
Distributed-Memory Programming Models II

Stefan Lang

Interdisciplinary Center for Scientific Computing (IWR)
University of Heidelberg

INF 368, Room 532
D-69120 Heidelberg

phone: 06221/54-8264
email: Stefan.Lang@iwr.uni-heidelberg.de

WS 15/16

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 1 / 21

Distributed-Memory Programming Models II

Communication by message passing

MPI Standard
Global communication for different topologies

◮ Array (1D / 2D / 3D)
◮ Hypercube

Local exchange

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 2 / 21

MPI: Introduction
The Message Passing Interface (MPI) is a portable library of functions for
message exchange between processes.

MPI has been designed 1993/94 by an international gremium.
Is available on nearly all platforms, including the free implementations
OpenMPI, MPICH and LAM.
Characteristics:

◮ Library for binding with C-, C++- and FORTRAN programs (no language
extension).

◮ Large choice of point-to-point communication functions.
◮ Global communication.
◮ Data conversion for heterogeneous systems.
◮ Creation of partial sets and topologies.

MPI consists of over 125 functions, that are described on over 800 pages
in the standard. Thus we can only discuss a small choice of its
functionality.
MPI-1 has no possibilities for dynamic process generation, this is
possible in
MPI-2, furthermore in-/output.
MPI-3 is released since 09/2012 with minor extensions.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 3 / 21

MPI: Hello World
#include <stdlib.h>
#include <stdio.h>
#include "mpi.h"

int main (int argc, char *argv[])
{

int my_rank, P;
int dest, source;
int tag=50;
char message[100];
MPI_Status status;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&P);
MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);

if (my_rank!=0)
{

sprintf(message,"I am process %d\n",my_rank);
dest = 0;
MPI_Send(message,strlen(message)+1,MPI_CHAR,

dest,tag,MPI_COMM_WORLD);
}
else
{

puts("I am process 0\n");
for (source=1; source<P; source++)
{

MPI_Recv(message,100,MPI_CHAR,source,tag,
MPI_COMM_WORLD,&status);

puts(message);
}

}
MPI_Finalize();

return 0;
}

SPMD style!
Compilation and startup is done
with
mpicc -o hello hello.c
mpirun -machinefile machines -np 8 hello

machines contains names of the
usable machines.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 4 / 21

MPI: Blocking Communication I

MPI supports different variants of blocking and non-blocking
communication, guards for the receive function, as well as data
conversion during communication between machines with distinct data
formats.
The fundamental blocking communication functions are defined by:

int MPI_Send(void *message, int count, MPI_Datatype dt,
int dest, int tag, MPI_Comm comm);

int MPI_Recv(void *message, int count, MPI_Datatype dt,
int src, int tag, MPI_Comm comm,
MPI_Status *status);

A message in MPI consists of plain data and an envelope (meta
information).

Data is always an array of elementary data types. This enables MPI to
handle data conversion.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 5 / 21

MPI: Blocking Communication II

The envelope consists of:
1 Number of sender,
2 Number of receiver,
3 Tag,
4 and a Communicator.

Number of sender and receiver is called rank.

Tag is also an integer number and serves as identificator for different
messages between identical communication partners.

A communicator is defined by a partial set of the processes and a
communication context. Messages, that belong to different contexts,do
not influence each other, resp. sender and receiver have to use the same
communicator.

Meanwhile we only use the default communicator MPI_COMM_WORLD (all
started processes).

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 6 / 21

MPI: Blocking Communication III

MPI_Send is fundamentally blocking, there are however diverse variants:
◮ buffered send (B): If the receiver has still not executed the corresponding

recv function, the message is buffered on sender side. A „buffered send“ is,
while assuming enough buffer space, always immediately finished. In
comparison to asynchronous communication can the send buffer message
be reused immediately.

◮ synchronous send (S): Finishing of synchronous send indicates, that the
receiver executes a recv function and has started to read the data.

◮ ready send (R): A ready send may only be executed, if the receiver has
already executed the corresponding recv. Otherwise the call results in an
error.

The according calls are designated MPI_Bsend, MPI_Ssend and
MPI_Rsend.

The MPI_Send instruction has either the semantics of MPI_Bsend or
MPI_Ssend, according to implementation specifics. Therefore
MPI_Send can, but must not block. In every case the send buffer
message can be reused immediately after finishing.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 7 / 21

MPI: Blocking Communication IV

The instruction MPI_Recv is in every case blocking.

The argument status contains source, tag, and error status of the
receiving message.

For the arguments src and tag can the values MPI_ANY_SOURCE resp.
MPI_ANY_TAG be inserted. Thus MPI_Recv contains the functionality of
recv_any.
A non-blocking guard function for the receiving of messages is available
by means of

int MPI_Iprobe(int source, int tag, MPI_Comm comm,
int *flag, MPI_Status *status);

.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 8 / 21

MPI: Non-blocking and Global Communication I
For non-blocking communication there are the functions

int MPI_ISend(void *buf, int count, MPI_Datatype dt,
int dest, int tag, MPI_Comm comm,
MPI_Request *req);

int MPI_IRecv(void *buf, int count, MPI_Datatype dt,
int src, int tag, MPI_Comm comm,
MPI_Request *req);

available.
Via the MPI_Request objects it is possible to determine the state of the
communication request (corresponds to msgid in our pseudo code).
Herefore exists (beneath other) the function

int MPI_Test(MPI_Request *req, int *flag, MPI_Status

The flag is set to true (6= 0), if the communication denoted by req has
been finished. In this case status contains information about sender,
receiver and error status.

It needs to be considered, that the MPI_Request object gets invalid as
soon as MPI_Test returns with flag==true. It may then not be used
again.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 9 / 21

MPI: Non-blocking and Global Communication II

For global communication are available (beneath other):

int MPI_Barrier(MPI_Comm comm);

blocks all processes of a communicator until all are there.

int MPI_Bcast(void *buf, int count, MPI_Datatype dt,
int root, MPI_Comm comm);

distributes the message in process root to all other processes of the
communicator.
For the collection of data different operations are present. We describe
only one of these:
int MPI_Reduce(void *sbuf, void *rbuf, int count, MPI_Datatype

MPI_Op op, int root, MPI_Comm comm);

combines the data in the input buffer sbuf of all processes by the
associative operator op. The final result is available in the receive buffer
rbuf of the process root. Examples for op are MPI_SUM, MPI_MAX.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 10 / 21

All-to-all: 1D Array, Principle

Each wants to send data to all (variant: accumulate
with associative operator):

We skip the ring topology and consider the 1D ar-
ray at once: Each process sends into both directi-
ons.

Start: M

M

M

M

0 1 2 3

M

M

M

M

M

M

M

M

3. Step:

2. Step:

M

M

M

M
1. Step:

M

M

M

M

M

M

M

M

M

M M

M

M

M

M

M

M

M

M

M

M

M

M

M

M M

M

M

We use synchronous communication. Decide who
sends/receives by black-white coloring:

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 11 / 21

All-to-all: 1D Array, Code I
Program (All-to-all in 1D array)
parallel all-to-all-1D-array
{

const int P;
process Π[int p ∈ {0, . . . , P − 1}]
{

void all_to_all_broadcast(msg m[P])
{

int i ,
from_left= p − 1, from_right= p + 1,

// I receive that
to_left= p, to_right= p; // I send that

for (i = 1; i < P; i + +) // P − 1 steps
{

if ((p%2) == 1) // black/white coloring
{

if (from_left ≥ 0) recv(Πp−1, m[from_left]);
if (to_right ≥ 0) send(Πp+1, m[to_right]);
if (from_right < P) recv(Πp+1, m[from_right]);
if (to_left < P) send(Πp−1, m[to_left]);

}
else
{

if (to_right ≥ 0) send(Πp+1, m[to_right]);
if (from_left ≥ 0) recv(Πp−1, m[from_left]);
if (to_left < P) send(Πp−1,m[to_left]);
if (from_right < P) recv(Πp+1, m[from_right]);

}
. . .

}
Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 12 / 21

All-to-all: 1D Array, Code II

Program (All-to-all in 1D array cont.)
parallel all-to-all-1D-feld cont.
{

. . .

from_left−−; to_right−−;
from_right++; to_left++;

}
}
. . .
m[p] =„That is from p!“;
all_to_all_broadcast(m);
. . .

}
}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 13 / 21

All-to-all: 1D Array, Runtime
For the runtime analysis consider P odd, P = 2k + 1:

Π0, . . . ,Πk−1,
︸ ︷︷ ︸

k

Πk , Πk+1, . . . ,Π2k
︸ ︷︷ ︸

k

Process Πk receives k from left
sends k + 1 to right
receives k from right
sends k + 1 to left.
∑

= 4k + 2
= 2P

After that Πk has all messages. Now the message from 0 has to be send
to 2k and vice versa. This needs again additonal

(k
︸︷︷︸

Entfernung

−1) · 2
︸︷︷︸

senden u.
empfangen

+ 1
︸︷︷︸

der Letzte
empfängt nur

= 2k − 1 = P − 2

so we have in total

Tall−to−all−array−1d = (ts + th + tw · n)(3P − 2)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 14 / 21

All-to-all: Hypercube

The following algorithm for the hypercube is known as dimension exchange
and is again derived recursively.

Start with d = 1:
0 1

*

* *

*

With four processes exchange proces-
ses 00 and 01 resp. 10 and 11 first their
data, then exchange 00 and 10 resp.
01 and 11 each two data

*

* *

*

00 01

*

* *

*

10 11

1

1

22

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 15 / 21

All-to-all: Hypercube
void all_to_all_broadcast(msg m[P]) {

int i , mask = 2d − 1, q;
for (i = 0; i < d ; i + +) {

q = p ⊕ 2i ;
if (p < q) { // who first?

send(Πq ,m[p&mask],. . . ,m[p&mask + 2i − 1]);
recv(Πq ,m[q&mask],. . . ,m[q&mask + 2i − 1]);

}
else {

recv(Πq ,m[q&mask],. . . ,m[q&mask + 2i − 1]);
send(Πq ,m[p&mask],. . . ,m[p&mask + 2i − 1]);

}
mask = mask ⊕ 2i ;

}
}

Runtime analysis:

Tall−to−all−bc−hc = 2
︸︷︷︸

send a.
receive

ld P−1∑

i=0

ts + th + tw · n · 2i =

= 2 ld P(ts + th) + 2tw n(P − 1).

For large messages the HC has no advantage: Each has to receive n
words from each, whatever the topology looks like.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 16 / 21

One-to-all with indiv. messages: Hypercube, Principle
Process 0 sends to each a message, but to each a different one!

M_0

M_0

M_1

M_2

M_3

M_1 M_2

0 1 2

before:

after: M_3

3

Example is the in/output to a single file.

Because of variation purposes we consider the output, this means all-to-one with
indidvidual messages.

We use the well-known hypercube structure:

root: 000

001

010

011

100

101

110

111

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 17 / 21

One-to-all with indiv. messages: Hypercube, Code I

Program (Collection of individual messages on the hypercube)
parallel all-to-one-personalized
{

const int d, P = 2d ;
process Π[int p ∈ {0, . . . , P − 1}]{

void all_to_one_pers(msg m) {
int mask, i, q, root;
// determine p’s root: How many bits from end are zero?
mask = 2d − 1;
for (i = 0; i < d; i + +)
{

mask = mask ⊕ 2i ;
if (p&mask 6= p) break;

} // p = pd−1 . . . pi+1 1
︸︷︷︸

set to 0 at last in
mask

0 . . . 0
︸ ︷︷ ︸

i−1,...,0

if (i < d) root = p ⊕ 2i ; // my root direction

// own data
if (p == 0) self-processing(m);
else send(root,m); // pass up

. . .

}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 18 / 21

One-to-all with indiv. messages: Hypercube, Code II

Program (Collection of individual messages on the hypercube cont.)
parallel all-to-one-personalized cont.
{

. . .

// process sub-trees:
mask = 2d − 1;
for (i = 0; i < d; i + +) {

mask = mask ⊕ 2i ; q = p ⊕ 2i ;
if (p&mask == p)

//
p = pd−1 . . . pi+1 0 0 . . . 0

︸ ︷︷ ︸

i−1,...,0

//
q = pd−1 . . . pi+1 1 0 . . . 0

︸ ︷︷ ︸

i−1,...,0

// ⇒ I am root of a HC of dim. i + 1!
for (k = 0; k < 2i ; k + +) {

recv(Πq ,m);
if (p == 0) process(m);
else send(Πroot ,m);

}
}

}
}

}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 19 / 21

One-to-all with indiv. messages: Runtime, Variants

For the runtime one has for large (n) messages

Tall−to−one−pers ≥ twn(P − 1)

because of the pipelining.

Some variants are worth considering:

Individual length of messages: Here sends one before sending the
message itself only the length information (this is practically necessary →

MPI).

Arbitrary message length (but only finite intermediate buffer!): subdivide
message into packets of fixed length.

Sorted output: Each message Mi (of process i) is associated a sorting
key ki . The messages should be processed by process 0 in increasing
order of keys, without intermediate buffering of all messages.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 20 / 21

One-to-all with indiv. messages: Runtime, Variants

With sorted output one may be inspired by the following idea:
root

p

k2k1k0

k

q0 q1 q2

p has three „servants“, q0,q1,q2,
that represent complete sub-
trees.
Each qi sends its next smallest
key to p, that searches the smal-
lest key and then itself passes
this key with its already transmit-
ted data further.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 21 / 21

