
Particle Methods I + II

Stefan Lang

Interdisciplinary Center for Scientific Computing (IWR)
University of Heidelberg

INF 368, Room 532
D-69120 Heidelberg

phone: 06221/54-8264
email: Stefan.Lang@iwr.uni-heidelberg.de

WS 15/16

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 1 / 36

Topics

Particle methods

Problem formulation

Standard method

Parallelisation

Improvement of the method

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 2 / 36

Particle Methods

Task formulation:

With particle methods one simulates the movement of N particles (or
bodies) that move under the influence of a force field.

The force field itself depends again on the position of the particles.

The particles are characterised by point masses m(x , y , z) and move with
velocity v(x , y , z) in the system.

v(x,y,z)

m(x,y,z)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 3 / 36

The N-Body Problem I
N-Body problem:

Given being N point shaped masses m1, . . . ,mN at positions
x1, . . . , xN ∈ R3.
The gravitational force, excerted from body j onto body i , is given by
Newton’s law of gravitation

Fij =
γ mimj

‖xj − xi‖2
︸ ︷︷ ︸

strength

· xj − xi

‖xj − xi‖
︸ ︷︷ ︸

unit vector of xi in
direction xj

(1)

✟
✟
✟✯

r

mi Fij

r

mj

The gravitational force can be written as potential gradient:

Fij = mi
γ mj(xj − xi)

‖xj − xi‖3 = mi ∇
(

γ mj

‖xj − xi‖

)

= mi ∇φj(xi). (2)

φy (x) =
γ m

‖y−x‖ is denoted gravitational potential of the mass m at position

y ∈ R3.
Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 4 / 36

The N-Body Problem II

The movement equations of the considered N bodies are a consequence
of the law force=mass×acceleration:

für i = 1, . . . ,N

mi
dvi
dt = mi ∇

∑

j 6=i

γ mj

‖xj − xi‖

 (3)

dxi
dt = vi (4)

Here is vi(t) : R → R3 the velocity of body i and xi(t) : R → R3 the
position in dependence of time.

We get thus a system of ordinary differential equations of dimension 6N
(three space dimensions). For its solution are still initial conditions for
position and velocity required:

xi(0) = x0
i , vi(0) = v0

i , for i = 1, . . . ,N (5)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 5 / 36

Numerical Computation

The integration of the movement equations (3) and (4) is performed
numerically, since only for N = 2 analytical solutions are possible
(Kegelcuts, Kepler’s laws).

The simplest method is the explicit Euler method:

Discretisation in time:
tk = k ·∆t ,
vk

i = vi(tk),
xk

i = xi(tk).

vk+1
i = vk

i +∆t · ∇
(
∑

j 6=i

γ mj

‖ xk
j − xk

i
︸ ︷︷ ︸

„explicit“

‖

)

xk+1
i = xk

i +∆t · vk
i

for i = 1, . . . ,N (6)

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 6 / 36

Problematique of Force Evaluation

Surely there are better methods than the explicit Euler method, that only
has a convergence order of O(∆t), for the parallelisation this does not
have a large impact, since the structure of other schemes is similar.

The problem of force evaluation:
In the force calculation the force of a body i depends on the position of all
other bodies j 6= i . The effort for a force evaluation (that is at least once
necessary for each time step) increases such as O(N2). In practical
applications N can be in the range 106, . . . ,109, which means an
enourmous computing effort.

The main point of this chapter is therefore the presentation of improved
sequential algorithms for fast force evaluation. These calculate the forces
approximately with an effort of O(N log N) (There are methods with a
complexity of O(N) too, that we leave away for time reasons).

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 7 / 36

Parallelisation of the Standard Method
The O(N2) algorithm is quite simple to parallelise. Each of the P processors gets
N
P bodies. To calculate the forces for all its bodies, the processor needs all other
bodies. Herefore the data is shifted cyclic once through a ring topology.
Analyse:

TS(N) = c1N2

TP(N,P) = c1P
(N

P
·

N
P

︸ ︷︷ ︸

block p
with q

)

+ c2P
N
P

︸ ︷︷ ︸

communication

=

= c1
N2

P
+ c2N

E(P,N) =
c1N2

(

c1
N2

P + c2N
)

P
=

1
1 + c2

c1
· P

N

constant efficiency for N = O(P).

Therefore is the iso-efficiency function because of W = c1N2

W (P) = O(P2)

(of course in relation to the sub-optimal standard algorithm).

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 8 / 36

Fast Multipole Methods

Fast Multipole Methods:

The first basic idea has been published by Pincus und Scherega in 1977.
Essential idea was the representation of a group of particles by a
abstraction called pseudo particle. This represents the group properties
and thus the resulting potential. The relationship with another particle
group can then be calculated with a single multipole expansion.

A second concept is the hierarchical coarsening of space in separate
sub-areas.

Both methods have been combined by Appel, 1985 and Barnes and Hut,
1986 within a single algorithm. The effort has a complexity of O(NlogN).

The fast multipole method has been published in 1987 by Greengard and
Rokhlin. To both mentioned ideas they further introduce a local expansion
of potentials. In specific cases, e.g. for uniform particle distribution, the
effort reduces to O(N).

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 9 / 36

Fast Summation Methods I
Accelerated method for force evaluation:

We consider the figured cluster of bodies: M mass points be contained in
a circle around z with radius r . We evaluate the potential φ of all mass
points in point x with ‖z − x‖ = c > r .

rz

x point of evaluation

c

|z−x| = c > r

xi

|xi−z| < r

Let us consider first a mass point at position ξ with ‖ξ − z‖ < r . The
potential of mass in ξ be (the multiplicative factor γm is neglected)

φξ(x) =
1

‖ξ − x‖ = f (ξ − x).

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 10 / 36

Fast Summation Methods II

The potential depends only on the distance ξ − x .
Now we insert the point z and develop in a taylor series around (z − x)
up to order p (do not interchange with processors):

f (ξ − x) = f ((z − x) + (ξ − z)) =

=
∑

|α|≤p

Dαf (z − x)
|α|!

(ξ − z)|α| +
∑

|α|=p

Dαf (z − x + θ(ξ − z))
|α|!

(ξ − z)|α|

︸ ︷︷ ︸

remainder term

for a θ ∈ [0,1]. Important is the separation of variables x and ξ.

The size of the error (remainder term) depends on p, r and c.

How can the series expansion be used to accelerate the potential
evaluation?

Herefore we assume that the evaluation of the potential of M masses is to
be computed at N points, which normally would require O(MN)
operations.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 11 / 36

Fast Summation Methods III

For the evaluation of the potential at the position x we calculate

φ(x) =

M∑

i=1

γ miφξi (x) =
M∑

i=1

γ mi f ((z − x) + (ξi − z)) ≈

≈
(taylor series up

to order p)

M∑

i=1

γ mi

∑

|α|≤p

Dαf (z − x)
|α|!

(ξi − z)|α| =

=
(permute sum)

∑

|α|≤p

Dαf (z − x)
|α|!

(
M∑

i=1

γ mi(ξi − z)|α|

︸ ︷︷ ︸

=: Mα ,
independent of x !

)

=

=
∑

|α|≤p

Dαf (z − x)
|α|!

Mα

The calculation of coefficients Mα requires once O(Mp3) operations.

Are the Mα known, then a evaluation of φ(x) costs O(p5) operations.

For evaluation at N points we get such the total complexity of O(Mp3 + Np5).

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 12 / 36

Fast Summation Methods IV

It is clear that the potential, calculated in this way, is not exact. The
algorithm only makes sense, if the error can be controlled such that it is
neglectable (e.g. smaller as the discretization error).

A criteria for error control provides the error estimation:

φξ(x)−
∑

|α|≤p
Dαf (z−x)

|α|! (ξ − z)|α|

φξ(x)
≤ c(2h)p+1,

with r
c ≤ h < 1

4 . For the case c > 4r the error reduces by (1/2)p+1.
The approximation is then the more accurate

◮ the smaller r
c

◮ the larger the degree of expansion p.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 13 / 36

Gradient Calculation
In the N-body problem one does not want to calculate the potential, but
the force, thus the gradient of the potential.
This works via

∂φ(x)
∂x (j)

↑
space di-
mension

≈
series dev.

∂

∂x(j)

∑

|α|≤p

Dαf (z − x)
|α|! Mα =

∑

|α|≤p

Dα∂x(j) f (z − x)

|α|! Mα

One has thus only to calculate Dα∂x(j) f (z − x) instead Dαf (z − x).
Above we have used a Taylor series. This is not the only possibility of a
series expansion. Besides there are for the considered potentials

1
log(‖ξ−x‖) (2D) and 1

‖ξ−x‖ (3D) other expansions, the so called multipole
expansions, that are fitting better.
For this series a better error estimation applies in the sense, that they
have the form

error ≤ 1
1 − r

c

(r
c

)p+1

and therefore are already for c > r satiesfied.
Moreover the complexity in relation to p is better (p2 in 2D, p4 in 3D).

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 14 / 36

Gradient Calculation

An approximation of the gravitation potential, that is often used by
physicans, is a taylor expansion of

φ(x) =
M∑

i=1

γ mi

‖(s − x) + (ξi − s)‖ ,

where s is the point of gravity of M masses (and not a fictitious circle
midpoint).

The so-called monopole expansion reads

φ(x) ≈
∑M

i=1 γ mi

‖s − x‖

(this means a body of mass
∑

mi in s).

The accuracy is then only controlled by the relationship r/c.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 15 / 36

Shifting of an Expansion

In the following algorithms we still need a further tool, that concerns the
shifting of expansions.

The mapping showns three clusters of bodies in circles around z1, z2, z3

each with radius r . The three circles are contained in a larger circle
around z ′ with radius r ′.

If we want to evaluate the potential of all masses in x with ‖x − z ′‖ > r ′,
we could use the series expansion around z ′.

If already series expansions have been calculated in the three smaller
circles (this means the coefficients Mα), then the expansion coefficients
of the new series can be computed from the one of the old series with an
effort of O(pα), thus independent of the number of masses.

Here no additional error arises, and it applies also the error estimation
with appropriate larger r ′.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 16 / 36

Shifting of an Development

x

r

rz2

z3

rz1

r’

z’

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 17 / 36

Uniform Point Distribution
First we develop an algorithm, that is usable for a uniform point
distribution. This has the advantage of simpler data structures and the
possibility of simpler load balancing. We present the ideas for the
two-dimensional case, since this can be drawn easier. However, all can
be performed analogous for three space dimensions.

All bodies be contained in a square Ω = (0,Dmax)
2 of side length Dmax .

We now introduce for Ω a hierachy of steadily finer grids. Level l is
developed from level l − 1 by quatering of elements.

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

Area

Level 1 Level 2 Level J

...

b’

b

ID{children}(b)

b=ID_V(b’) for all b’ in ID_K(b)

construction of grids

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 18 / 36

Uniform Point Distribution

If we want s bodies per fine grid box, then applies J = log4

(
N
s

)
. For two

not-neighbored squares we get the following estimation for the r/c
relationship (masses in b, evaluation in a)

r =
√

2
k
2

c = 2k

⇒ r
c

=

√
2 k

4k
=

√
2

4
≈ 0.35.

c r

k

r/c evaluation for two not-neighbored squares

For an element b on level l one defines the following regions in the
neighborhood of b:

◮ Nb(b) = alle neigbors b′ of b on
level l (∂b ∩ ∂b′ 6= ∅).

◮ IL(b) = interaction list of b:
children of neighbors of father(b),
that are not neighbors of b.

ID_Nb(b)

b

ID_IL(b)

b

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 19 / 36

Uniform Point Distribution
The following algorithm calculates the potential at all positions x1, . . . , xN :

effort
1. Preparation phase:
For each fine grid box calculate a far field expansion; O(N

s spα)

For all levels l = J − 1, . . . , 0
For each box b on level l

calculate expansion in b from expansion in children(b); O(N
s spγ)

2. Evaluation phase:
For each fine grid box b

For each body q in b
{

calculate exact potential of all q′ ∈ B, q′ 6= q; O(Ns)
For all b′ ∈ Nb(b)

For all q′ ∈ b′

calculate potential of q′ in q; O(N8s)
b̄ = b;
For all levels l = J, . . . , 0
{

For all b′ ∈ IL(b̄)
Evaluate the far field expansion of b′ in q; O(N

s spβ)
}

}

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 20 / 36

Uniform Point Distribution

Total effort: O(N log Npγ + Ns + Npα + N
s pβ), thus asymptotically

O(N log N).

Here denotes α the exponents for the building of the far field expansion
and β the exponents for shifting.

One considers, that one has N/s bodies per box on level J because of
the uniform distribution.

The accuracy is controlled here by the expansion degree p, the
relationship r/c is fixed.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 21 / 36

Parallelisation: Load Balancing
Load balancing:
The grid with the associated bodies is distributed onto the processors.
Since we now have a hierarchy of grids we progress as follows:

◮ Each processor shall at least get 2 × 2 grid cells.
◮ Be P = 4π, then choose k = π + 1 and distribute the grid on level k onto all

processors (each has 2 × 2 elements).
◮ All levels l < k are stored on all processors.
◮ All levels l > k are distributed such, that children(b) are processed in the

same processor than b.
◮ Example for P = 16 = 42.

level J

...

level 0

...

level k−1 level k

k>pi, 4^pi=P

parallelsequential

Distribution of boxes for the parallelisation

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 22 / 36

Parallelisation: Overlap

Additional to the assigned elements each processor stores further an
overlap area of two element rows:

kernel area overlap

overlap area of a processor

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 23 / 36

Parallelisation: Analysis I

Since each has at least 2 × 2 elements, the overlap area lies always in directly
neighbored processors.

The evaluation of IL requires at most communication with nearest neighbors.

To establish the far field expansion for the levels l < k is a all-to-all
communication required.

Scalability estimation: Be N
sP ≫ 1. Because of

J = log4

(
N
s

)

= log4

(
N
sP

P
)

= log4

(
N
sP

)

︸ ︷︷ ︸

Jp

+ log4 P
︸ ︷︷ ︸

Js

Js levels are computed sequentially and Jp = O(1) levels in parallel.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 24 / 36

Parallelisation: Analysis II

Then we get for fixed expansion degree:

TP (N, P) =

(N
P = const.)

= c1
N

P
︸ ︷︷ ︸

FFE level J . . . K
evaluate near field

+ c2 ld P + c3P
︸ ︷︷ ︸

all-to-all. This is always
data for four cells

+ c4p
︸︷︷︸

compute FFE in whole Ω
for l = k − 1 . . . 0 in all

processors

+ c5Jp
N

P
︸ ︷︷ ︸

FFE levels l ≥ k

+ c5
N

P
Js

︸ ︷︷ ︸

FFE levels l < k

Thus:

E(N,P) =
c5N log N

(
c5

N
P (Js + Jp
︸ ︷︷ ︸

log N

) + (c3 + c4)P
︸ ︷︷ ︸

all to all coarse
grid FFE

+ c2 ld P
︸ ︷︷ ︸

all-to-all

+ c1
N
P

︸︷︷︸

nearfield local FFE

)
P

=

=
1

1 + c3+c4
c5

· P2

N log N + c2
c5

· P ld P
N log N + c1

c5
· 1

log N

For an iso-efficient scaling N has thus to grow nearly like P2!

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 25 / 36

Parallelisation: Irregular Distribution

The assumption of a uniform distribution of bodies is in some application
(e.g. astro physics) not realistic.

If we want to have in each fine grid box exactly a single body and is Dmin

the minimal distance between two bodies, then one needs a grid with

log L = log
Dmax

Dmin

grid levels. L is called „separation ratio“.

But from these the most are empty. As with sparse matrices one now
avoids to store the empty cells. In two space dimensions this construction
is called „adaptive quadtree“.
The adaptive quadtree is constructed in the following way:

◮ Initialisation: root contains all bodies in the square (0,Dmax).
◮ As long as a leaf b with more than two bodies exists:

⋆ Subdivide b into four parts
⋆ Put each body of b into the appropriate child
⋆ Leave out empty children.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 26 / 36

Parallelisation: Irregular Distribution
Example of an adaptive quadtree:

The effort amounts (sequentially) to O(N log L).

The first (successful) fast evaluation algorithm for irregular distributed
bodies has been proposed by Barnes and Hut

As in the uniform case the far field expansion is constructed from the
leafs up to the root (at Barnes & Hut: monopole expansion).

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 27 / 36

Irregular Distribution

For a body q one can then calculate the potential in q with the following
recursive algorithm:

Pot(body q, box b)
{

double pot = 0;
if (b is leaf ∧ q = b.q) return 0; // end
if (children(b) == ∅)

return φ(b.q,q); // direct evaluation
if (r(b)

dist(q,b) ≤ h)
return φb(q); // evaluate FFE

for (b′ ∈ children(b))
pot = pot + Pot(q,b′); // recursive descent

return pot ;
}

For the calculaton Pot is called with q and the root of the quadtree.

In the algorithm of Barnes & Hut the accuracy of the evaluation is
controlled with the parameters h.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 28 / 36

Irregular Distribution

Which cells of the quadtree are visited in the Barnes & Hut algorithm?

Example to the evaluation in the Barnes & Hut algorithm

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 29 / 36

Irregular Distribution: Parallelisation I

The parallelisation of this algorithm is relatively complex, such that we
can only provide some hints. For details we point out Salmon, 1994.

Since the positions of the particle change with time, the adaptive
quadtree has to be constructed in each time step. Furthermore the
partitioning of the bodies onto the processors has to be done in such a
way, that close neighboring bodies are also stored in close neighboring
processors.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 30 / 36

Irregular Distribution: Parallelisation II
A very fancy load balancing method works with „space filling curves“. The
so called Peano or Hilbert curves have the following shape:

Peano-Hilbert-Kurve
Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 31 / 36

Irregular Distribution: Parallelisation III
A Hilbert curve of appropriate depth can be used to find a linear ordering
of the bodies (resp. the leafs of in the quad tree). This can then easily be
partitioned into P sections of length N/P.

Salmon & Warren show that with this data distribution the adaptive
quadtree can be constructed in parallel with few communication. Similar
to the uniform algorithm the coarse grid information, that all processors
store, can then be constructed by an all-to-all communication.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 32 / 36

Parallel Construction of the Adaptive Quadtree

Starting point: Each processor has a set of bodies, that corresponds to a
single connected section on the Hilbert curve.

Step 1: Each processor constructs locally the quadtree for its bodies. The
„numbers“ of the leafs are then increasing.

= leaf Local quadtree

Step 2: Comparison with neighboring processors. Question: Would a
sequential program create for the bodies of processor p the same leafs?
In general no, since a body of p and a body of q 6= p could share a box.

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 33 / 36

Parallel Construction of the Adaptive Quadtree
What can happen?
Be b the first body in processor p and b′ the last in processor p − 1. Now
there are two possibilities in processor p:

1 Body b′ lies in the same box as body b. =⇒ Subdivide the box until both
bodies are separated. The new leaf is the same, that also a sequential
program would have calculated! If this wouldn’t be such, then there had to
exist a body b′′ in Prozessor q 6= p such that b′′ ∈ new leaf of b. But this is
impossible, since all b′′ are ordered before b′ or after the last node of
processor p!

b, is first leaf in p in processor p
last body

leaf
for
b

new leaf
for b in p

Exchange of the boundary leafs
2 Body b′ lies not in the same box as body b. =⇒ there is nothing to do.

For the last body in p and the first in p + 1 we do the same!

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 34 / 36

The Coarse Grid Problem
Like in the uniform case the quadtree is stored from root up to a certain
depth in each processor, such that for these far field evaluations no
communication is necessary or, if needed, the processor is known that
stores the appropriate information.

Definition
A box b in the quadtree is called branch node, if b has only bodies of
processor p, but the father of b however contains bodies of different
processors. This processor p „belongs“ the branch node.

All boxes of the quadtree from the root to the branch nodes inclusively
are stored on all processors.

The branch nodes in our example.
Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 35 / 36

Force Evaluation & Communication

If for evaluation a recursive call in a branch node is necessary, then the
message is sent to the according processor, that is owner of the branch
node. This answers the request asynchronously and sends back the
result.

After the update of positions one calculates a new Hilbert numbering (can
be performed in N

P log L without quadtree construction) for the local
bodies. Then each gets again a section of length N

P . This works e.g. with
a parallel sorting algorithm!

Salmon & Warren can simulate with their implementation 322 Millionen
bodies (!) using 6800 processors (!, Intel ASCI-Red).

Stefan Lang (IWR) Simulation on High-Performance Computers WS 15/16 36 / 36

