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Client-Server Paradigm |
@ Server: Process, that processes in an endless loop requests (tasks) of
clients.
@ Client: Sends in irregular distances requests to a server.
For example the distributed philosophers have been the clients and the

servants the servers (that communicate beneath each other).
Practical Examples:

@ File Server (NFS: Network File Server)

@ Database Server

@ HTML Server

Further Example: File Server, Conversational Continuity
Access onto files shall be realized over the network.
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Client-Server Paradigm I

@ Client: opens file; performs an arbitrary number of read/write accesses;
closes file.

@ Server: serves exactly one client, until this closes the file again. Will be
releases after finalising the communication.

@ Allocator: maps a client to a server.

process C[inti e {0,...,M —1}]

{
send( A, OPEN, ,foo.txt “);
recv(A,ok,j);
send( S;, READ , where ),
recv(S;, buf);
send(S; , WRITE, buf , where );
recv(S;, ok);
send(S;, CLOSE),
recv(S;, ok),
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Client-Server Paradigm llI

process A /I Allocator
int free [N] = {1[N]}; /I all servers free
int cut = 0; /I how many servers occupied?
while (1) {
if (rprobe(who)) { /I from whom may | receive?
if (who € {Cop,...,Cnu—_1} &&cut==N)
continue; /I no servers free

recv(who , tag , msg );
if (tag == OPEN ){
Find free serverj;

free [j[]=0;

cut++;

send(S; , tag , msg , who ),
recv(S;, ok);

send(who, ok, j);

}
if (tag == CLOSE)
for(j € {0,...,N —1})

if (Sj==who){
free [j] = 1;
cut=cut-1;
}
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Client-Server Paradigm IV

process S[intj € {0,...,N —1}]

while (1) {
/I wait for message of A
recv(A,tag,msg,C); /I my client
if (tag # OPEN ) — error;
open file msg
send(A, ok);
while (1) {
recv(C,tag, msg);
if (tag == READ) {

send(C, buf );
}
if (tag == WRITE ) {
send(C, ok);}
}
if (tag == CLOSE X
close file;
send(C, ok);

send( A, CLOSE , dummy );
break;
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Remote Procedure Call |

@ Is abbreviated with RPC ( Remote Procedure Call ). A process calls a
procedure/function of another process.

@ My: My:
: int Square(int x)
y = Square(x); {
: return x - X;
}

@ It applies thereby:

» The processes can run on distinct (remote) processors.

» The caller blocks as long as the results have not arrived.

» A two-way communication is established, this means arguments are sent
forth and results are sent back. For the client-server paradigm this is the
ideal configuration.

» Many clients can call a remote procedure at a time.
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Remote Procedure Call Il

@ We realise the RPC by assigning the key word r enot e to the procedure
of interest. These can then be called by other processes.

Program (RPC-Syntax)

parallel rpc-example

{ process Server
{ remote int Square(int x)
{ return x - Xx;
remote long Time ( void )
return time_of_day;
...initialisation code
process Client
{ y = Server.Square(5);
}
}
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Remote Procedure Call Il

During a call of a function in another process via RPC the following happens:

@ The arguments are packed on the caller side into a message, sent across
the network and unpacked on the other side.

@ Now the function can be called completely normal.
@ The return value of the function is sent back to the caller in the same kind.

client process server process
client code int square(int X
int square(int x server stub:
client stub: unpacking arg,
packing arg, call square()
unpacking res packing res
RPC runtime RPC runtime

o
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Remote Procedure Call IV

A quite frequently used implementation of RPC comes from the company
SUN. The most important properties are:

@ Portability (client/server applications on different architectures). This
means, that the arguments and return values have to be transported in a
architecture-independent representation over the network. This is
performed by the XDR library (external data representation).

@ Few knowledge about network programming is necessary.

We now realize step by step the example from above via SUN's RPC.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 9/33



Client-Server Paradigm with RPC |

@ (1) Construct a RPC specification in file squar e. x

struct square_in {
int argl;

[+ first argument
P

struct square_out { /+ return val ue
int resi;

} o

pr ogr am SQUARE_PROG {
versi on SQUARE VERS { [/* procedure nunber
squar e_out SQUAREPROC(square_in) = 1;
} =1, /* version nunber
} = 0x31230000 ; /* program nunber

@ (2) Compile the description with the command
rpcgen -C square. X
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Client-Server Paradigm with RPC Il

generates the following 4 files in a completely automatic way:
squar e. h: data types for arguments, procedure heads (cutout)
#defi ne SQUAREPRCC 1

extern square_out * squareproc_1(square_in *, CLIENT *); /+ die ruft dient */
extern square_out * squareproc_1_svc(square_in *, struct svc_req *); /* Server =*/

squar e_cl nt. c: client side of the function, packing of arguments

#i nclude <menory. h> /* for menset =/
#i ncl ude "square. h"

/+ Default timeout can be changed using clnt_control () */
static struct tinmeval TIMEQUT = { 25, 0 };

square_out * squareproc_1(square_in *xargp, CLIENT *clnt)

{
static square_out clnt_res;
menset ((char *)&clnt_res, 0, sizeof(clnt_res));
if (clnt_call (clnt, SQUAREPRCC,
(xdrproc_t) xdr_square_in, (caddr_t) argp,
(xdrproc_t) xdr_square_out, (caddr_t) &clnt_res,
TI MEQUT) != RPC_SUCCESS) {
return (NULL);
return (&clnt_res);
}
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Client-Server Paradigm with RPC Il

squar e_svc. c: Complete server, that reacts on the procedure call.
squar e_xdr . c: Function for data conversion in a heterogeneous
environment:

#i ncl ude "square. h"

bool _t xdr_square_in (XDR *xdrs, square_in *objp)

{
register int32_t =*buf;
if (!'xdr_int (xdrs, &objp->argl))
return FALSE;
return TRUE;
}
bool _t xdr_square_out (XDR *xdrs, square_out =*objp)
{
register int32_t =*buf;
if (!'xdr_int (xdrs, &objp->resl))
return FALSE;
return TRUE
}
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Client-Server Paradigm with RPC IV

@ (3) Now the client needs to be written, that calls the procedure.

(client.c):
#i ncl ude "square. h" I+ includes also rpc/rpc.h */
int main (int argc, char *xargv)
{
CLI ENT =cl ;

square_in in;
square_out *outp; /* can only return a pointer x/

if (argc!=3) {
printf("usage: client <hostname> <integer-value>\n");
exit(1);

}

cl = clnt_create(argv[1], SQUARE_PROG SQUARE_VERS, "tcp");
if (cl==NuLL) {

printf("clnt_create failed\n");

exit(1);

}
in.argl = atoi(argv[2]);
outp = squareproc_1(& n,cl); /* renote procedure call =*/
if (outp==NULL) {
printf("%",clnt_sperror(cl,argv[1]));
exit(1);
}

printf("%\ n", outp->resl);
exit(0);
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Client-Server Paradigm with RPC V

@ (4) Now the client can be build:

gcc -g -c client.c

gcc -g -c square_xdr.c

gcc -g -c square_clnt.c

gcc -o client client.o square_xdr.o square_clnt.o

@ (5) Finally the function on the server side has to be written (ser ver. c):
square_out * squareproc_1_svc(square_in *inp, struct svc_req *rqgstp)

{
static square_out out; /* since we return pointers */
out.resl = inp->argl * inp->argl
return (&out);

}

@ (6) Now the server can be build:

gcc -g -c server.c
gcc -g -c square_xdr.c
gcc -g -c square_svc.c
gcc -0 server server.o square_xdr.o square_svc.o
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Client-Server Paradigm with RPC VI

@ (7) Starting of the processes works as follows:
Test, whether the portmapper runs: rpcinfo -p

Start server via server &
Start client:

josh> client troll 123
15129

By default the server answers the request sequentially after each other. A
multi-threaded server is created as follows:

@ generate RPC codeviarpcgen -C -M ...

@ make the procedures reentrant. Trick with st at i ¢ variables does not
work anymore. Solution: Pass the result back in a call-by-value
parameter.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 15/33



Client-Server Paradigm: CORBA |

Example works with MICO (ht t p: / / www. ni co. or g), an free CORBA

implementation (C++), that has been developed at the university of Frankfurt.

@ (1) IDL definition of the class account . i dl :

interface Account {
voi d deposit( in unsigned | ong anount );
void withdraw( in unsigned |ong anpbunt );
| ong bal ance();

b
@ (2) Automatic generation of client/server classes
idl account.idl

generates the files account . h (class definitions) and account . cc
(implementation of the client side).
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Client-Server Paradigm: CORBA 1

@ (3) Call of the client side: cl i ent . cc

#i ncl ude <CORBA- SMALL. h>
#i nclude <i ostream h>

#i nclude <fstream h>

#i nclude "account.h"

int

{

main( int argc, char xargv[] )

/1 ORB initialization
CORBA: : ORB_var orb = CORBA:: ORB_init( argc, argv, "mico-local-orb" );
CORBA: : BOA_var boa = orb->BOA_init (argc, argv, "mico-local-boa");

/1 read stringified object reference
ifstreamin ("account.objid");

char ref[1000];

in»ref;

in.close();

/1 client side

CORBA: : Cbj ect _var obj = orb->string_to_object(ref);
assert (!CORBA::is_nil (obj));

Account _var client = Account::_narrow obj );

client->deposit( 100 );

client->deposit( 100 );

client->deposit( 100 );

client->deposit( 100 );

client->deposit( 100 );

client->withdraw( 240 );

client->withdraw( 10 );

cout « "Balance is " « client->balance() « endl;

return O;
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Client-Server Paradigm: CORBA Il

@ (4) Server contains the implementation of the class, generates the
objects and the server itself: server. cc:

#define M CO CONF_I MR

#i ncl ude <CORBA- SMALL. h>
#i ncl ude <i ostream h>

#i ncl ude <fstream h>

#i ncl ude <unistd. h>

#i ncl ude "account. h"

class Account _inpl : virtual public Account_skel {
CORBA: : Long _current_bal ance;

public:
Account _i npl ()
{

_current _bal ance = 0;

voi d deposit( CORBA::ULong anount )
_current _bal ance += anount;

%oi d w thdraw( CORBA::ULong anount )

_current _bal ance -= anount;

}
CORBA: : Long bal ance()
{

}
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Client-Server Paradigm: CORBA IV

int main( int argc, char *argv[] )
cout « "server init" « endl;

/1 initialize CORBA
CORBA: : ORB_var orb = CORBA:: ORB_init( argc, argv, "mco-local-orb" );
CORBA: : BOA var boa = orb->BOA_init (argc, argv, "mco-local -boa");

Il create object, produce global reference

Account _i npl *server = new Account _inpl;

CORBA: : String_var ref = orb->object_to_string( server );
of stream out ("account.objid");

out « ref « endl;

out.close();

/1l start server
boa- >i npl _i s_ready( CORBA::|nplenentationDef::_nil() );
orb->run ();

CORBA: : rel ease( server );
return O;
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Client-Server Paradigm: CORBA V

To start the server is run again: server &

And the client is called:

josh > client
Bal ance is 250
josh > client
Bal ance i s 500
josh > client
Bal ance is 750

Object naming: Here over a ,stringified object reference”. Exchange over
shared readable file, email, etc. Is global unique and contains IP numbers,
server process, object.

Alternatively: Separate naming services.
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Advanced MPI

Some innovative aspects of MPI-2
@ Dynamic process creation and management
@ Communicators: Inter- and Intracommunicators
@ MPI and Threads
@ One-sided communication
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MPI-2 Process Control

@ MPI-1 specifies neither how the processes are spawned nor how they
create a communication infrastructure

@ MPI-2 enables dynamic creation of processes

» MPI _Comm spawn() starts MPI processes and creates a communication
infrastructure

» MPI _Comm spawn_nul ti pl e() starts binary-distinct programs or the
same program with different arguments below the same communicator
MPl _COMM WORLD

@ MPI uses the existing group abstractions to represent processes. A
(group,rank) pair identifies a process in a unique way. A process
determines a ungiue (group,rank) pair, since it may be part of several
groups.

@ MPI does not provide any operating system services, e.g. starting and
stopping of processes , and therefore implies implicitly the existence of a
runtime environment, within which a MPI-application can run.

@ The newly created child processes possess their own communicator
MPI _COVM WORLD. Withi nt MPI _Comm get _par ent (MPlI _Conm
*par ent) you receive the same intercommunicator, that the parent
processes have received during their creation.
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MPI-2 Process Control

Interface to create new processes during runtime

@ Syntax:
int MPI _Conm spawn( conmand, argv, maxprocs, info,
root, conm intercomm errorcodes)

@ int MPI_Conm spawn() is a collective function. First if all child
processes have called MPl _I ni t () itis finished.

@ Arguments are specified in the following:

argument type name description

char * (IN) command name of the program to be created (only root)
char * (IN) ar gv arguments for conmand (only root)

int (IN) MBxpr ocs maximal count of processes to be created

MPI _I nf o (IN) info a set of key-value pairs, that provides the runtime

system info, where and how the processes
are to be created (only root)

int (IN) r oot the rank of the process in which ar gv
is evaluated
MPI _Comm(IN) comm Intracommunicator for generated processes
MPI _Conm * (OUT) i nterconm Intercommunicator between original
group and newly generated group
int (OUT) errorcodes[] A code per process
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MPI-2 Enhanced Shared Communication

@ MPI-1: shared communication operations for intracommunicators, only
MPI I ntercomm create() and MPl _Conm dup() to create
intercommunicators

@ MPI-2: extension of many MPI-1 communication operations to
intercommunicators, further possibilites to create intercommunicators, 2
new routines for shared communication.

constructors for intercommunicators:

@ MPI::Intercomm MPI::Intercomm: Create(const Goup& group) const
MPI : I ntracomm MPI:: I ntracomm : Creat e(const G oup& group) const
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MPI-2: Intercommunicator Construction

Before

INTER-COMMUNICATOR CREATE

.

After

-

.

|
7
I

from MPI-2 standard document
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MPI-2: Collective Communication inside
Intercommunicator

@ All-To-All

» MPI _All gather, MPI_AlIlgatherv

» MPI _Alltoall, MPI_Alltoallv

» MPI _Al Il reduce, Ml _Reduce_scatter
@ All-To-One

» MPI _Gather, MPI_Gatherv

» MPI _Reduce
@ One-To-All

» MPI _Bcast
» MPI _Scatter, MPI_Scatterv

@ Other

» MPI _Scan
» MPI _Barrier
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MPI-2: Collective Communication in

Intercommunicator

@ Description of operations with source and target group.
» within intracommunicators these groups are identical
» within intercommunicators these groups are distinct

@ Messages and data flow within MPI _Al | gat her ()

e N

Recomm

Recomm

from MPI-2 standard document
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MPI-2: Collective Communication in the
Intracommunicator

Generalised Alltoall function (w) (we already known this one!)
@ Declaration:

void MPlI::Comm: Al ltoallw (const void+* sendbuf, const int sendcounts[], const
int sdispls[], const MPI::Datatype sendtype[], void *recvbuf, const int
recvcounts[], const int rdispls[], const MPl::Datatype recvtypes[]) const =
0;

@ The j-th block that sends process i is stored by process j in the i-th block
of recvbuf.

@ The blocks can have different size

@ Type signatures and data extend have to be consistent:
sendcounts[j], sendtypes[j] of process i fits to
sendcounts[i], sendtypes[i] of prozessj

@ No in-place option

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 28/33



MPI-2: Collective Communication in the
Intracommunicator

Exclusive scan operation, inclusive scan already in MPI-1

@ Declaration:
MPI : : I ntracomm Exscan (const void+ sendbuf, void+ recvbuf, int count, const
MPI : : Dat at ype& dat at ype, const MPIl:: Op& op) const

@ Performs a prefix reduction on data, that are distributed across the group
Value in r ecvbuf of process 0 is undefined

@ Value inr ecvbuf of process 1 is defined by the value of sendbuf of
process 0

@ Value inrecvbuf of process i with i < 1 is the value of reduction
operation op applied to the sendbuf s of processes O, ...,i — 1

©

@ no in-place option
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Hybrid Programming: MPI and Threads |
Basic Assumptions

@ Thread library according to POSIX standard

@ MPI process can be run multithreaded without limitations
@ Each thread can call MPI functions
°

Threads of an MPI process can not be distinguished
rank specifies a MPI process not thread

The user has to avoid conditions, that can be generated by
contradictionary communication calls
This can e.g. occur by thread specific communicators

Minimal requirements for thread-aware MPI

@ All MPI calls are thread save, this means two concurrent threads may
execute MPI calls, the result is invariant concerning the call sequence,
also by interleaving of the calls in time

@ Blocking MPI calls block only the calling thread, while further threads can
be active, especially these may execute MPI calls.

@ MPI calls can be made thread save when one only executes one call at a
time. This can be performed with one MPI process with individual lock.
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Hybrid Programming: MPI and Threads Il

@ MPI _Init() and MPl _Fi nal i ze() should be called by the same
thread, so called main thread

@ Initialisation of MPI and thread environment with
int MPl::Init_thread (int& argc, char **& argv, int required)
The argument r equi r ed specifies a necessary thread level
» MPI _THREAD_ SI NGLE: only a thread will be executed
» MPI _THREAD_FUNNELED: the process can be multi-threaded, MPI calls are
performed only by the main thread
» MPI _THREAD_SERI ALI ZED: the process can be multi-threaded and several
threads may execute MPI calls, but at each point in time only one (thus no
concurrency of MPI calls)
» MPI _THREAD_ MJLTI PLE: Several threads may call MPI without constraints
@ The user has to ensure the correspondence of MPI collective operations
on a communicator via interthread synchronisation

@ It is not guaranteed, that the exception handling is done by the same
thread, that has executed the MPI call causing the exception.

@ Request of the current thread level withi nt MPI: : Query_t hread()
determination whether main thread bool MPI::1s_t hread_mai n()
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MPI-2 One-sided Communication

One-sided communication is an extension of communication mechanism
by Remote Memory Access (RMA)

Three communication calls:

MPl _Put (), MPI_Get() and MPl _Accunul at e()

Different synchronization calls: Fence, Wait, Lock/Unlock

Advantage: Usage of architecture characteristics (shared memory,
hardware supported put/get operations, DMA engines)

Initialisation of memory window

Management via opaque object for storage of process group, that has
access, and of window attributes

MPl::Wn MPI::Wn::Create() andvoid MPI::Wn::Free()

Window RMA Update Local Update

STORE LOAD
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