
Evaluation of Parallel Algorithms

Stefan Lang

Interdisciplinary Center for Scientific Computing (IWR)
University of Heidelberg

INF 368, Room 532
D-69120 Heidelberg

phone: 06221/54-8264
email: Stefan.Lang@iwr.uni-heidelberg.de

WS 15/16

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 1 / 24



Themes

Evaluation of parallel algorithms

Speedup, efficiency

Degree of parallelism, costs

Iso-efficiency

Amdahl’s law

Gustafson scaling

Scalability

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 2 / 24



Evaluation of Parallel Algorithms I

How can the properties of a parallel algorithm for the solution of a problem
Π(N) be analyzed?

Problem size N can be choosen arbitrary

Solution of the problem with sequential resp. parallel algorithm
Hardware assumptions:

◮ MIMD parallel computer with P identical computing nodes
◮ Communication network scales with number of computing nodes
◮ Latency, band width and node performance are known

Execution of the sequential program on a single node

Parallel algorithm + parallel implementation + parallel hardware = parallel
system

The notion of scalability characterizes the ability of a parallel system to
handle increasing resources provided by processors P or demands by
the problem size N.

Goal: Analysation of scalability properties of a parallel system

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 3 / 24



Evaluation of Parallel Algorithms II

Measures for Parallel Algorithms

Runtime

Speedup and Efficiency

Costs

Degree of parallelism

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 4 / 24



Evaluation of Parallel Algorithms III

Definition of different execution times:

The sequential execution time TS(N) denotes the runtime of a
sequential algorithm for solution of problem Π for input size N.

The optimal execution time Tbest(N) characterizes the runtime of the
best (existing) sequential algorithm to solve the problem Π with input size
N. This algorithm has for nearly all sizes of N the lowest time demands.

The parallel runtime TP(N,P) describes the runtime of the parallel
systems, to be investigated, for solution of Π in dependance of input size
N and the processor count P.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 5 / 24



Evaluation of Parallel Algorithms IV
The measurement of runtimes allows the definition of further units:

Speedup

S(N,P) =
Tbest(N)

TP(N,P)
. (1)

For all N and P applies S(N,P) ≤ P.
Assume that holds S(N, P) > P, then exists a sequential program, that simulates the parallel program
(processing in time slices mode). This hypothetical program would then have a runtime PTP(N, P) and it
would be

PTP(N, P) = P
Tbest (N)

S(N, P)
< Tbest (N), (2)

In obvious contradiction to former definitions.

Efficiency

E(N,P) =
Tbest(N)

PTP(N,P)
. (3)

It applies E(N,P) ≤ 1. The efficiency represents the share of the
maximal achievable speedup. We say that E · P processors really work
for the solution of Π and the rest (1 − E)P does not contribute effectively
to the problem solution.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 6 / 24



Evaluation of Parallel Algorithms V

Costs
As costs C the product

C(N,P) = PTP(N,P), (4)

is defined, since one would have to pay this duration of computing time in
the computing center.
We denote an algorithm as cost optimal, if C(N,P) = constTbest(N).
Obviously applies then

E(N,P) =
Tbest(N)

C(N,P)
= 1/const , (5)

the efficiency remains thus constant.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 7 / 24



Evaluation of Parallel Algorithms VI

Degree of parallelism
With Γ(N) we denote the degree of parallelism. That is the maximal
number of operations, that can be executed synchronously, in the best
sequential algorithm.

◮ Obviously could be in principle executed the more operations the more
operations had to be exectued overall, thus the larger N is. The degree of
parallelism is such dependent on N.

◮ On the other side the degree of parallelism can not be larger than the
number of operations that have to executed in total. Since this number is
proportional to TS(N), we can say, that

Γ(N) ≤ O(TS(N)) (6)

holds.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 8 / 24



Evaluation of Parallel Algorithms: Speedup
Elementary is the behaviour of the speedup S(N,P) of a parallel system in
dependence of P.

With the second parameter N we have the choice of different scenarios.

1. Fixed sequential execution time

We determine N from the relation

Tbest(N)
!
= Tfix → N = NA (7)

where Tfix is a parameter. The scaled speedup is then

SA(P) = S(NA,P), (8)

therefore A stands for the name Amdahl.
How behaves the scaled speedup?
Assumption: the parallel program is created from the best sequential
program with sequential share 0 < q < 1 and a completely parallelisable
rest (1 − q). The parallel runtime (for fixed NA!) is then

TP = qTfix + (1 − q)Tfix/P. (9)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 9 / 24



Evaluation of Parallel Algorithms: Amdahl
For the speedup applies then

S(P) =
Tfix

qTfix + (1 − q)Tfix/P
=

1

q + 1−q
P

(10)

Thus the Amdahl’s law holds

lim
P→∞

S(P) = 1/q. (11)

Consequences:
The maximal achievable speedup is then determined purely by the sequential share.

The efficiency strongly decreases, if one nearly wants to reach the maximal speedup.

This achievement led at the end of the 60th to a very pessimistic estimation of the possibilties by parallel
computing.

This has changed first, when it has been recognized, that for most parallel algorithms the sequential
share q decreases with increasing N.

The way out of this dilemma consists in solving with more processors always
larger problems!
We now present three approaches how N can be increased with P.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 10 / 24



Evaluation of Parallel Algorithms: Gustafson

2. Fixed parallel execution time

We determine N from the equation

TP(N,P)
!
= Tfix → N = NG(P) (12)

for given Tfix and then consider the speedup

SG(P) = S(NG(P),P). (13)

This kind of scaling is also called „Gustafson scaling“.

Motivation are for example applications in the area of weather forecast.
Here one has a fixed time slot Tfix that is used to solve a problem as large
as possible.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 11 / 24



Evaluation of Parallel Algorithms: Memory Limitation

3. Fixed memory consumption per processor

Many simulation applications are memory constraint, the memory need grows
as function M(N). According to memory complexity not computing time since
the memory needs determine what problems can be calculated with a
machine.

Assumption: Let us assume, that the parallel computer consists of P identical
processors, that each have memory of size M0, thus the scaling provides

M(N)
!
= PM0 → N = NM(P) (14)

and we consider
SM(P) = S(NM(P),P). (15)

as scaled speedup.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 12 / 24



Evaluation of Parallel Algorithms: Efficiency Limitation

4. Constant Efficiency

We choose N such, that the parallel efficiency remains constant.

We require

E(N,P)
!
= E0 → N = NI(P). (16)

This is denoted as iso-efficient scaling. Obviously is E(NI(P),P) = E0 thus

SI(P) = S(NI(P),P) = PE0. (17)

An iso-efficient scaling is not possible for each parallel system. One does not
necessarily find a function NI(P), that fulfills (16) identical. Thus one can
require on the other side, that a system is scalable exactly if such a function
can be found.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 13 / 24



Evaluation of Parallel Algorithms: Example I

For a deeper understanding of the notions we now consider an example

We want to add N numbers on a hypercube with P processors. The
approach is as follows:

◮ Each has N/P numbers, that are added in the first step.
◮ These P intermediate results are then added in a tree.

We then get for the sequential computing time

Tbest(N) = (N − 1)ta (18)

The parallel computing time is

TP(N,P) = (N/P − 1)ta + ld Ptm, (19)

where ta is the time for the addition of two numbers and tm the time for the
message exchange (we assume, that tm ≫ ta).

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 14 / 24



Evaluation of Parallel Algorithms: Example II
1. Fixed sequential execution time (Amdahl)
If we set Tbest(N) = Tfix then we get, if Tfix ≫ ta, in good approximation

NA = Tfix/ta.

For meaningful processor counts P applies: P ≤ NA.
For the speedup we obtain in the case of NA/P ≫ 1

SA(P) =
Tfix

Tfix/P + ld Ptm
=

P

1 + P ld P tm
Tfix

. (20)

2. Fixed parallel execution time (Gustafson)
Here one obtains

(

N
P

− 1
)

ta + ld Ptm = Tfix =⇒ NG = P
(

1 +
Tfix − ld Ptm

ta

)

. (21)

The maximal usable processor count is again limited: 2Tfix/tm . Is ld Ptm = Tfix ,
then when using more processors than that in every case the maximal
allowed computing time is exceeded.
Despite that we can suppose, that 2Tfix/tm ≫ Tfix/ta holds.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 15 / 24



Evaluation of Parallel Algorithms: Example III
The scaled speedup SG is under the assumption NG(P)/P ≫ 1:

SG(P) =
NG(P)ta

NG(P)ta/P + ld Ptm
=

P

1 + ld P tm
Tfix

. (22)

It applies NG(P) ≈ PTfix/ta.
For the same processor count is then SG greater than SA.
3. Fixed memory per processor (memory limitation)
If the memory demands are M(N) = N, then applies for M(N) = M0P the
scaling

NM(P) = M0P.

We can now use an unlimited number of processors, on the other hand the
parallel computing time increases also unlimited. For the scaled speedup we
get:

SM(P) =
NM(P)ta

NM(P)ta/P + ld Ptm
=

P

1 + ld P tm
M0ta

. (23)

For the choice Tfix = M0ta this is the same formula as SG. In both cases we
see, that the efficiency decreases with P.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 16 / 24



Evaluation of Parallel Algorithms: Example IV

4. Iso-efficient scaling
We choose N such, that the efficiency remains constant, resp. the speedup
grows linearly:

S =
P

1 + P ld P
N

tm
ta

!
=

P
1 + K

=⇒ NI(P) = P ld P
tm
Kta

,

for an arbitrary choosable K > 0. Since NI(P) exists, the algorithms can be
regarded as scalable. For the speedup applies SI = P/(1 + K ).

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 17 / 24



Iso-efficiency Analysis I

We now introduce further a formalism to clarify the principle of iso-efficient
scaling

Goal answering of questions:
„Is this algorithm for matrix multiplication on the hypercube better scalable than
that for fast fourier transform on the array topology“

Problem size: Parameter N has been choosen up to now arbitrary.

N can denote in matrix multiplication either the number of matrix elements or too
the number of elements per row.

In this situation the first case would lead to 2N3/2tf , whilst the second case 2N3tf
for the sequential runtime.

Meaningful comparison of algorithms necessitates invariance of the cost measure
regarding the choice of the parameter for the problem size.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 18 / 24



Iso-efficiency Analysis II

We choose as measure for the costs W of a (sequential) algorithm its execution
time, we therefore define

W = Tbest(N) (24)

itself. This execution time is furthermore proportional to the number of operations
to be executed in the algorithms.

For the degree of parallelism Γ we obtain:

Γ(W ) ≤ O(W ),

since there can not be executed more operations in parallel as there are
operations in total.

Via N = T−1
best(W ) we can write

T̃P(W ,P) = TP(T
−1
best(W ),P),

where we however leave away the˜sign in the following.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 19 / 24



Iso-efficiency Analysis III
We define the overhead as

To(W ,P) = PTP(W ,P)− W ≥ 0. (25)

PTP(W , P) is the time, that a simulation of the sequential program would need on one processor. This is in

every case not smaller than the best sequentail execution time W . The overhead contains additional computing

time because of communication, load imbalance and „superfluous“ calculations.

Iso-efficiency function From the overhead we obtain

TP(W ,P) =
W + To(W ,P)

P
.

thus we obtain for the speedup

S(W ,P) =
W

TP(W ,P)
= P

1

1 + To(W ,P)
W

,

resp. for the efficiency

E(W ,P) =
1

1 + To(W ,P)
W

.

In the sense of an iso-efficient scaling we now ask: How needs W to grow as function of P that the efficiency

remains constant. Because of the formula above this is the case when To(W , P)/W = K , with an arbitrary

constant K ≥ 0. The efficiency is then 1/(1 + K ).

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 20 / 24



Iso-efficiency Analysis IV

A function WK (P) is called iso-efficiency function if it fulfills the equation

To(WK (P),P) = KWK (P)

identical.

A parallel system is called scalable (exactly) iif it has an iso-efficiency
function.

The asymptotic growing of W with P is a measure for the scalability of the
system:
Has for example a system S1 an iso-efficiency function W = O(P3/2) and
a system S2 an iso-efficiency function W = O(P2) then S2 scales worse
than S1.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 21 / 24



Iso-efficiency Analysis V
When is there an iso-efficiency function?

We progress from the efficiency

E(W ,P) =
1

1 + To(W ,P)
W

.

for fixed W and growing P. It holds for each parallel system, that

lim
P→∞

E(W ,P) = 0

as can be seen by the following thoughts: Since W is fixed, also the
degree of parallelism is fixed and then there exists a lower bound for the
parallel computing time: TP(W ,P) ≥ Tmin(W ), this means the calculation
can not be faster than Tmin, without dependance on the number of used
processors. Thus however implies asymptotically

To(W ,P)

W
≥

PTmin(W )− W
W

= O(P)

and therefore the efficiency drops against 0.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 22 / 24



Iso-efficiency Analysis VI

If we consider now the efficiency at fixed P and growing work W , then applies for many (not all!) parallel
systems, that

lim
W→∞

E(W , P) = 1.

Obviously this means reagarding the efficiency formula, that

To(W , P)|P=const < O(W ) (26)

for fixed P the overhead grows less than linear with W . In this case for each P a W can be found such that a
desired efficiency is achieved. Equation (26) ensures such the existance of an iso-efficiency function. For
example the matrix transposition can be encountered as a not scalable system. We will later derive, that the
overhead amounts in this case To(W , P) = O(W ld P). Such no iso-efficiency function can exist.

Optimal parallelisable systems
We want to analyze now the question how iso-efficiency functions have to grow at least. For this we remark
finally, that

TP(W , P) ≥
W

Γ(W )
,

since Γ(W ) (dimensionless) is the maximal count of operations executed synchronously in the sequential

algorithms for effort W . Therefore W/Γ(W ) is a lower bound for the parallel computing time.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 23 / 24



Iso-efficiency Analysis VII
Now there can surely not be executed more operations in parallel than can be executed in total, thus holds
Γ(W ) ≤ O(W ). We want to denote a system as optimal parallelisable, if

Γ(W ) = cW

holds with a constant c > 0. Now applies

TP(W , P) ≥
W

Γ(W )
=

1

c
,

the minimal parallel computing time remains constant. For the overhead we obtain that in this case

To(W , P) = PTP(W , P) − W = P/c − W

and such for the iso-efficiency function

To(W , P) = P/c − W
!
= KW ⇐⇒ W =

P

(K + 1)c
= O(P).

Optimal parallelisable systems such have an iso-efficiency function W = O(P). We remark thus, that a
iso-efficiency function grows at least linear with P.

In the following lectures we will determine the iso-efficiency functions for a series of algorithms, therefore we

relinquish for an extensive example here.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 24 / 24


