Algorithms for Dense Matrices Il

Stefan Lang

Interdisciplinary Center for Scientific Computing (IWR)
University of Heidelberg
INF 368, Room 532
D-69120 Heidelberg
phone: 06221/54-8264
email: St ef an. Lang@ wr . uni - hei del ber g. de

WS 15/16

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 1/25

Topics

Data parallel algorithms for dense matrices
@ Matrix-Vector Multiplication
@ Matrix-Matrix Multiplication

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 2/25

Matrix-Vector Multiplication

Compute y = Ax, matrix A € RN*M and vector x ¢ RM

@ Different possibilities for data partitioning

@ Distribution of the matrix and the vector have to fit together

@ Distribution of the result vector y € RN same as of input vector x
Example:

@ Matrix is blockwise distributed onto an array topology

@ Input vector x is correspondingly distributed blockwise across the
diagonal processors

@ The processor array is quadratic

@ \ector segment Xq is needed in each processor column and is therefore
to copy in each column (one-to-all).

@ Local computation of the product y, g = Ap qXg-

@ Complete segment yj, results first from the summation yp = 3, Yp q-
(further all-to-one communication)

@ Result can immediately used for further matrix-vector multiplications

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 3/25

Matrix-Vector Multiplication: Partitioning

Partitioning for the Matrix-Vector product

X1 X2 X3

Ao,0 Yo Ao,1 Yo Ao,2 Yo Ao,3
Xo X2 X3

Y1 A0 A1l Y1 A1z Y1 A1z
Xo X1 X3

Y2 Az Y2 Az 1 A2z Y2 Az 3

Matrix-Vector Multiplication: Parallel Runtime

Parallel runtime for a N x N matrix and v/P x v/P processors with cut-through

communication networks:

N N \?
Tp(N,P) = <ts+th+tw 7)ldﬁ+ <\/5) 2t;

local matrix-vector

Distribute x
across column

N
+ (ts +th+ty—= | ldVP =
<S " \FP>

reduction
(tf < tw)

2

N N
[dvVP(ts +th)2 + —= Id VP2t, + —2t
(s h) \/ﬁ W 5) f

For fixed P and N — oo the communication share get arbitrary small, thus an
iso-efficiency function exists, the algorithm is scalable.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 5/25

Matrix-Vector Multiplication: Work/Overhead

Let us compute work and overhead:
Recalculate to the work W':

W = NZ22t (seq. runtime)
N YW
2t;
vW 2t W
Te(W,P) = 1dVP(ts +t)2 + — ldVP X + —
P(a) (S+h)+\/ﬁ \/2_tf+P

Overhead:
To(W,P)=PTp(W,P)—-W =

—\/_\/_Id\/_jtiJrPld\/_(terth)z

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 6/25

Matrix-Vector Multiplication: Iso-Efficency
and now the iso-efficiency function:

Iso-efficiency (To(W,P) £ KW): To has two terms.

For the first we achieve

2tW
WVPIdVP—— = KW
VW VPId VR

_ 2 4
— W =P(dVP) e

and for the second

PIdVP(ts + th)2 = KW
(ts +th)2

~— W=PldVP K

thus W = O(P(Id v/P)?) is the desired iso-efficiency function.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 7125

Matrix-Matrix Multiplication

Algorithm of Cannon

It is to calculate C = A - B.

@ The N x N matrices A and B, that are to multiply, are blockwise
distributed onto a 2D-array topology (vP x v/P)

@ For practical reasons should be the result C again be stored in the same
partitioning.

@ Process (p,q) has thus

Cpq = ZAp,k "Bk,
k

to calculate, needs therefore block row p of A and block column q of B.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 8125

Matrix-Matrix Multiplication

The two phases of Cannon’s algorithm are

© Alignment phase: The blocks of A are shifted in each row cyclic to the left,
until the diagonal blocks reside in the first column. Corresponding one
shifts the blocks of B in the columns to above, until all diagonal blocks
reside in the first row.
After the alignment phase processor (p, q) has the blocks

Ap (a+p) % VP (row p shifts p times to the left)
——
Biora)% P (column g shifts g time to above).
——

@ Computing phase: Obviously now each process stores two fitting blocks,
that it can multiply. Are the blocks of A in each row of A shifted for one
position to the left and the one of B in each column to the above, then
each owns again two fitting blocks. After v/P steps the result is ready.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 9/25

Cannon’s Algorithm
@ Is based on blockwise partitioning of the matrices
@ Setup phase
» Rotation of the matrizen A and B
@ lteration over /p steps
» Compute locally block matrix product
» Shift A horizontally and B vertically

Ci2|Cis A| A Biz|Bis
Cp|Co| = As|Ax| X Ba| By

Css As By
C A B

Stefan Lang (IWR) Simulation on High-Performance Computers

WS 15/16 10/25

Cannon’s Algorithm - Rotation

» Anfangszustand:

Asp|Ars Bi;|Byy
Az | Az By | By
A33 B33

* Verdrehen: Rotieren der i. Zeile (Spalte) von A (B) um i-
Schritte:

AE

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 11/25

Cannon’s Algorithm - Iteration

1 Cu|Cs B8] C,, = A,B;,
Cp|Cu| = X By
Cs e
C B
2 Colc,s By Ci= AyByyt
’ Cp|Cos| = X B3| By] A1ZBZ1
Cys By By
3 CulCrr B,lBs Ci1= AyByy +
= AB, +
Cp|Cos| = X By By 12-21
Cyy By, A13B31

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 12/25

Cannon’s Algorithm - Performance Analysis

* A, Bverdrehen: 28 (tuny * tuordN?/P)
* Iteration (s-mal):
- dgemm: 2 thop * (n/8)3 =2 * t, * n¥p'S
- A, Brollen: 2™ (tstartup * tworadN?/P)
* Gesamt: t,0n(P) = Agianyp™S + Ayora™N/s + 215, *N3/p

« Effizienz =2 t55, "N*/ (P ™ teannon(P))
=1/ (2’[st‘.ﬂnup*(S/N)3 + 2t,0rg"SIN + tﬂop)
=1/0(1 + sqrt(p) / N))
« Effizienz — 1, wenn (N/s) — «
- N/s=N/sqrt(p) = sqrt(Daten pro Prozessor)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 13/25

Cannon with MPI (Init)

/* Baue Gitter und hole Koordinaten */
int dims[2], periods[2] = {1, 1};
int mycoords[2] ;

dims[0]
dims[1]

= sqrt(num_procs) ;

= num procs / dims[0];

MPI_Cart_create (MPI_COMM WORLD, /* kollektiv */
2, dims, periods,
0, &comm 2d) ;

MPI_Comm_rank (comm_2d, &EyZdrank);

MPI_Cart coords(comm_ 2d, my2drank, 2, mycoords);

/* Lokale Blécke der Matrizen */
double *a, *b, *c;

/* Lade a, b und c entsprechend der Koordinaten */

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 14/25

Cannon with MPI (Rotate)

/* Matrix-Verdrehung A */
MPI_Cart shift(comm_2d, 0, -mycoords[0],
&shiftsource, &shiftdest);
MPI_Sendrecv_replace(a, nlocal*nlocal, MPI_DOUBLE,
shiftdest, 77, shiftsource, 77,
comm_2d, &status);

/* Matrix-Verdrehung B */
MPI_Cart shift(comm_2d, 1, -mycoords[1l],
&shiftsource, &shiftdest);
MPI_Sendrecv_replace(b, nlocal*nlocal, MPI_DOUBLE,
shiftdest, 77, shiftsource, 77,
comm_2d, &status);

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16

15/25

Cannon with MPI (lteration)

/* Finde linken und oberen Nachbarn */
MPI_Cart shift(comm 2d, 0, -1, &rightrank, &leftrank);
MPI_Cart_ shift(comm 2d, 1, -1, &downrank, &uprank);

for (i=0; i<dims[0]; i++)
{

dgemm(nlocal, a, b, ¢); /* c= c + a * b */

/* Matrix A nach links rollen */

MPI_Sendrecv_replace(a, nlocal*nlocal, MPI_DOUBLE,
leftrank, 77, rightrank, 77,
comm_2d, &status);

/* Matrix B nach oben rollen */

MPI_Sendrecv_replace (b, nlocal*nlocal, MPI_DOUBLE,
uprank, 77, downrank, 77,
comm_2d, &status);

}

/* A und B zuriick in Ursprungs-Zustand */

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 16/25

Cannon - Practical Aspects

@ Efficient, but not simple generalisation, if

» Matrices are not quadratic
» Dimensions are not without rest divisible by p
» Other matrix partitionings are needed

@ Iso-efficiency function of Cannon’s Algorithmus: O(P3/?),
N/v/P = const — Efficiency remains constant for fixed block sizes per
processor and increasing processor count

@ Dekel-Nassimi-Salmi algorithm enables the usage of N°® processors
(Cannon N?) with better iso-efficiency function.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 17125

Standard Libraries for Linear Algebra

ATLAS, BLITZ (expression templates), ISTL (generic programming),

ScalaPack (classical package), Trilinos (huge code family),
http://ww. netlib.org

Scalable Linear Algebra Package

Parallel BLAS

Global
Lokal

BLA Communication|Subprograms

Linear Algebra PACKage

Basic Linear Algebra Subprograms (Level 1-3)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 18/25

Matrix-Matrix Multiplication: Iso-efficiency Analysis
Consider the corresponding iso-efficiency function.
Sequential runtime :

W = Ts(N) = N2

1

W 3
=N=|(-—
(z)
send/recv A/B

To(N,P) = (x/ﬁ—l) <ts+th+th—2> o

Parallel runtime:

P

alignment

+x/5< (\Nﬁ)szn + <ts + th +tWNFZ) 4>

multiplic. of a block
N2 N3
~ P(ts +th)8 + —tw8 + —2t
VP (ts + th) +\/5W + 52

Wi 8w W
P

%

Te(W,P) = \/E(ts+th)8+ﬁ(2tf)%+

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 19/25

Matrix-Matrix Multiplication: Iso-efficiency Analysis

Overhead:
To(W,P) = PTe(W,P) — W = P%(ts+th)8+fw(8“;
2t

Result:
@ Thusis W = O(P3%/?),

1/3
@ Because of N = (zﬂtf) applies N/v/P = const

@ Thus for fixed block size in each processor and increasing processor
count the efficiency keeps constant.

@ If we restrict in the algorithm of Cannon to 1 x 1 blocks per processor,
thus vP = N, then we can use for the required N3 multiplications only N2
processors.

@ This is the reasion for the iso-efficiency function of order P3/2,

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 20/25

Matrix-Matrix Multiplication: Dekel-Nassimi-Salmi-Alg.
Dekel-Nassimi-Salmi-Algorithm

Stefan Lang (IWR) Simulation on High-Performance Computers

Now we consider an algorithm that renders the usage of up to N3
processors for a N x N matrix possible.

Given are then N x N matrices A and B as well as a 3D array of
processors of dimension P1/3 x P1/3 x p1/3,

The processors are addressed by the coordinates (p,q,r).

To calculate the block Cp, 4 of the result matrix C via

w\»—-

Cpq_ Z APT Bf,q
r=0

we use PY/3 processors, in detail processor (p,q,r) is exactly
responsible for the product Ay - By g.

Now is still to decide, how the input and result matrices shall be
distributed.

Both A and B are partitioned into P/3 x P1/3 blocks of size 5V x 5is
Ap q and By 4 is stored in the beginning in processor (p, g, 0), also the

result C, 4 shall reside there.
The processors (p,q,r) for r > 0 are only used temporarily.

WS 15/16

@)

21/25

Matrix-Matrix Multiplication: Dekel-Nassimi-Salmi Alg.

Distribution of A, B, C for P1/3 = 4 (P=64).

Ir.
P4 g AR3) AR3) AR3) AR B32
,,,,,,,,,,,,,,,,,,,, ' A@2| A2} AR ACD) “ B8
00 01 /02 03 ARL ARY AL ARY 7 ¢ 2
1’0 1’1 1’2 1’3 Q(ZE A(2,0) A(2,0) A(2,0) =2 B(2) b0
20 21 /22 /23 L L L L B(1
- ¢=0 1 2 3
30 31 32 /33 — [
L[
Partitioning of the blocks of A and Distribution of A and B for the
B (at the beginning) and C (at the multiplication
end)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 22/25

Matrix-Matrix Multiplication: Dekel-Nassimi-Salmi Alg.

@ That now each processor (p,q,r) can perform ,its“ multiplication
Apr - Br g, the involved blocks of A and B first have to be moved to the
right position.

@ All processors require (p, *,r) the block A, ; and all processors (x,q,r)
the block By 4.

@ The distribution is achieved in the following way:

Processor (p,q,0) sends A, 4 to processor (p, d,q) and sends
then (p,q,q) the Ap 4 to all (p, *, q) via a one-to-all
communication on P1/3 processors. Corresponding sends
(p,d,0) the By 4 to processor (p, g, p), and this distributed then

to (*,q,p).

@ After the multiplication in each (p, q,r) the results of all (p, g, %) are still to
collect in (p, g, 0) via a all-to-one communication on P/3 processors.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 23/25

Matrix-Matrix Multiplication: Dekel-Nassimi-Salmi Alg.
Let us analyse the method in detail (3D-cut-through network):

1
3
W= Te(N)=N%2t =N= (2
2t
Ap,q U.
Bp,q AB
N V2 ~= N \?2 1~
To(N,P) = [ts+thdtw(— 2 4 tsHth+tu(—) |ldPT 2
P3 P3
(p,9,0)—(p,q,4),(p,d.p) one-to-all
N2 N2
+ (—1> 2t + (ts Ft + (—1)) IdP3 ~
P3 P3
N———
multiplication

all-to-one (tf < tw)

2 3
~ 31dP3(ts +tn) + N—23IdP%tW + N?ztf
3

Te(W,P) = 3IdP3 W W
(2tf)3 P
To(W,P) = PIdP33(ts +1t,) + WiP3Idpi W
(th)3

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 24/25

Matrix-Matrix Multiplication: Dekel-Nassimi-Salmi Alg.

@ From the second term of To (W, P) we approximate the iso-efficiency

function:
W3PsIdP3 3tW2 — KW
(2tr)3
— Wi-pigpi_>v
(2t)3K
— W:P(IdP%)SLth.
412K 3

@ Thus we achieve the iso-efficiency function O(P(Id P2)3) and therefore a
better scalability than for Cannon’s algorithm.

@ We have always assumed, that the optimal sequential complexity of the
matrix multiplication is N3. The algorithm of Strassen has however a
complexity of O(N2-87),

@ For an efficient implementation of the multiplication of two matrix blocks
on a processor one has to ensure cache efficiency.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 25/25

