
Distributed-Memory Programming Models III

Stefan Lang

Interdisciplinary Center for Scientific Computing (IWR)
University of Heidelberg

INF 368, Room 532
D-69120 Heidelberg

phone: 06221/54-8264
email: Stefan.Lang@iwr.uni-heidelberg.de

WS 15/16

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 1 / 37

Distributed-Memory Programming Models III

Communication using message passing

Global communication

Local exchange

Synchronisation with time stamps

Distributed termination

MPI standard

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 2 / 37

All-to-all with indiv. Messages: Principle

Here has each process P − 1 mes-
sages, one for each other process.
There are thus (P − 1)2 individual
messages to send:

The figure shows already an ap-
plication: Matrix transposition for
column-wise subdivision.

As always, the hypercube (here
d=2):

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 3 / 37

All-to-all with indiv. Messages: General Derivation I

In general we have the following situation in step i = 0, . . . ,d − 1:

Process p communicates with q = p ⊕ 2i and sends to him

all data of processes pd−1 . . . pi+1 pi xi−1 . . . x0

for the processes yd−1 . . . yi+1 pi pi−1 . . . p0,

where the xe and ypsilons represent all possible entries.

pi is negation of a bit.

There are thus always P/2 messages sent in each communication.

Process p stores at each point in time P data.

An individual data is underway from process r to process s.

Each data is identified by (r , s) ∈ {0, . . . ,P − 1} × {0, . . . ,P − 1}.

We write
Mi

p ⊂ {0, . . . ,P − 1} × {0, . . . ,P − 1}
for the data, that stores process p at the beginning of step i , thus before
communication.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 4 / 37

All-to-all with indiv. Messages: General Derivation II

At the start of step 0 process p owns the data

M0
p = {(pd−1 . . . p0, yd−1 . . . y0) | yd−1, . . . , y0 ∈ {0, 1}}

After communication in step i = 0, . . . , d − 1 has p the data Mi+1
p , that result from

Mi
p and the following rule (q = pd−1 . . . pi+1pipi−1 . . . p0):

Mi+1
p = Mi

p

\
︸︷︷︸

sends p to q

{(pd−1 . . . pi+1pixi−1 . . . x0, yd−1 . . . yi+1pipi−1 . . . p0) | xj , yj ∈ {0, 1} ∀j}

∪
︸︷︷︸

receives p from
q

{(pd−1 . . . pi+1pixi−1 . . . x0, yd−1 . . . yi+1pipi−1 . . . p0) | xj , yj ∈ {0, 1} ∀j}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 5 / 37

All-to-all with indiv. Messages: General Derivation III

By induction applies therefore for p after communication in step i :

Mi+1
p = {(pd−1 . . . pi+1xi . . . x0, yd−1 . . . yi+1pi . . . p0) | xj , yj ∈ {0, 1} ∀j}

because of

Mi+1
p =

{
(pd−1 . . . pi+1 pi xi−1 . . . x0, yd−1 . . . yi pi−1 . . . p0) | . . .

}

∪
{
(pd−1 . . . pi+1 pi xi−1 . . . x0, yd−1 . . . yi+1 pi . . . p0) | . . .

}

\ {. . . }
︸ ︷︷ ︸

what i do not need

=
{
(pd−1 . . . pi+1 xi xi−1 . . . x0, yd−1 . . . yi+1 pi . . . p0) | . . .

}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 6 / 37

All-to-all with indiv. Messages: Code
void all_to_all_pers(msg m[P])
{

int i , x , y , q, index ;
msg sbuf [P/2], rbuf [P/2];
for (i = 0; i < d ; i + +)
{

q = p ⊕ 2i ; // my partner

// assemble send buffer:
for (y = 0; y < 2d−i−1; y + +)

for (x = 0; x < 2i ; x + +)
sbuf [y · 2i

+ x
︸ ︷︷ ︸

<P/2 (!)

] = m[y · 2i+1 + (q&2i) + x];

// exchange messages:
if (p < q)
{ send(Πq ,sbuf [0], . . . , sbuf [P/2 − 1]); recv(Πq ,rbuf [0], . . . , rbuf [P/2 − 1]); }
else
{ recv(Πq ,rbuf [0], . . . , rbuf [P/2 − 1]); send(Πq ,sbuf [0], . . . , sbuf [P/2 − 1]); }

// disassemble receive buffer:
for (y = 0; y < 2d−i−1; y + +)

for (x = 0; x < 2i ; x + +)
m[y · 2i+1

+ (q&2i
) + x

︸ ︷︷ ︸

exactly what has been sent is
substituted

] = sbuf [y · 2i + x];

}
} // end all_to_all_pers

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 7 / 37

All-to-all with indiv. Messages: Code

Complexity analysis:

Tall−to−all−pers =

ld P−1∑

i=0

2
︸︷︷︸

send and
receive

(ts + th + tw
P
2

︸︷︷︸

in every step

n) =

= 2(ts + th) ld P + tw nP ld P.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 8 / 37

MPI: Communicators and Topologies I

In all up to now considered MPI communication functions existed an argument
of type MPI_Comm. Such a communicator contains the following abstractions:

Process group: A communicator can be used to build a subset of all
processes. Only these then take part in a global communcation. The
pre-defined communicator MPI_COMM_WORLD consists of all started
processes.

Context: Each communicator defines an individal communication context.
Messages can only be received within the same context, in which they
have been sent. Such e.g. a library with numerical functions can use its
own communicator. Messages of the library are then completely
encapsulated from messages in the user program. Therefore messages
of the library can not erroneously be received by the user programm and
vice versa.

Virtual topology: A communicator represents only a set of processes
{0, . . . ,P − 1}. Optionally this set can be enhanced by an additional
structure, e.g. a multi-dimensional field or a general graph.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 9 / 37

MPI: Communicators and Topologies II

Additional attributes: An application (e.g. a library) can associate with the
communicator arbitrary static data. The communicator serves as medium
to retain data from a call of the library to the next.

This is an intra-communicator, that only enables communication within a
process group.

Furthermore there are inter-communicators, that support communication
of distinct process groups. These are not considered further at the
moment!
As a possibility to create a new (intra-) communicator we have a look at
the function

int MPI_Comm_split(MPI_Comm comm, int color,
int key, MPI_Comm *newcomm);

MPI_Comm_split is a collective operation, that has to be called by all
processes of the communicator comm. All processes with equal value for
the argument color create each a new communicator. The sequence
(rank) within the new communicator is managed by the argument key.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 10 / 37

Local Exchange: Shifting in the Ring I

Consider the following problem: Each process p ∈ {0, . . . ,P − 1} has to
send data to (p + 1)%P:

M_1

M_0

M_2

M_1

M_3

M_2

M_0

M_3

0 1 2 3

vorher:

nachher:

Naive realisation with synchronous communication results in deadlock:
. . .
send(Π(p+1)%P ,msg);
recv(Π(p+P−1)%P ,msg);
. . .

Avoiding the deadlock (e. g. exchanging of send/recv in one process)
does not deliver maximal possible parallelism.

Asynchronous communication is often not preferential because of
efficiency reasons.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 11 / 37

Local Exchange: Shifting in the Ring II
Solution: Coloring. Be G = (V ,E) a graph with

V = {0, . . . ,P − 1}
E = {e = (p,q)|process p has to communicate with process q}

There are the edges to color in such a way, that each node has only
connections to edges with different colors. The assignment of colors is
described by the mapping

c : E → {0, . . . ,C − 1}
, where C is the count of necessary colors.
Shifting in the ring needs two colors for P being even and three color for
P being odd:

0

3

1

2

4

5 0

1

2 3

4

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 12 / 37

Local Exchange: General Graph I

Establish the communication relations a general graph, then the coloring is
determined by an algorithm.

0

6

7

21

4

5

0

0

0 0

1

1

1

2

2

2

3

4

5

5

4

3

2

1

0

Farben:

3

Here a more or less sequential heuristic:

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 13 / 37

Local Exchange: General Graph II

Program (Distributed Coloring)
parallel coloring
{

const int P;
process Π[int p ∈ {0, . . . , P − 1}]{

int nbs; // number of neighbors
int nb[nbs]; // nb[i] < nb[i + 1] !
int color [nbs]; // the result
int index[MAXCOLORS]; // free color management
int i, c, d;
for (i = 0; i < nbs; i + +) index[i]=-1;
for (i = 0; i < nbs; i + +) // find color for connection to nb[i]

c = 0; // start with color 0
while(1) {

c=min{k ≥ c|index [k] < 0}; // next free color ≥ c
if (p < nb[i]) { send(Πnb[i],c); recv(Πnb[i],d); }
else { recv(Πnb[i],c); send(Πnb[i],d); }
if (c == d){ // the two have an agreement

index[c] = i ; color [i] = c; break;
} else c = max(c, d);

}
}

}
}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 14 / 37

Lamport Time Stamps I
Goal: Ordering of events in distributed systems.
Events: Execution of (marked) instructions.
The ideal situation would be a global clock, but this is not available in
distributed systems, since the sending of messages always is in
conjunction with delays.
Logical clock : Time points, that have been assigned to events, shall not
be in obvious contradiction to a global clock.

Π1: Π2: Π3:
a = 5;

. . . ; . . . ;
...

b = 3; c = 4;
send(Π2, a); . . . ;

recv(Π1, b); e = 7;
d = 8; send(Π2, e);

... recv(Π3, e);
f = bde;
...
send(Π1, f);

recv(Π2, f);

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 15 / 37

Lamport Time Stamps II

Be a an event in process p and Cp(a) the time stamp, p the associated
process, e. g. C2(f = bde), then the time stamps should have the
following properties:

1 Be a and b two events in the same process p, where a occurs before b, then
shall be Cp(a) < Cp(b).

2 Process p sends a message to q, then shall be Cp(send) < Cq(receive).
3 For two arbitrary events a and b in arbitrary processes p resp. q be

Cp(a) 6= Cq(b).

1 and 2 represent the causality of events: If in a parallel program can
surely be said, that a in p occurs before b in q, then applies
Cp(a) < Cq(b) too.

Only with the properties 1 and 2 a ≤C b : ⇐⇒ Cp(a) < Cq(b) would be a
half ordering on the set of all events.

Property 3 results then in a total ordering.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 16 / 37

Lamport Time Stamps: Implementation
Program (Lamport time stamps)
parallel Lamport time stamps
{

const int P; // whats this?
int d = min{i|2i ≥ P}; // how many bit positions has P.

process Π[int p ∈ {0, . . . , P − 1}]
{

int C=0; // the clock
int t, s, r ; // only for the example
int Lclock(int c) // output of a new time stamp
{

C=max(C, c/2d); // rule 2
C++; // rule 1
return C · 2d + p; // rule 3

// the last d bits contain p
}

// application:
// A local event happens
t=Lclock(0);

s=Lclock(0); // send
send(Πq ,message,s); // the time stamp is sent together!

recv(Πq ,message,r); // receivers also the time stamp of the reveiver!
r=Lclock(r); // thus applies Cp(r) > Cq(s)!

}
}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 17 / 37

Lamport Time Stamps: Implementation

Management of the time stamps is in response of the user. Ordinarily one
necessitates time stamps only for very specific events (see below).

Overflow of the counter has not been considered.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 18 / 37

Distributed Mutual Exclusion with Time Stamps I

Problem: From a set of distributed processes exactly one shall do
something (e. g. control a device, serve as server, . . .). Like in the case of
a critical section the processes have to decide which is next.

A possibility would be, that just one process decides who is next.

We now present a distributed solution:
◮ Does a process want to enter it sends a message to all others.
◮ As soon as it has gotten an answer from all (there is no no!) it can enter.
◮ A process confirms only, if it doesn’t want to enter or if the time stamp of an

entry query is larger than that of the others.

Solution works with a local monitor process.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 19 / 37

Distributed Mutual Exclusion with Time Stamps II
Program (Distributed mutual exclusion with Lamport time stamps)
parallel DME-timestamp // Distributed Mutual Exclusion
{

int P; const int REQUEST =1, REPLY=2; // messages

process Π[int p ∈ {0, . . . , P − 1}]
{

int C=0, mytime; // clock
int is_requesting=0, reply_pending, reply_deferred[P]={0,. . . ,0};// deferred processes

process M[int p‘ = p] // the monitor
{

int msg, time;
while(1) {

recv_any(π,q,msg,time); // receive from q’s monitor with time
if (msg==REQUEST) // stamp of sender q wants to enter
{

[Lclock(time);] // increase own clock for later request.
// critical section, since Π also increases.

if(is_requesting ∧ mytime < time)
reply_deferred [q]=1; // q shall wait

else
asend(Mq ,p,REPLY ,0); // q may enter

}
else reply_pending−−; // it has been a REPLY

}
}
. . .

} Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 20 / 37

Distributed Mutual Exclusion with Time Stamps II
Program (Distributed mutual exclusion with Lamport time stamps cont.)
parallel DME-timestamp // Distributed Mutual Exclusion cont.
{

. . .
void enter_cs() // to enter the critical section
{

int i ;
[mytime=Lclock(0); is_requesting=1;]

// critical section
reply_pending=P − 1; // so many answers do I expect
for (i=0; i < P; i++)

if (i 6= p) send(Mi ,p,REQUEST ,mytime);
while (reply_pending> 0); // busy wait

}
void leave_cs()
{

int i ;
is_requesting=0;
for (i=0; i < P; i++) // inform waiting processes
if (reply_deferred [i]
{

send(Mi ,p,REPLY ,0);
reply_deferred [i]=0;

}
}
enter_cs(); /* critical section */ leave_cs();

} // end process
}

0 1Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 21 / 37

Distributed Mutual Exclusion with „Voting“ I

The algorithm above needs 2P messages per process to enter the critical
section. With voting we will only need O(

√
P).

Especially a process doesn’t need to ask all others before it may enter.
Idea:

◮ The related processes acquire for entry into the critical section. These are
called candidates

◮ All (or some, see below) vote who may enter. These are called voters. Each
can be candidate or voter.

◮ Instead of absolute majority we require only relative majority: A process may
enter as soon as it knowns, that no other can have more votes than itself.

Each process is assigned a voting district Sp ⊆ {0, . . . ,P − 1}. It applies
the coverage property:

Sp ∩ Sq 6= ∅ ∀p,q ∈ {0, . . . ,P − 1}.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 22 / 37

Distributed Mutual Exclusion with „Voting“ II

The voting districts for 16 processes look like this:

0 1 2 3

4 5 6 7

8 9 10 11

12131415

S_3

S_9

A process p can enter, if it gets all votes of its voting district. Since no
other process q can enter: According to prerequisite there exists
r ∈ Sp ∩ Sq and r has decided to vote for p, thus q cannot have gotten all
votes.

Danger of deadlock: Is |Sp ∩ Sq | > 1 thus one can decide for p and
another for q, both never may enter. Solution of deadlocks with Lamport
time stamps.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 23 / 37

Optimality of Voting Districts I

Question: How small can the voting districts be?

Again: Each p has its voting district Sp ⊆ {0, . . . ,P − 1} and we require
Sp ∩ Sq 6= ∅.

But this would allow e. g. Sp = {0} for all p, what we do not want.

Define Dp as the set of processes for which p has to vote:

Dp = {q|p ∈ Sq}}

We additionally require that for all p:

|Sp| = K , |Dp| = D.

This excludes the trivial solution from above.

With this assumption even holds D = K , since define the set of all pairs
(p,q) with p chooses for q, d.h. :

A = {(p,q)|0 ≤ p < P ∧ q ∈ Dp}.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 24 / 37

Optimality of Voting Districts II
On the other side define the set of all pairs (p,q) where p has to be voted
by q:

B = {(p,q)|0 ≤ p < P ∧ q ∈ Sp}.
Because of q ∈ Sp ⇔ p ∈ Dq holds (p,q) ∈ B ⇔ (q,p) ∈ A thus |A| = |B|.
For the sizes applies |A| = P · D and |B| = P · K thus D = K .
For fixed K (= D) we maximize now the number of voting districts
(processors) P:

◮ Choose an arbitrary voting district Sp. This has K members.
◮ Choose an arbitrary r ∈ Sp. This r is member in D voting districts (set Dr)

where one is Sp (obviously is p ∈ Dr . Therefore we count K (D − 1) + 1
voting districts.

◮ More cannot exist, since for arbitrary q applies: There is a r with r ∈ Sp ∩ Sq

and thus q ∈ Dr . We have thus all gotten.
Thus it holds that

P ≤ K (K − 1) + 1

or

K ≥ 1
2
+

√

P − 3
4
.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 25 / 37

Voting: Implementation I
Program (Distributed Mutual Exclusion with Voting)
parallel DME-Voting
{

const int P = 7.962;
const int REQUEST=1, YES=2, INQUIRE=3, RELINQUISH=4, RELEASE=5;

// „inquire“ = „sich erkundigen“; „relinquish“ = „aufgeben“, „verzichten“
process Π[int p ∈ {0, . . . , P − 1}]
{

int C=0, mytime;

void enter_cs() // wants to enter critical section
{

int i , msg, time, yes_votes=0;
[mytime=Lclock(0);] // time of my request
for (i ∈ Sp) asend(Vi ,p, REQUEST ,mytime);

// send request to voting districts
while (yes_votes < |Sp|) {

recv_any(π,q,msg,time); // receive from q
if (msg==YES) yes_votes++; // q choose
if (msg==INQUIRE) // q wants vote back

if (mytime==time) // now current request
{ // there may be old on the way

asend(Vq ,p,RELINQUISH,0);
// passes back

yes_votes−−;
}

}
}// end enter_cs
. . .

}
Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 26 / 37

Voting: Implementation II

Program (Distributed Mutual Exclusion with Voting cont. 1)
parallel DME-Voting cont. 1
{

. . .
void leave_cs()
{

int i ;
for (i ∈ Sp) asend(Vi ,p,RELEASE,0);
// There could be still not processed INQUIRE messages for this
// critical section exist, that are now obsolete.
// These are then ignored in enter_cs.

}

// Example:
enter_cs();
. . . ; // critical section
leave_cs();

}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 27 / 37

Voting: Implementation III
Program (Distributed Mutual Exclusion with Voting cont. 2)
parallel DME-Voting cont. 2
{

process V [int p′ = p] // the voter for Πp
{

int q, candidate, msg, time, have_voted=0, candidate_time, have_inquired=0;
while(1) // runs forever
{

recv_any(π,q,msg,time); // receive it with sender
if (msg==REQUEST) // request of a candidate
{

[Lclock(time);] // increase clock for later requests
if (¬have_voted) { // I have still to vote

asend(Πq ,p,YES,0); // back to candidate process
candidate_time=time; // remember whom I gave
candidate=q; // my vote.
have_voted=1; // yes, I have already voted

}
else{ // I have already voted

store (q, time) in list;
if (time < candidate_time ∧ ¬have_inquired)
{ // get back vote from candidate!

asend(Πcandidate ,p,INQUIRE,candidate_time);
// with the candidate_time it recognizes which request
// it is: it could have happened, that it already entered.

have_inquired=1;
}

}
} . . .

}
Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 28 / 37

Voting: Implementation IV
Program (Distributed Mutual Exclusion with Voting cont. 3)
parallel DME-Voting cont. 3
{

. . . // q is the candidate, that has
else if (msg==RELINQUISH) // passed back it vote.
{

store (candidate, candidate_time) in list;
take away and delete

the entry with the smallest time from the list: (q, time)
// There could exist others

asend(Πq ,p,YES,0); // vote for q
candidate_time=time; // new candidate
candidate=q;
have_inquired=0; // no INQUIRE on the way

}
else if (msg==RELEASE) // q leaves the critical section
{

if (list is not empty)
{ // vote new

take away and delete
the entry with the smallest time from list: (q, time)

asend(Πq ,p,YES,0);
candidate_time=time; // new candidate
candidate=q;
have_inquired=0; // forget all INQUIREs because obsolete

}
else

have_voted=0; // noone need to be voted
}

}
} // end Voter

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 29 / 37

Distributed Termination I
There are processes Π0, . . . ,ΠP−1 defined, that communicate over a
communication graph .

G = (V ,E)

V = {Π0, . . . ,ΠP−1}
E ⊆ V × V

With that process Πi sends messages to the processes

Ni = {j ∈ N | (Πi ,Πj) ∈ E}
process Πi [int i ∈ {0, . . . , P − 1}]
{

while (1)
{

recv_any(who,msg), // Πi is idle
compute(msg);
for (p ∈ Nmsg ⊆ Ni)
{

msgp = . . . ;
asend(Πp, msgp); // ignore buffer problems

}
}

}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 30 / 37

Distributed Termination II
The termination problem consists of finalizing a program only if applies:

1 All wait for a message (are idle)
2 No messages are underway

Thereby the following assumption are applied regarding the messages:
1 Ignore problems with buffer overflow
2 The messages between two processes are processed in the sequence of

sending

1. variant: termination in the ring

Token

Nachricht

Pi_0 Pi_2Pi_1 Pi_3

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 31 / 37

Distributed Termination III

Each process has one of two possible states: red (active) or blue (idle). For
termination recognition a mark is sent around in the ring.
Suppose process Π0 starts the termination process, thus turns first into blue.
Also suppose,

1 Π0 is in state blue
2 mark has arrived at Πi and Πi has been recolored into blue

Then we can assume, that the processes Π0, . . . ,Πi are idle and the channels
(Π0,Π1), . . . , (Πi−1,Πi) are empty.
Is the mark again at Π0 and is it still blue (what it can decide), then obvious
applies:

1 Π0, . . . ,ΠP−1 are idle
2 All channels are empty

Then the termination is recognized.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 32 / 37

Distributed Termination IV
2. variant: general graph with directed edges

Pi_3 Pi_2

Pi_1Pi_0

Idea: Over the graph a ring is formed, that includes all nodes, where a node
also can be visited more than once.
Algorithm: Choose a path π = (Πi1 ,Πi2 , . . . ,Πin) of length n of processes such
that applies:

1 Each edge (Πp,Πq) ∈ E exists at least in the path once
2 A sequence (Πp,Πq ,Πr) exists at most once in the path. Does one reach

q from p, then is goes always further to r. r therefore depends on Πp und
Πq ab: r = r(Πp,Πq)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 33 / 37

Distributed Termination V

Example with π = (Π0,Π3,Π4,Π2,Π3,Π2,Π1,Π0).

Pi_1 Pi_2

Pi_3Pi_0

Pi_4

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 34 / 37

Distributed Termination VI
process Π [int i ∈ {0, . . . , P − 1}]
{

int color = red , token;
if (Πi == Πi1

)
{ // initialisation of the token

color = blue;
token = 0 ,
asend(Πi2

, TOKEN, token)
}
while(1)
{

recv_any(who,tag,msg);
if (tag != TOKEN) { color = red; calculate further }
else // msg = Token
{

if (msg == n) { break; „yeah, ready! “}
if (color == red)
{

color = blue ;
token = 0 ;
rcvd = who ;

}
else

if (who == rcvd) token++ ; // a full cycle

asend(Πr(who,Πi)
, TOKEN , token);

}
}

}
Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 35 / 37

Distributed Philosophers I
We consider the philosophers problem again, but now with message passing.

Let a mark circle in the ring. Only who has the mark, may eventually eat.

State transitions are told to the neighbors, before the mark is passed
further.

Each philosopher Pi is assigned a server Wi , that performs the state
manipulation.

We use only synchronous communication

process Pi [int i ∈ {0, . . . ,P − 1}]
{

while (1) {
think;
send(Wi , HUNGRY);
recv(Wi , msg);
eat;
send(Wi , THINK);

}
}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 36 / 37

Distributed Philosophers II
process Wi [int i ∈ {0, . . . , P − 1}]
{

int L = (i + 1)%P;
int R = (i + p − 1)%P ;
int state = stateL = stateR = THINK ;
int stateTemp;
if (i == 0) send(WL , TOKEN);
while (1) {

recv_any(who, tag);
if (who == Pi) stateTemp = tag ; // my philosopher
if (who == WL & & tag 6= TOKEN) stateL = tag ; // state change
if (who == WR & & tag 6= TOKEN) stateR = tag ; // in neighbor
if (tag == TOKEN){

if (state 6= EAT & & stateTemp == HUNGRY
& & stateL == THINK & & stateR == THINK){

state = EAT;
send(Wl , EAT);
send(WR , EAT);
send(Pi , EAT);

}
if (state == EAT & & stateTemp == THINK){

state = THINK;
send(WL , THINK);
send(WR , THINK);

}
send(WL , TOKEN);

}
}

}
Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 37 / 37

