . . pd−k
︸ ︷︷ ︸

k dimens.

0 0 . . . 0
︸ ︷︷ ︸

d−k−1 dimens.

send each a message to pd−1 . . . pd−k
︸ ︷︷ ︸

k dimens.

1 0 . . . 0
︸ ︷︷ ︸

d−k−1 dimens.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 16 / 20

One-to-all: Hypercube
Program (One to all in the hypercube)
parallel one-to-all-hypercube
{

int d, P = 2d ;
process Π[int p ∈ {0, . . . , P − 1}]{

void one_to_all_broadcast(msg *mptr) {
int i , mask = 2d − 1;
for (i = d − 1; i ≥ 0; i − −){

mask = mask ⊕ 2i ;
if (p&mask == 0) {

if (p&2i == 0) //the last i bits are 0
send(Πp⊕2i ,*mptr);

else
recv(Πp⊕2i ,*mptr);

}
}

}

msg m = „bla“; one_to_all_broadcast(&m);
}

}

The time consumption is

Tone−to−all−HC = (ts + th + tw · n) ld P

Arbitrary source src ∈ {0, . . . ,P − 1}: Substitute each p by (p ⊕ src).
Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 17 / 20

One-to-all: Ring and array with cut-through routing

If the hypercube algorithm is mapped on the ring, we obtain the following
communication structure:

1

22

3 3 3 3000 001 010 011 100 101 110 111

There are no wires used twice, therefore we obtain by cut-through routing:

Tone−to−all−ring−ct =

ld P −1∑

i=0

(ts + tw · n + th · 2i)

= (ts + tw · n) ld P + th(P − 1)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 18 / 20

One-to-all: Ring and Array with Cut-Through Routing

When using an array structure one obtains the following communication
structure:

3 3

3 3

1

22 4 4

4 4 4 4

4 4

0001

0100

0101

0000 0010

0011

0110

0111 1101

1100

1001

1000 1010

1011

1110

1111

Again there are no wire collisions and we obtain:

Tone−to−all−field−ct = 2
︸︷︷︸

jede
Entfernung 2

mal

ld P
2 −1
∑

i=0

(ts + tw · n + th · 2i)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 19 / 20

One-to-all: Ring and Array with Cut-Through Routing

Tone−to−all−field−ct = (ts + tw · n)2
ld P

2
+ th · 2

ld P
2 −1
∑

i=0

2i

︸ ︷︷ ︸

=2
ld P

2
︸︷︷︸

=
√

P

−1

= ld P(ts + tw · n) + th · 2(
√

P − 1)

Especially with the array topology the term covering th is neglible and we
obtain the hypercube performance also for less rich topologies! Also for
P = 1024 = 32 × 32 the time is not determined by th, thus because of
cut-through routing no physical hypercube structures are necessary anymore.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 20 / 20

