
Fundamentals of Parallel Algorithms

Stefan Lang

Interdisciplinary Center for Scientific Computing (IWR)
University of Heidelberg

INF 368, Room 532
D-69120 Heidelberg

phone: 06221/54-8264
email: Stefan.Lang@iwr.uni-heidelberg.de

WS 15/16

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 1 / 29

Topics

Foundations of parallel algorithms

Load balancing

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 2 / 29

Foundations of Parallel Algorithms

Parallelisation approaches for the design of parallel algorithms:
1 Data partitioning: Subdivide a problem into independent subtasks. This

serves for the identification of the maximal possible parallelism.
2 Agglomeration: Control of granularity to balance computational needs

and communication.
3 Mapping: Map processes onto processors. Goal is an optimal tuning of

the logical communication structure onto the machine structure.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 3 / 29

Foundations of Parallel Algorithms: Data Partitioning
Calculations are directly associated to specific data structures.

For each data object certain operations have to be executed, often the
same sequence of operations has to be applied onto different data. Thus
a part of the data (objects) can be assigned to each process.

a[ij]

j

i

Matrix

t_j

Triangulation

Matrix addition: For C = A + B elements cij can be processed completely
in parallel. In this case one would assign each process Πij the matrix
elements aij ,bij and cij .

Triangulation for the numerical solution of partial differential equations:
Here the calculations occur per triangle, that all can be performed at a
time, each process could be assigned thus a partial set of the triangles.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 4 / 29

Foundations of Parallel Algorithms: Data
Dependencies

0 1 2 3 4 i

0

1

2

3

4

j

Data dependencies in the Gauß–Seidel method.

Operations often can not be performed for all data objects synchronously.

Example: Gauß-Seidel iteration with lexicographic numbering.
Calculation at grid point (i, j) depends on the result of calculations at the grid
points (i − 1, j) and (i, j − 1).

The grid point (0, 0) can be calculated without any prerequisite.

All grid points on the diagonal i + j = const can be processed in parallel.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 5 / 29

Foundations of Parallel Algorithms: Funct. Partitioning
Functional partitioning

For different operations on same data.
Example compiler: This performs the steps: lexical analysis, parsing,
code generation, optimization and assembling. Each step can be
assigned to a separate process. („macro pipelining“).

Irregular problems

f(x)

No a-priori partitioning possible.
Calculation of the integral of a function f (x) by adaptive quadrature.
Intervall choice depends on f and is determined during the calculation.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 6 / 29

Foundations of Parallel Algorithms: Agglomeration I

Partition step determines the maximal possible parallelism.

Realisation (in the sense of a data object per process) is in most cases
not meaningful (communication overhead).

Agglomeration: Mapping of several subtasks to one process, thus the
communication is collected for these subtasks in as less as possible
messages.

Reduction of number of messages to sent, further savings for data locality

As granularity of a parallel algorithm we denote the relationship:

granularity =
number of messages

computing time
.

Agglomeration reduces also the granularity.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 7 / 29

Foundations of Parallel Algorithms: Agglomeration II

Process Pi

Grid based calculations

Calculations are performed for all grid points in parallel.

Assignment of a set of grid points to a process

All modifications on grid points can be executed under specific
circumstances simultaneously. There are thus no data dependencies.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 8 / 29

Foundations of Parallel Algorithms: Agglomeration III

A process owns N grid points and has thus to execute O(N) computing
operations.

Only for grid points at the boundary of the partition a communication is
needed.

Therefore it is only for in total 4
√

N grid points communication necessary.

Relationship of communcation needs towards computing needs is thus in
the order of O(N−1/2)

Increase of the number of grid points per processor shrinks the needs for
communication relatively to the calculations to an arbitrary small size
(surface-to-volume effect).

How has the agglomeration to be performed?

4

10

8

9

2

1

4

10

8

9

2

1

4

10

8

9

2

1

(a)

10

2

3
9 4

7

7
1

(b) (c)

1 Uncoupled calculations
2 Coupled calculations
3 Coupled calculations with time

dependency

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 9 / 29

Foundations of Parallel Algorithms: Partitioning (a)

(a) Uncoupled calculations

Calculation consists of subproblems, that can be calculated completely
independent of each other.

Each subproblem may need different computing time.

Representable as set of nodes with weights. Weights are a measure for
the required computing time.

Agglomeration is trivial. One assigns the nodes one by one (e.g. ordered
by its size or randomly) each to the process, that has the least work (this
is the sum of all its node weights).

Agglomeration gets more complicated if the number of nodes is only
known during the calculation (as with the adaptive quadrature) and/or the
node weigths are not known a-priori (as e.g. at depth first search).

→ Solution by dynamic load balancing
◮ central: a process makes the load balancing
◮ decentral: a process gets work of others, that have to much

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 10 / 29

Foundations of Parallel Algorithms: Partitioning (b)

4

10

8

9

2

1

4

10

8

9

2

1

4

10

8

9

2

1

(a)

10

2

3
9 4

7

7
1

(b) (c)

(b) Coupled calculations

Standard model for static, data local calculations.

Calculation is described by an undirected graph.

First a calculation per node is required, whose computing time is
modelled by the node weight. Then each node exchanges data with its
neighbor nodes.

Count of data to be sent is proportional to the associated edge weight.

Uniform graph with constant weights: trivial agglomeration.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 11 / 29

Foundations of Parallel Algorithms: Partitioning

General graph G = (V ,E) for P processors:
node set V is to partititon such, that

P
⋃

i=1

Vi = V , Vi ∩ Vj = ∅,
∑

v∈Vi

g(v) =
∑

v∈V

g(v)/|V |

and the separator costs
∑

(v ,w)∈S

g(v ,w) → min, S = {(v ,w) ∈ E |v ∈ Vi ,w ∈ Vj , i 6= j}

are minimal.

This problem is denoted as graph partitioning problem.

NP–complete, already in the case of constant weights and P = 2 (graph
bisection) NP–complete.

There exist good heuristics, that generate in linear time (concerning
number of nodes, O(1) neighbors) a (reasonably) well partitioning.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 12 / 29

Foundations of Parallel Algorithms: Partitioning (c)
4

10

8

9

2

1

4

10

8

9

2

1

4

10

8

9

2

1

(a)

10

2

3
9 4

7

7
1

(b) (c)

(c) Coupled calculations with temporal dependency
Model is a directed graph.
A node can only be calculated, if all nodes of ingoing edges are
calculated.
When a node is calculated, the result is passed further over the outgoing
edges. The computing time corresponds to the node weights, the
communication time correlates to the edge weights.
In general very difficult to solve problem.
Theoretically not „more difficult than graph partitioning“ (also
NP–complete)
Practically no simple and good heuristics are known.
For special problems, e.g. adaptive multigrid methods, one can however
find good heuristics.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 13 / 29

Foundations of Parallel Algorithms: Mapping
Mapping: Map the processes on to processors

Set of processes Π form a undireced graph GΠ = (Π,K): Two processes
are connected with each other, if they communicate together (edge
weights could model the extent of the communication).
Likewise the set of processores P with the communication network forms
a graph GP = (P,N): Hypercube, array.
Be |Π| = |P| and the following question has to be asked:
Which process shall be executed on which processor?
In general we want to perform the mapping in such a way, that processes
that communicate with each other are mapped onto neighboring or near
processors.
This optimization problem is denoted as graph assignment problem
This is again NP–complete (unfortunately).
Contemporary multi processors possess very powerful communication
networks: In cut-through networks the transmission time of a message is
practically distant independent.
The problem of optimal process placement is thus not preferential any
more.
A good process placement is nevertheless important if many processes
communicate synchronously with each other.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 14 / 29

Foundations of Parallel Algorithms: Load Balancing

Situation 1: Static distribution of uncoupled problems

Task: Partitioning of accumulated work on to the different processors.

This corresponds to the agglomeration step at which we have again
combined the subproblems, that are processable in parallel.

The measure for the work is hereby known.

Bin Packing
◮ Initially all processors are empty.
◮ Nodes, that are available either in arbitrary sequence or sorted (e.g.

correspoinding to their size), are packed after each other on the processor
that has currently the least work.

◮ This also functions dynamically, if new work is generated in the calculation.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 15 / 29

Foundations of Parallel Algorithms: Load Balancing
Recursive Bisection

◮ Each node is assigned a position in space.
◮ The space is divided orthogonal to the coordinate system such, that in each

part is about the same amount of work.
◮ This approach is then recursively applied onto the generated subvolumes

with alternating coordinate direction.

equal work

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 16 / 29

Foundations of Parallel Algorithms: Load Balancing
Situation 2: Dynamic distribution of uncoupled problems

activeidle
no work

anymore

work fixed
time / amount

process
requests

no

get request,

answer: have nothing!
get request, select process

and send request

process requests

get work

request

share work and send (blocking)

activity/state diagram

The measure for the work is not known.

Process is either active (performs works)
or idle (without work).

During work division the following
questions have to be considered:

◮ What do I want to pass away? For
travelling-salesman problem e.g.
preferably nodes from the stack, that
reside far low.

◮ How much do I want to pass away?
E.g. half of the work (half split).

Beside the work sharing further
communication can take place (Forming of
the global minimum for branch-and-bound
during travelling-salesman).

Furthermore the problem of termination
recognition exists.
When are all processes idle?

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 17 / 29

Foundations of Parallel Algorithms: Load Balancing
Which idle process shall be addresses next?
Different selection strategies:

Master/Slave (Worker) principle
A process distributes work. It knowns, who is active resp. free and
forwards the request. It controls (since it knowns, who is idle) also the
termination problem. Disadvantage this method does not scale.
Alternatively: hierarchical structure of masters.
Asynchrones Round Robin
The process Πi has a variable targeti . It sends its requsts to Πtargeti and
sets then targeti = (targeti + 1)%P.
Globales Round Robin
There is only a single global variable target. Advantage: no synchronous
request onto the same process. Disadvantage: access on the global
variable (what e.g. a server process can do).
Random Polling
Each chooses randomly a process with same probabilty (→ parallel
random generator, watch out at least for the distribution of seeds). This
approach provides a uniform distribution of the request and needs no
global resource.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 18 / 29

Foundations of Parallel Algorithms: Load Balancing
Graph partitioning
Consider a Finite-Element mesh:

It consists of triangles T = {t1, . . . , tN} with

t̄i ∩ t̄j =

∅
a node
an edge

In the method of Finite-Elements the work is associated to the nodes.
Alternatively one can also put a node in each triangle and connect these
with edges over the triangle neighbors. Now the evolving dual graph can
be considered.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 19 / 29

Foundations of Parallel Algorithms: Load Balancing
Graph and according dual graph

The partitioning of the graph to processors leads to the graph partitioning
problem. Therefore we define the following notation:

G = (V ,E) (Graph or dual graph)

E ⊆ V × V symmetric (undirected)

The weighting functions

w : V −→ N (computing demand)

w : E −→ N (communication)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 20 / 29

Foundations of Parallel Algorithms: Load Balancing
The total work

W =
∑

v∈V

w(v)

Furthermore be k the number of partitions to be constituted, where holds
k ∈ N and k ≥ 2. We seek now the partition mapping

π : V −→ {0, . . . , k − 1}
and the associated edge separator

Xπ := {(v , v ′) ∈ E | π(v) 6= π(v ′)} ⊆ E

The graph partitioning problem consists of finding the mapping π such that the
cost function (communication costs)

∑

e∈Xπ

w(e) → min

gets minimal under the restriction (equal work balancing)
∑

v ,π(v)=i

w(v) ≤ δ
W
k

for all i ∈ {0, . . . , k − 1}

where δ determines the tolerated imbalance (δ = 1.1 10% deviation).
Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 21 / 29

Foundations of Parallel Algorithms: Load Balancing
Calculation costs dominate communication costs. Otherwise the
partitioning might eventually be not necessary because of the high
communication costs. This is albeit only a model for the run time!
For binary partitioning one speaks about the graph bisection problem. By
recursive bisection 2d -way partitionings can be generated.
Problematically the graph partitioning is NP-complete for k ≥ 2.
Optimal solution thus would dominate the original calculation as parallel
overhead and is not acceptable.

→ Necessity of fast heuristics.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 22 / 29

Foundations of Parallel Algorithms: Load Balancing
Recursive coordinate bisection(RCB)

One needs the positions of the nodes in space (for Finite-Element
applications these exist).
Up to now we have seen the methods under the name recursive
bisection.
This time the problem is coupled. Hence it is important, that the space, in
whose coordinates the bisection is performed, coincides with the space,
in which the nodes reside.
In the picture this is not the case. Two nodes may be near each other in
space, a coordinate bisection does not make sense since the points here
are not coupled, thus a processor has no advantage of storing both.

Counter example for application of RCB
Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 23 / 29

Foundations of Parallel Algorithms: Load Balancing
Rekursive Spectral Bisektion(RSB)
Here the positions of nodes in space are not needed. One constitutes first the
Laplacian matrix A(G) for the given graph G. This is defined in the following
way:

A(G) = {aij}|V |
i,j=1 with aij =

degree(vi) i = j
−1 (vi , vj) ∈ E
0 otherwise

1 2

3

4 5

1 2 3 4 5

1

2

3

4

5

−1 −1 −1

−1 −1 −1

−1 −1 −1

−1 0 −1 3 −1

−1 −10

4

0

3

3−1

3

−1

0

graph and related Laplacian matrix

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 24 / 29

Foundations of Parallel Algorithms: Load Balancing
Then solve the eigen value problem

Ae = λe

The smallest eigen value λ1 equals zero, since with e1 = (1, . . . ,1)T applies
Ae1 = 0 · e1. The second smallest eigen value λ2 however is not zero, if the
graph is connected.
The bisection now is performed by means of the components of the eigen
vector e2, one builds for c ∈ R the two index sets

I0 = {i ∈ {1, . . . , |V |} | (e2)i ≤ c}
I1 = {i ∈ {1, . . . , |V |} | (e2)i > c}

and the partition mapping

π(v) =

{

0 if v = vi ∧ i ∈ I0
1 if v = vi ∧ i ∈ I1

Tough one chooses c such that the work is equally distributed (median).

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 25 / 29

Foundations of Parallel Algorithms: Load Balancing

Kerninghan/Lin

Iteration method, that improves a given partitioning under consideration
of the cost functional.

We restrict ourselves to bisection (k-way extension is possible) and
assume the node weights as 1.

Furthermore the count of nodes shall be even.

The method of Kerninghan/Lin is mostly used in combination with other
methods.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 26 / 29

Foundations of Parallel Algorithms: Load Balancing KL
i = 0; | V | = 2n;
// Generate Π0 such, that equal distribution is given.
while (1) { // iteration step

V0 = {v | π(v) = 0};
V1 = {v | π(v) = 1};
V0

′ = V1
′ = ∅;

V̄0 = V0;
V̄1 = V1;
for (i = 1 ; i ≤ n ; i++)
{

// choose vi ∈ V0 \ V0
′ und wi ∈ V1 \ V1

′ such, that∑
e∈(V̄0×V̄1)∩E w(e) −

∑
e∈(V0

′′×V1
′′)∩E w(e) → max

// where
V0

′′ = V̄0 \ {vi} ∪ {wi}
V1

′′ = V̄1 \ {wi} ∪ {vi}
// set
V̄0 = V̄0 \ {vi} ∪ {wi};
V̄1 = V̄1 \ {wi} ∪ {vi};

} // for
// rem.: max can be negative, thus worsening of the separator costs
// result at this point: sequence of pairs {(v1, w1), . . . , (vn, wn)}.
// V0, V1 have not been altered.
// Now choose a partial sequence up to m ≤ n, that performs a
// maximal improvement of the costs („hill climbing “)
V0 = V0 \ {v1, . . . , vm} ∪ {w1, . . . , wm};
V1 = V1 \ {w1, . . . , wm} ∪ {v1, . . . , vm};
if (m == 0) break; // end

} // while

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 27 / 29

Foundations of Parallel Algorithms: Load Balancing
Multilevel k-way partitioning

1 Agglomeration of nodes of the starting graph G0 (e.g. random or by
means of heavy edge weight) in clusters.

2 These clusters define the nodes in a coarsened graph G1.
3 By recursion this behaviour leads to a graph Gl .

G_0 cluster

coarsening

0
1 2

3

4

5
6

7

G_1

0 1 2

3

4

5
6

7

improve

interpolate

recursive
interpolate

G_l
(partitioning)

improve

partitioning

by k−way KL

1 Gl is now partitioned (e.g. RSB/KL).
2 After that the partition function is

interpolated onto the finer graph Gl−1.
3 This interpolated partitioning function

can now be improved again via KL
recursively and then be interpolated
onto the next finer graph.

4 In this way we continue recursively up
to the starting graph.

5 The implementation is then possible in
O(n) steps. The method provides
qualitatively profound partitions.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 28 / 29

Foundations of Parallel Algorithms: Load Balancing

Further problems

Further problems for the partitioning are

Dynamic repartitioning: The graph partitioning shall be changed with
the least possible local rebalancing to regain work balance.

Constraint partitioning: From other algorithmic parts additonal data
dependencies exist.

Parallelisation of partitioning methods: Is necessary for large data
sets (Here finished software exists)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 29 / 29

