Distributed-Memory Programming Models I

Stefan Lang

Interdisciplinary Center for Scientific Computing (IWR)
University of Heidelberg
INF 368, Room 532
D-69120 Heidelberg
phone: 06221/54-8264
email: St ef an. Lang@ wr . uni - hei del ber g. de

WS 15/16

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 1/21

Distributed-Memory Programming Models Il

Communication by message passing
@ MPI Standard
@ Global communication for different topologies

> Array (1D /2D / 3D)
» Hypercube

@ Local exchange

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 2/21

MPI: Introduction

The Message Passing Interface (MPI) is a portable library of functions for
message exchange between processes.

@ MPI has been designed 1993/94 by an international gremium.

@ Is available on nearly all platforms, including the free implementations
OpenMPI, MPICH and LAM.
@ Characteristics:

| 4

v

v

\4

Library for binding with C-, C++- and FORTRAN programs (no language
extension).

Large choice of point-to-point communication functions.

Global communication.

Data conversion for heterogeneous systems.

» Creation of partial sets and topologies.

@ MPI consists of over 125 functions, that are described on over 800 pages
in the standard. Thus we can only discuss a small choice of its
functionality.

@ MPI-1 has no possibilities for dynamic process generation, this is
possible in
MPI-2, furthermore in-/output.

MPI-3 is released since 09/2012 with minor extensions.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16

3/21

MPI: Hello World

#i nclude <stdlib.h>
#i nclude <stdio. h>
#i ncl ude "npi.h"

int main (int argc, char rargv[])

int ny_rank, P;
int dest, source;
int tag=50;

char nessage[100] ;
MPI _Status status;

MPI_I ni t (&arge, &ar gv) ;
P :cﬂhm(_si ;ngPI r_tg:‘gww_chLD. &) @ SPMD style!

MPI _Co k(MPI _COMM WORLD, k); . . .
~Cormr ank(VP1_COMLVERLD, &ny._r ank) @ Compilation and startup is done

it (ny_rank!=0) with

{
sprintf(message, "I am process %\ n", ny_rank); npicc -o hello hello.c
dest = 0O;

NPl _Send(message, strl en(message) +1, M| _CHAR, npi run -machinefile machines -np 8 hello

dest, tag, MPI _COVM WORLD) ;

} @ nachi nes contains names of the
{el * usable machines.

puts("l am process 0\n");
for (source=1; source<P; sourcet++)

MPI _Recv(nmessage, 100, MPI _CHAR, sour ce, t ag,
MPI _COVM WORLD, &st at us) ;
put s(nessage) ;
}
MPI _Finalize();

return 0;

Stefan (IWR) Simulation on Hi

Performance Computers WS 15/16 4/21

MPI: Blocking Communication |

@ MPI supports different variants of blocking and non-blocking
communication, guards for the receive function, as well as data
conversion during communication between machines with distinct data
formats.

@ The fundamental blocking communication functions are defined by:

int MPlI _Send(void *nmessage, int count, MPlI_Datatype dt,
int dest, int tag, MPlI_Comm conm);
int MPlI _Recv(void *message, int count, MPlI_Datatype dt,
int src, int tag, MPI_Conmm comm
MPl _St atus *status);
@ A message in MPI consists of plain data and an envelope (meta
information).

@ Data is always an array of elementary data types. This enables MPI to
handle data conversion.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 5/21

MPI: Blocking Communication Il

@ The envelope consists of:

© Number of sender,
© Number of receiver,

Q Tag,

© and a Communicator.
@ Number of sender and receiver is called rank.

@ Tag is also an integer number and serves as identificator for different
messages between identical communication partners.

@ A communicator is defined by a partial set of the processes and a
communication context. Messages, that belong to different contexts,do
not influence each other, resp. sender and receiver have to use the same
communicator.

@ Meanwhile we only use the default communicator MPI _COVM WORLD (all
started processes).

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 6/21

MPI: Blocking Communication Il

@ MPI _Send is fundamentally blocking, there are however diverse variants:

» buffered send (B): If the receiver has still not executed the corresponding
recv function, the message is buffered on sender side. A ,buffered send” is,
while assuming enough buffer space, always immediately finished. In
comparison to asynchronous communication can the send buffer mressage
be reused immediately.

» synchronous send (S): Finishing of synchronous send indicates, that the
receiver executes a recv function and has started to read the data.

» ready send (R): A ready send may only be executed, if the receiver has
already executed the corresponding recv. Otherwise the call results in an
error.

@ The according calls are designated MPI _Bsend, MPl _Ssend and
MPI _Rsend.

@ The MPI _Send instruction has either the semantics of MPl _Bsend or
MPI _Ssend, according to implementation specifics. Therefore
MPI _Send can, but must not block. In every case the send buffer
nmessage can be reused immediately after finishing.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 7/21

MPI: Blocking Communication IV

@ The instruction MPl _Recv is in every case blocking.

@ The argument st at us contains source, tag, and error status of the
receiving message.

@ For the arguments sr c and t ag can the values MPI _ANY_SOURCE resp.
MPI _ANY_TAGbe inserted. Thus MPI _Recv contains the functionality of
recv_any.

@ A non-blocking guard function for the receiving of messages is available
by means of

int MPl _|probe(int source, int tag, MPI_Conm comm
int xflag, MPl_Status xstatus);

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 8/21

MPI: Non-blocking and Global Communication |

@ For non-blocking communication there are the functions
int MPI | Send(void *buf, int count, MPI_Datatype dt,
int dest, int tag, MPl_Comm conm
MPl _Request =req);
int MPlI I Recv(void *«buf, int count, MPI_Datatype dt,
int src, int tag, MPlI_Conmm comm
MPl _Request =req);

available.
@ Via the MPl _Request objects it is possible to determine the state of the
communication request (corresponds to msgid in our pseudo code).
@ Herefore exists (beneath other) the function
int MPI_Test(MPl _Request =*req, int xflag, MPI_Status
@ Thefl agissettotrue (# 0), if the communication denoted by r eq has
been finished. In this case st at us contains information about sender,
receiver and error status.

It needs to be considered, that the MPI _Request object gets invalid as
soon as MPI _Test returns with f | ag==t r ue. It may then not be used
again.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 9/21

MPI: Non-blocking and Global Communication I

@ For global communication are available (beneath other):
int MPlI_Barrier(MI_Conm comm;

blocks all processes of a communicator until all are there.

Qo int MPI_Bcast(void *=buf, int count, MPlI_Datatype dt,
int root, MPI_Conm com);

distributes the message in process r oot to all other processes of the
communicator.

@ For the collection of data different operations are present. We describe
only one of these:
int MPlI _Reduce(void *sbuf, void *rbuf, int count, MPI_Datatype

MPl _Op op, int root, MPI_Conm conm;

combines the data in the input buffer sbuf of all processes by the
associative operator op. The final result is available in the receive buffer
r buf of the process r oot . Examples for op are MPl _SUM MPI _ VAX.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 10/21

All-to-all: 1D Array, Principle

Each wants to send data to all (variant: accumulate
with associative operator):

T ' N LY . N
0 1 2 3

N NS NS N

vorher: [20 | [| [a32 | [am]
nachher: Mo Mo My B
AL My A AL
M M A AL
My My My My

=] o] [

Variante wit [3, M,
Akkumulieren

(IWR) Simulation on Hi

We skip the ring topology and consider the 1D ar-
ray at once: Each process sends into both directi-
ons.

0 1 2 3
Start: M
[| M| [[
[[| M| [
L L L LM |
1. Step: M M
I M@ M —= M| [
[IM s M= M|
L L LM =1 M|
2. Step: [M [M —= M | [
[M [M] [M —= M |
[M |~—1 M| [M | M
L LM =1 M| LM]
3. Step: M [M [M —= M |
[M [M [M [M
[M [M [M [M
LM =1 M| LM LM

We use synchronous communication. Decide who
sends/receives by black-white coloring:

Performance Computers WS 15/16 11/21

All-to-all: 1D Array, Code |

Program (All-to-all in 1D array)
parallel all-to-all-1D-array

constint P;
process Mfintp € {0,...,P — 1}]

void all_to_all_broadcast(msg m[P])

e
inti,
from_left=p — 1, from_right=p + 1,
/Il receive that
to_left= p, to_right= p; /I'l send that
for(i=121;i <P;i++) /I P — 1 steps
if (p%2) == 1) /I black/white coloring
{

if (from_left > 0) recv(M,_, m[from_left]);

if (to_right > 0) send(IMp..1, m[to_right]);

if (from_right < P) recv(I,.1, m[from_right]);
if (to_left < P) send(My_1, m[to_left]);

}
else
{
if (to_right > 0) send([Mp1, m[to_right]);
if (from_left > 0) recv(M,_1, m[from_left]);
if (to_left < P) send(M,_1,m[to_left]);
if (from_right < P) recv(M,1, m[from_right]);
}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 12/21

All-to-all: 1D Array, Code I

Program (All-to-all in 1D array cont.)
parallel all-to-all-1D-feld cont.

{
from_left——; to_right ——;
from_right++; to_left-++;
}
}
m[p] =, That is from p!*;
all_to_all_broadcast(m);
}
}
v
Ty

All-to-all: 1D Array, Runtime

@ For the runtime analysis consider P odd, P = 2k + 1:

Mo, ..., Mk—1, M, Miga, .., Mok

k k
Process Ny receives k from left
sends k+1 toright
receives k from right
sends k+1 toleft
o= 4k + 2
=2P

@ After that Ny has all messages. Now the message from 0 has to be send
to 2k and vice versa. This needs again additonal

(. k, -1)- 2 + 1 =2k-1=P-2
~— ~— ~—
Entfernung senden u. der Letzte
empfangen empfangt nur

so we have in total

Tall—to—all—array—ld = (ts +th +tw - n)(3P - 2)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 14/21

All-to-all: Hypercube

The following algorithm for the hypercube is known as dimension exchange

and is again derived recursively.

Start withd = 1:

With four processes exchange proces-
ses 00 and 01 resp. 10 and 11 first their
data, then exchange 00 and 10 resp.
01 and 11 each two data

0 1
00 1
[+] [+]
1 1
* *
10 1
* *
1 1
* *

Stefan Lang (IWR) Simulation on High-Performance Computers

WS 15/16

15/21

All-to-all: Hypercube
@ void all_to_all_broadcast(msg m[P]) {
inti, mask =2¢ — 1, q;
for (i=0;i <d;i+-+){
q=p&2;
if(p <a){
send(MNg,m[p&mask],...
recv(Mg,m[g&mask],...,

else {
recv(Mg,m[g&mask],...
send(MNy,m[p&mask],...

mask = mask @ 2;
}

@ Runtime analysis:
Ta—to—all—bc—hc

@ For large messages the HC

words from each, whatever the topology looks like.

Stefan Lang (IWR) Simulation on High-Performance Computers

/' who first?
,m[p&mask + 2' — 1]);
m[g&mask + 2' — 1]);

mlg&mask + 2' — 1]);
,m[p&mask + 2' — 1]);

ldP—-1 .
D tetth+tyon-2 =

2
~~~ ;
i=0

send a.
receive

21dP(ts + th) + 2tyn(P — 1).
has no advantage: Each has to receive n

WS 15/16 16/21



One-to-all with indiv. messages: Hypercube, Principle

@ Process 0 sends to each a message, but to each a different one!

© @ @

3

before: M_0
M_1
M_2
M_3
fter: (M0 | (M_1 ] (M_2 | (M_3 |

@ Example is the in/output to a single file.

@ Because of variation purposes we consider the output, this means all-to-one with

indidvidual messages.
@ We use the well-known hypercube structure:

T~
root: 000 — 010 100 — 110

001 011 101 111

Stefan Lang (IWR) Simulation on High-Performance Computers

WS 15/16

17/21



One-to-all with indiv. messages: Hypercube, Code |

Program (Collection of individual messages on the hypercube)
parallel all-to-one-personalized
{
constintd, P = 2¢9;
process M[intp € {0,...,P — 1}}{
void all_to_one_pers(msg m) {
int mask, i, g, root;
/I determine p’s root: How many bits from end are zero?
mask = 29 — 1;
for(i=0;i <d;i++)
{ .
mask = mask & 2';
if (p&mask # p) break;
HIp=pd_1-..Pit1 1 0...0

settonqaastklastin i—1,...,0
if i <d)root=p@2; /I my root direction
/I own data

if (p == 0) self-processing(m);
else send(root,m); /I pass up

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16

18/21



One-to-all with indiv. messages: Hypercube, Code Il

Program (Collection of individual messages on the hypercube cont.)
parallel all-to-one-personalized cont.

/I process sub-trees:
mask =29 — 1;
for(i=0;i <d;i++){
mask = mask @ 2';q = p @ 2';
if (p&mask == p)
pP= Ppdg—1.---Pita O 0...0

I N——
i—1,...,0
= _1...Pi 1 0...0

Il q Pd—1 Pit1

i—1,...,0
/I = 1 am root of a HC of dim. i + 1!
for(k =0;k < 2';k + +){
recv(Mg,m);
if (p == 0) process(m);
else send(Moot,M);

v
Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 19/21



One-to-all with indiv. messages: Runtime, Variants

For the runtime one has for large (n) messages
Tallftofonefpers > 1:w n(P - 1)

because of the pipelining.

Some variants are worth considering:

@ Individual length of messages: Here sends one before sending the
message itself only the length information (this is practically necessary —
MPI).

@ Arbitrary message length (but only finite intermediate buffer!): subdivide
message into packets of fixed length.

@ Sorted output: Each message M; (of process i) is associated a sorting
key ki. The messages should be processed by process 0 in increasing
order of keys, without intermediate buffering of all messages.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 20/21



One-to-all with indiv. messages: Runtime, Variants

@ With sorted output one may be inspired by the following idea:
root

p has three ,servants®, qo, g1, 02,
that represent complete sub-
trees.

Each g; sends its next smallest
key to p, that searches the smal-
lest key and then itself passes
this key with its already transmit-
ted data further.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 21/21



